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A loop transversal in a sharply 2-transitive
permutation loop

Eugene Kuznetsov

Abstract. The well-known theorem of M.Hall about the description of a finite
sharply 2-transitive permutation group is generalized for the case of permutation loops.
It is shown that the identity permutation with the set of all fixed-point-free permuta-
tions in a finite sharply 2-transitive permutation loop forms a loop transversal by its
proper subloop — a stabilizator of one symbol.
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1 Introduction

In the theory of finite multiply transitive permutation groups the following M.
Hall’s theorem is well-known.

Theorem 1. Let G be a sharply 2-transitive permutation group on a finite set of
symbols E, i.e.

1. G is a 2-transitive permutation group on E;
2. only the identity permutation id fizes two symbols from the set E.
Then

1. the identity permutation id together with the set of all fixed-point-free permu-
tations from the group G forms a transitive invariant subgroup A in the group

G;
2. the group G is isomorphic to the group of linear transformations

Gk ={al|a(z)=z-a+b, abeFE, a#0}
of some near-field K = (E,+,-,0,1).

In the articles [11,12,14] the notion of a permutation loop on some set of symbols
FE is defined. Both for permutation groups, and for permutation loops the notions
of transitivity, multiple transitivity and sharply multiple transitivity can be defined

© Eugene Kuznetsov, 2005

101



102 EUGENE KUZNETSOV

[11,12,14]. The studying of a sharply 2-transitive permutation loop of permutations
is the most interesting, because (see [6]) there exists a 1-1 correspondence between
every finite projective plane and some sharply 2-transitive permutation loop.

Using the notion of a transversal in a loop to its subloop (see [11,13]), the
author of the present article proves a generalization of Hall’s Theorem for the case
of a sharply 2-transitive permutation loop.

Theorem 2. Let L be a sharply 2-transitive permutation loop on a finite set of
symbols E, i.e.

1. L is a 2-transitive set of permutations on the finite set of symbols E;

» 9,

2. permutations from the set L form a loop by some operation ”-7;

3. only the identity permutation id fizes two symbols from the set E.
Then

1. the identity permutation id together with the set of all fized-point-free permu-
tations from the loop L forms a transitive loop transversal A in the loop L to
its proper subloop R,, where R, is a loop of all permutations from the loop L
which fix some symbol a € E;

2. this loop transversal A is a unique loop transversal in the loop L to its proper
subloop R, i.e. any other loop transversal T in the loop L to its proper subloop
R, coincide with the transversal T'.

Let us give some necessary notations and prove some basic statements.

2 Necessary definitions and notations

Definition 1. A system (E,-) is called [2, 5] a right (left) quasigroup if for
arbitrary a,b € E the equation x-a = b (a-y = b) has a unique solution in the set E.
If a system (E,-) is both a right and left quasigroup, then it is called a quasigroup.
If in a right (left) quasigroup (E,-) there exists an element e € E such that

for any x € E, then the system (E,-) is called a right (left) loop (the element e is
called a unit or identity element). If a system (E,-) is both a right and left loop,
then it is called a loop.

Definition 2. Let G be a group and H be a subgroup in G. A complete system
T = {t;}icp of representatives of the left (right) cosets of H in G (e =t; € H) is
called [1] a left (right) transversal in G to H.
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Let T = {ty}zcr be a left transversal in G to H. We can define correctly
(see [1,6]) the following operation (transversal operation) on the set E (E is an
index set; left cosets of H in G are numbered by indexes from F):

T e
x(-)y:z £, tyty =t.h, he H. (1)

T
In [5] it was proved that the system (FE, ¥ ), 1) is a left loop with the unit 1.

T
Definition 3. Let T be a left transversal in G to H. If the system (E,(')7 1) is a
loop, then T is called a left loop (or simply “loop”) transversal in G to H.

3 A transversal in a loop to its subloop

The author of the present article generalized in [10,11] the well-known (in group
theory) notion of a transversal in a group to its proper subgroup. Also the analogous
generalization is studied in [3].

At the beginning let us define a partition of a loop by left (right) cosets to its
proper subloop.

Definition 4. Let (L,-) be a loop and (R, -) be its proper subloop. Then [13] a left
coset of R is a set of the form

xR = {xr|r € R},
and a right coset has the form
Rx ={rz|r € R}.

The cosets of a subloop do not necessarily form a partition of the loop. This
leads to the following definition.

Definition 5. A loop L has a left (right) coset decomposition by its proper
subloop R [13], if the left (right) cosets form a partition of the loop L, i.e. for some
set of indexes E

1. R) = L;
igE(alR) ’
2. foreveryi,j € E, i#j

(aiR) N (ajR) = .

Lemma 1. The following conditions are equivalent:
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1. aloop L has a left coset decomposition by its proper subloop R;

2. the following condition take place (it can be named a weak left Condition
A, see below): for every a € L

(aR)R = aR. (2)

Proof. See in [13]|, Theorem 1.2.12.

In order to define correctly the notion of a left (right) transversal in a loop to
its proper subloop, it is necessary that the following condition be fulfilled.

Definition 6. (Left Condition A) The multiplication to the left of an arbitrary
element a of the loop L by an arbitrary left coset in the loop L to its proper subloop
R is a left coset in the loop L to its proper subloop R too, i.e. for every a,b € L
there exists an element ¢ € L such that

a(bR) = cR. (3)
The right Condition A is defined analogously.

Lemma 2. The following conditions are equivalent:

1. a left Condition A is fulfilled in the loop L to its proper subloop R;

2. for every a,b € L
a(bR) = (ab)R. (4)

Proof. See in [11].

Remark 1. The condition (4) is called in [3] a strong left coset decomposition
of the loop L by its proper subloop R. Also we can say that the subloop R is
a left invariant subloop in the loop L.

Definition 7. (See also [3]) Let (L,-,e) be a loop and (R,-,e) be its proper subloop.
Let a left Condition A be fulfilled in the loop L to its proper subloop R. Then the
loop L has a left coset decomposition by its proper subloop R. A left transversal
T = {tz}zep in the loop L to its proper subloop R is a set of representatives, one
from each left coset; moreover, t1 = e € R.

A right transversal T' = {t; }.cg in the loop L to its proper subloop R is defined
analogously.

Remark 2. If in the last definition we eliminate the condition ¢ty = e € R, then we
obtain a definition of a non-reduced left transversal 7' = {t,},cp in the loop L
to its proper subloop R.
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Let T = {t,}+cp be a left transversal in a loop L to its proper subloop R. We
can define correctly the following operation (transversal operation) on the set E:

T
a:(-)y:z el ty-ty=t,-r, rER, (5)

T
where t,,t,,t, € T, » € R. In [11] it is proved that the system <E,(-), 1) is a left

loop with the unit 1.

Definition 8. Let T be a left transversal in a loop L to its proper subloop R. If

T
the system <E,(-),1> is a loop, then T is called a left loop (or simply "loop”)
transversal in the loop L to its proper subloop R.

4 Finite projective planes, D K-ternars and loop transversals in the
group S, to St,,(S,)

Let us remember the basic facts from the theory of finite projective planes and
their coordinatization (see [7]).

Definition 9. The projective plane of order n is the incidence structure (P, L, I)
which satisfies the following azxioms:

1. Given any two distinct points from P there exists just one line from L incident
with both of them;

2. Given any two distinct lines from L there exists just one point from P incident
with both of them;

3. There exist four points such that a line incident with any two of them is not
incident with either of the remaining two.

4. There exists a line in L which consists of exactly n + 1 points.

Definition 10. A system (E,(z,t,y),0,1) is called [7] a DK-ternar (i.e. a set E
with ternary operation (x,t,y) and distinguished elements 0,1 € E) if the following
conditions hold:

- (%,0,y) =

(=, Ly) =y,
3. (z,t,z) =

- (

0,¢,1) =
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5. ifa,b,c,d are arbitrary elements from E and a # b, then the system

[ =

has an unique solution in B x E.

Definition 11. A set M of permutations on a set X is called [4] sharply 2-
transitive if for any two pairs (a,b) and (c,d) of different elements from X there
exists an unique permutation o € M satisfying the following conditions:

Lemma 3. Let m be an arbitrary finite projective plane. We can introduce on the
plane m the coordinates (a,b), (m), (c0) for points and [a,b], [m], [0o] for lines (where
the set E is a finite set with the distinguished elements 0,1 and a,b,m € E) such
that if we define a ternary operation (x,t,y) on the set E by the formula

(z,t,y) =z g (z,y) € [t, 2],

then the system (E,(z,t,y),0,1) be a DK -ternar.

Proof. See Lemma 1 in [7].

Now let a system (F,(x,t,9),0,1) be a DK-ternar. Let us define the following
binary operation (z,00,y) on the set E:

Lemma 4. Operation (x,00,y) satisfies the following conditions:

(m,oo,y) = (’LL, OO’U) (:Evt?y) #* (u,t,v)
8 { (z,y) # (u,v) = Vi € E.

2. (x,00,2) = 0.
3. if a,b,c are arbitrary elements from E, then the system

{ ((w,a,y) =b

r,00,Yy) = ¢

has a unique solution in B X E.
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Proof. See Lemma 4 in [7].

Let (E, (x,t,y),0,1) be a finite D K-ternar. Let us introduce points (a, b), (m), (c0)
and lines [a, b], [m], [oo] (where a,b,m € E) and define the following incidence rela-
tion I between points and lines:

(a,b) I [¢,d] <= (a,c,b)=d,

(a,b) I'[d] <= (a,00,b)=d,

(a) I [e,d] <= a=c, (6)
(a) I'[oc], — (o0) I'[d],  (o0) I [od],

(a,b) I [o0] <= (a) I [d] <

Lemma 5. The incidence system (X, L, I), where

X = {(a7 b)? (m)7 (OO) ’ a,b,m € E}7
L ={[a,],[m],[oq] | a,b,m € E},
I is the incidence relation, defined above in (6),

s a projective plane.
Proof. See Lemma 5 in [7].

Lemma 6. (Cell permutations) Let the system (E,(x,t,y),0,1) be a finite DK -
ternar. Let a,b be arbitrary elements from E and a # b. Then every unary operation
agp(t) = (a,t,b) is a permutation on the set E.

Proof. See Lemma 6 in [7].

Lemma 7. Cell permutations {aqptapeE, ab 0f the finite DK -ternar (E, (x,t,y),0,1)
satisfy the following conditions:

1. All cell permutations are distinct;
2. The set M of all cell permutations is sharply 2-transitive on the set E;

3. A permutation aqyp s a fized-point-free cell permutation on the set E iff the
following condition holds

(a,00,b) = (0,00, 1).
4. There exists the fized-point-free permutation vy on the set E such that we can

represent the set A of all fixed-point-free cell permutations together with the
identity cell permutation g1 in the following form:

A= {aa,b | b= Vo(a), a € E} = {Ozaﬂjo(a)}aeE.

Proof. See Lemma 7 in [7].
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Lemma 8. Let M = {aqp}tapeE, axtb be a set of permutations on the set E (E is a
finite set with distinguished elements 0 and 1), and the following conditions hold:

1. Qp,1 = id.
2. 0 p(0) = a, agp(l) =0b.

3. The set M 1is a sharply 2-transitive set of permutations on E.

Let us suppose by definition:

(z,t,9) = a:&y(t) if ©#y,

(x,t,x) =
Then the system (E,(x,t,y),0,1) is a finite DK -ternar.

Proof. See Lemma 8 in [7].

Next theorem shows a connection between finite sharply 2-transitive sets of per-
mutations and loop transversals in the symmetric group .5,.

Theorem 3. Let E be a finite set and card M = n. Then the following conditions
are equivalent:

1. A setT of permutations of degree n is a sharply 2-transitive set of permutations
on the set E and id € T.

2. A set T of permutations of degree n is a loop transversal in Sy to Stq(Sy)
(where a,b are arbitrary fized elements from E and a #b).

T
3. A system (E x E —{A}, (-), (a,b)) is a sharply 2-transitive permutation loop
of degree n (a definition of permutation loop see in [11,12,14]).

Proof. See Theorem 1 in [6].

Lemma 9. Let T, = {QuytaycE, o4y be a loop transversal in S, to Stqp(Sp)

(where a,b are arbitrary fized elements from E and a #b). Let a system (E X E —

(Tap) . .
{A}, o ,{a,b)) be a loop transversal operation corresponding to the transversal

Top. Then

(Tap)
(Z,y) " (u,0) = (owy(u), azy(v)). (7)

Proof. See Lemma 10 in [7].
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5 A loop transversal in a sharply 2-transitive permutation loop

As it is shown above, there exist a 1-1 correspondences between

e a finite projective plane 7 of order n;

a finite DK-ternar (E, (z,t,y),0,1) which gives a coordinatization of the pro-
jective plane T;

a sharply 2-transitive permutation loop L = {aqp}abeE, axp Of cell permuta-
tions of the DK-ternar (E, (z,t,y),0,1);

a loop transversal Tg,; = {a%y}w,ye};, ey 0 the symmetric group S, to
Stap(Sn) (where a,b are arbitrary fixed elements from E and a # b);

. (Ta,b) .
a loop transversal operation (E x E — {A}, -7, {a,b)) corresponding to the
transversal Ty p (in [7] this loop is called a loop of pairs of the DK-ternar

(E,(z,t,y),0,1)).

Below for simplicity we shall consider that (a,b) = (0, 1).

Lemma 10. The set
Hy ={(0,a)|a € E—{0}}

T
forms a subloop in the loop of pairs L* = (E X E — {A},( 0-’1), (a,b)).
Proof. See Lemma 11 in [7].

Lemma 11. A left Condition A is fulfilled for the loop of pairs L* to its proper
subloop H.

Proof. Let us have

ap = (a,b) €L, bo = (¢,d) € L,
r = (0,u) € Hj, y=(0,v)¢€ Hj,

where a,b,c,d € E, a#b, c#d, wu,v€FE—{0}. According to (7), we obtain

2 = (@b (e d) " (0,0) = (0,0) "0 (00a(0), aga()) =

= (a5 T (e aea(w) = (0up(C), duprea(u)),

(To,1) (To,1)

(bo

ao

since ay ,(0) = x (see Lemma 8). By the analogous way we obtain

(To,1) (To,1) (To,1) (To,1) (To,1)

= ({(a,0) - (¢, d)) (0,v) = (@ap(c), aap(d)) - {0,v) =

= (aa,b(c)7 Osza’b(c),oza’b(d) (U)>

(ao bo)
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Because the function o, ;(t) is a permutation on the set E, then for every u € E—{0}
there exists u € E — {0} such that

aa,baad(u) = aaa,b(c)vaa,b(d) (U)’

really
-1

U= %, 4(),aa(d)

Qg e q(u).

Let us note that
aa,bac,d(o) - aa,b(c) - aaa’b(c),aayb(d) (O)

Finally we obtain that for every x € Hj there exists y € H such that

T, T, T,
( q,l) (bo( q,l)x) _ (ao( 9,1) bo)

for every ag,bg € L. A left Condition A is fulfilled for the loop of pairs L* to its
proper subloop H. O

(To,1)
a .

According to the last Lemma we obtain that the loop L = {aqp}aber, axp Of
cell permutations has a strong left coset decomposition by its proper subloop Hy =
{ap,a|la € E — {0}}. So it is possible to define and investigate a left or right
transversals in the loop L = {gp}apeE, a#b to its proper subloop Hy.

Let us study the set A = {ag,(q) }ace C L of all fixed-point-free permutations
and the identity permutation (see Lemma 8).

Lemma 12. The set A = {ag,(q)}tacE 15 a loop transversal in the loop L =
{aaptapeE, azp to its proper subloop Hy.
(To,1) . .
Proof. Let us study left cosets (aqp - Hp) in the loop L = {agp}abeE, axp to its
subloop Hy. We have
(To,1)
aeq € Qqp - Hy,
(To,1)
Oed = Ogp - Opoy

for some v € E — {0}. Then we obtain

c=ag(0) = a,
d = agp(u) # a,
l.e.
T
aws Y Hy = {au v € E — {a}).

T
So for every a € E a left coset H, = (aa,b( 0-’1)H0) in theloop L = {aap}apeE, atb

to its subloop Hy is a set of all permutations ¢ from L such that ¢(0) = a.
Let us study the set A = {a,,(q)}ecr from the Lemma’s condition. If a = 0
then
0,p(0) = 0,1 = id € AN Hy,
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i.e. the unit ¢d of the loop L belongs to the set A. Further,
U@ (0) =a = gy € Ha,
i.e. for every a € E it is true that
AN Hy = {agu@a)}-

Then the set A = { ,(q) facE i a left transversal in the loop L = {aap}apeE, ab

to its proper subloop Hy.

A
Finally, let us consider a transversal operation (F, “ ), 1) corresponding to the

transversal A:

(A) (To,1) (To,1)
TY=2 S Gy Oyl = Qew(z) Q0w (8)

A
where aq,, € Hy. According to [11], the system (FE, “ ), 1) is a left loop with the unit
A
1. Tt is sufficient to prove that the system (FE, (-), 1) is a right loop with the same
A
unit 1 too. So let us study for every a,b € E the equation x @ a = b. According
(8), we have
A
x (')a = b,

(To,1) (To,1)
A v(x) ° v — Gbubd) - 0w

where u € E' — {0}. It is equivalent to the following system

{ awu(w)(a) = Qp, ()( ) b,
Qg v(z) ( ( )) = Qpy (u)

It is easy to see that it is sufficient to show, that for every a,b € E there exists a
unique permutation v € A such that y(a) = b. If a = b, then v = id = ag,;1. Let
a # b; then according to Lemma 4 we obtain:

{ Qg v(x) (a) =,

Qg u(z) 18 @ ﬁxed—point—free permutation on the set F,

{

According to Lemma 4 the last system has a unique solution in £ x E, i.e. there
exists a unique such v = Qg u(z)- ]

z,a,v(x)) =
x,t,v(z)) 75 t Vte E,
x,a,v(x)

(
(
( ) =

(x,00,v(x)) = (0 00, 1).

Lemma 13. There exists a unique left loop transversal in the loop L = {aap}apeE, atb
to its subloop Hy.
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Proof. According to the last Lemma there exists a such left loop transversal: the
transversal A = {ay ,(q) facr of all fixed-point-free permutations and the identity
permutation. Let us prove that the transversal A = {ag,(4)}ack 15 a unique left
loop transversal in the loop L = {aqp}abeE, axp to its subloop Hy.

Let T' = {t;}+er be a left loop transversal in the loop L = {4 }apeE, ab to its
subloop Hy. Because the set 1" is a left transversal in the loop L = {aqp}apeE, azb
to its subloop Hj, then

T= {agc,cS(gc)}ery
where 0 is some function on the set E; §(x) # x for every x € E. Moreover,

t1 = Qo 5(0) = id = Qo1 € Hy,

ie. 6(0) = 1.

T
Let us study a transversal operation (F, « ), 1), corresponding to the transversal
T in the loop L = {ap}apbeE, atb to its subloop Hp. According to the definition of
transversal operation, we have:

(1) (To,1) (To,1)
T Y=z = Qpgz) 0 Oygs(y) T Azsz) 0 Q0us

where g, € Hp. So we obtain the following system

{ Qg 5(x) (y) = Az 5(2) (0) =%,
Ay 5(x) (5(3/)) = Az 6(2) (u)

Since the transversal T' = {t,},cp is a left loop transversal in the loop L =
T
{aaptabeE, axp to its subloop Hp, then for every a,b € E the equation x 0 a=

has a unique solution in the set F; i.e. for every a,b € E the equation

Qg 5(x) (CL) =b

has a unique solution in the set E. It means that if x1,29 € F and x1 # z9, then
must be

axl,é(m1)(a) 7& am2,5(w2)(a)‘

It is true for every a € E, so we obtain for every a € E and z1,29 € E, x1 # To:
axl,é(:cl)(a) 7£ ax2,6(x2)(a)7

i.e. for every a € E and x1,x2 € F, 1 # x2:

(r1,a,0(x1)) # (x2,a,0(x2)).

According to Lemma 4, we obtain

(21,00,0(x1)) = (z2,00,(x2)). (9)
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It means that for any different elements o, 5,,) and @y, 5(;,) of the left loop

transversal T' = {ay 5(;) }zer the formula (9) holds. Moreover,

z2)

t1 = ags0) = 20,1 €T,
since for every x € E — {0} we have
(z,00,0(x)) = (0,00,6(0)) = (0,00,1).

According to Lemma 8 (statements 2 and 3), we obtain that 6(z) = v(x) for every
r e FE ie.
T = {agc,cS(gc)}meE = {agc,u(gc)}meE = A.

0

Corollary 1. There exist exactly n — 2 different non-reduced left loop transversals
in the loop L to its subloop Hy.

Proof. The proof is analogous to the proof of the last Lemma till the moment,
when we obtain the following identity for the non-reduced left loop transversal T =
{@z.5(z) YzeE in the loop L to its subloop Ho:

(x1,00,0(x1)) = (z2,00,0(x2)) (10)

for every z1,22 € E, 1 # w2. Since T = {a, 54)tzer 15 a non-reduced left
loop transversal in the loop L to its subloop Hy, then T'N Hy = {ap, } for some
ug € E—{0,1}. So we obtain from (10) for every z € E

(z,00,d(z)) = (0,00,d(0)) = (0,00, up).

Since ug # 0,1, then there exist exactly n — 2 such elements ug in the set E. So
there exist exactly n — 2 different non-reduced left loop transversals in the loop L
to its subloop Hp. O

Remark 3. We can note a correlation between the left loop transversal A in the
loop L to its subloop Hy and points of the line [(0, 00, 1)] in the projective plane 7:

Qpuz) €A & (z,v(z)) €[(0,00,1)].

There exists an analogous correlation between non-reduced left loop transversals in
the loop L to its subloop Hy and points of the lines [d] (d # 0) in the projective
plane 7:

A5y €ETe & (v,0(x)) € [(0,00,¢)], c#0,1.

A
Corollary 2. The following condition is fulfilled for the loop (E, ('),0> and permu-
tation v: for every x € E

v(z)=x
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(4)

Proof. According to formula (8) we have for the transversal operation (E, -, 0):

(A)
rl=2 & ouul)=2z & v =z
i.e.
(A)
viz)=z=x -1
]
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