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A loop transversal in a sharply 2-transitive

permutation loop

Eugene Kuznetsov

Abstract. The well-known theorem of M.Hall about the description of a finite
sharply 2-transitive permutation group is generalized for the case of permutation loops.
It is shown that the identity permutation with the set of all fixed-point-free permuta-
tions in a finite sharply 2-transitive permutation loop forms a loop transversal by its
proper subloop – a stabilizator of one symbol.
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1 Introduction

In the theory of finite multiply transitive permutation groups the following M.
Hall’s theorem is well-known.

Theorem 1. Let G be a sharply 2-transitive permutation group on a finite set of
symbols E, i.e.

1. G is a 2-transitive permutation group on E;

2. only the identity permutation id fixes two symbols from the set E.

Then

1. the identity permutation id together with the set of all fixed-point-free permu-
tations from the group G forms a transitive invariant subgroup A in the group
G;

2. the group G is isomorphic to the group of linear transformations

GK = {α |α(x) = x · a + b, a, b ∈ E, a 6= 0}

of some near-field K = 〈E,+, ·, 0, 1〉.

In the articles [11,12,14] the notion of a permutation loop on some set of symbols
E is defined. Both for permutation groups, and for permutation loops the notions
of transitivity, multiple transitivity and sharply multiple transitivity can be defined
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[11,12,14]. The studying of a sharply 2-transitive permutation loop of permutations
is the most interesting, because (see [6]) there exists a 1-1 correspondence between
every finite projective plane and some sharply 2-transitive permutation loop.

Using the notion of a transversal in a loop to its subloop (see [11, 13]), the
author of the present article proves a generalization of Hall’s Theorem for the case
of a sharply 2-transitive permutation loop.

Theorem 2. Let L be a sharply 2-transitive permutation loop on a finite set of
symbols E, i.e.

1. L is a 2-transitive set of permutations on the finite set of symbols E;

2. permutations from the set L form a loop by some operation ”·”;

3. only the identity permutation id fixes two symbols from the set E.

Then

1. the identity permutation id together with the set of all fixed-point-free permu-
tations from the loop L forms a transitive loop transversal A in the loop L to
its proper subloop Ra, where Ra is a loop of all permutations from the loop L

which fix some symbol a ∈ E;

2. this loop transversal A is a unique loop transversal in the loop L to its proper
subloop Ra, i.e. any other loop transversal T in the loop L to its proper subloop
Ra coincide with the transversal T .

Let us give some necessary notations and prove some basic statements.

2 Necessary definitions and notations

Definition 1. A system 〈E, ·〉 is called [2, 5] a right (left) quasigroup if for
arbitrary a, b ∈ E the equation x ·a = b (a ·y = b) has a unique solution in the set E.
If a system 〈E, ·〉 is both a right and left quasigroup, then it is called a quasigroup.
If in a right (left) quasigroup 〈E, ·〉 there exists an element e ∈ E such that

x · e = e · x = e,

for any x ∈ E, then the system 〈E, ·〉 is called a right (left) loop (the element e is
called a unit or identity element). If a system 〈E, ·〉 is both a right and left loop,
then it is called a loop.

Definition 2. Let G be a group and H be a subgroup in G. A complete system
T = {ti}i∈E of representatives of the left (right) cosets of H in G (e = t1 ∈ H) is
called [1] a left (right) transversal in G to H.
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Let T = {tx}x∈E be a left transversal in G to H. We can define correctly
(see [1, 6]) the following operation (transversal operation) on the set E (E is an
index set; left cosets of H in G are numbered by indexes from E):

x
(T )
· y = z

def
⇐⇒ txty = tzh, h ∈ H. (1)

In [5] it was proved that the system 〈E,
(T )
· , 1〉 is a left loop with the unit 1.

Definition 3. Let T be a left transversal in G to H. If the system 〈E,
(T )
· , 1〉 is a

loop, then T is called a left loop (or simply ”loop”) transversal in G to H.

3 A transversal in a loop to its subloop

The author of the present article generalized in [10,11] the well-known (in group
theory) notion of a transversal in a group to its proper subgroup. Also the analogous
generalization is studied in [3].

At the beginning let us define a partition of a loop by left (right) cosets to its
proper subloop.

Definition 4. Let 〈L, ·〉 be a loop and 〈R, ·〉 be its proper subloop. Then [13] a left
coset of R is a set of the form

xR = {xr | r ∈ R},

and a right coset has the form

Rx = {rx | r ∈ R}.

The cosets of a subloop do not necessarily form a partition of the loop. This
leads to the following definition.

Definition 5. A loop L has a left (right) coset decomposition by its proper
subloop R [13], if the left (right) cosets form a partition of the loop L, i.e. for some
set of indexes E

1. ∪
i∈E

(aiR) = L;

2. for every i, j ∈ E, i 6= j

(aiR) ∩ (ajR) = ∅.

Lemma 1. The following conditions are equivalent:
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1. a loop L has a left coset decomposition by its proper subloop R;

2. the following condition take place (it can be named a weak left Condition
A, see below): for every a ∈ L

(aR)R = aR. (2)

Proof. See in [13], Theorem I.2.12.

In order to define correctly the notion of a left (right) transversal in a loop to
its proper subloop, it is necessary that the following condition be fulfilled.

Definition 6. (Left Condition A) The multiplication to the left of an arbitrary
element a of the loop L by an arbitrary left coset in the loop L to its proper subloop
R is a left coset in the loop L to its proper subloop R too, i.e. for every a, b ∈ L

there exists an element c ∈ L such that

a(bR) = cR. (3)

The right Condition A is defined analogously.

Lemma 2. The following conditions are equivalent:

1. a left Condition A is fulfilled in the loop L to its proper subloop R;

2. for every a, b ∈ L

a(bR) = (ab)R. (4)

Proof. See in [11].

Remark 1. The condition (4) is called in [3] a strong left coset decomposition

of the loop L by its proper subloop R. Also we can say that the subloop R is
a left invariant subloop in the loop L.

Definition 7. (See also [3]) Let 〈L, ·, e〉 be a loop and 〈R, ·, e〉 be its proper subloop.
Let a left Condition A be fulfilled in the loop L to its proper subloop R. Then the
loop L has a left coset decomposition by its proper subloop R. A left transversal
T = {tx}x∈E in the loop L to its proper subloop R is a set of representatives, one
from each left coset; moreover, t1 = e ∈ R.

A right transversal T = {tx}x∈E in the loop L to its proper subloop R is defined
analogously.

Remark 2. If in the last definition we eliminate the condition t1 = e ∈ R, then we
obtain a definition of a non-reduced left transversal T = {tx}x∈E in the loop L

to its proper subloop R.
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Let T = {tx}x∈E be a left transversal in a loop L to its proper subloop R. We
can define correctly the following operation (transversal operation) on the set E:

x
(T )
· y = z

def
⇐⇒ tx · ty = tz · r, r ∈ R, (5)

where tx, ty, tz ∈ T, r ∈ R. In [11] it is proved that the system 〈E,
(T )
· , 1〉 is a left

loop with the unit 1.

Definition 8. Let T be a left transversal in a loop L to its proper subloop R. If

the system 〈E,
(T )
· , 1〉 is a loop, then T is called a left loop (or simply ”loop”)

transversal in the loop L to its proper subloop R.

4 Finite projective planes, DK-ternars and loop transversals in the

group Sn to Sta,b(Sn)

Let us remember the basic facts from the theory of finite projective planes and
their coordinatization (see [7]).

Definition 9. The projective plane of order n is the incidence structure 〈P,L, I〉
which satisfies the following axioms:

1. Given any two distinct points from P there exists just one line from L incident
with both of them;

2. Given any two distinct lines from L there exists just one point from P incident
with both of them;

3. There exist four points such that a line incident with any two of them is not
incident with either of the remaining two.

4. There exists a line in L which consists of exactly n + 1 points.

Definition 10. A system 〈E, (x, t, y), 0, 1〉 is called [7] a DK-ternar (i.e. a set E

with ternary operation (x, t, y) and distinguished elements 0, 1 ∈ E) if the following
conditions hold:

1. (x, 0, y) = x,

2. (x, 1, y) = y,

3. (x, t, x) = x,

4. (0, t, 1) = t,



106 EUGENE KUZNETSOV

5. if a, b, c, d are arbitrary elements from E and a 6= b, then the system

{

(x, a, y) = c

(x, b, y) = d

has an unique solution in E × E.

Definition 11. A set M of permutations on a set X is called [4] sharply 2-
transitive if for any two pairs (a, b) and (c, d) of different elements from X there
exists an unique permutation α ∈ M satisfying the following conditions:

α(a) = c, α(b) = d.

Lemma 3. Let π be an arbitrary finite projective plane. We can introduce on the
plane π the coordinates (a, b), (m), (∞) for points and [a, b], [m], [∞] for lines (where
the set E is a finite set with the distinguished elements 0, 1 and a, b,m ∈ E) such
that if we define a ternary operation (x, t, y) on the set E by the formula

(x, t, y) = z
def
⇐⇒ (x, y) ∈ [t, z],

then the system 〈E, (x, t, y), 0, 1〉 be a DK-ternar.

Proof. See Lemma 1 in [7].

Now let a system 〈E, (x, t, y), 0, 1〉 be a DK-ternar. Let us define the following
binary operation (x,∞, y) on the set E:

(x,∞, 0)
def
= x,

{

(x,∞, y) = u

(x, y) 6= (u, 0)
def
⇐⇒

(x, t, y) 6= (u, t, 0)
∀t ∈ E.

Lemma 4. Operation (x,∞, y) satisfies the following conditions:

1.

{

(x,∞, y) = (u,∞, v)
(x, y) 6= (u, v)

⇐⇒
(x, t, y) 6= (u, t, v)

∀t ∈ E.

2. (x,∞, x) = 0.

3. if a, b, c are arbitrary elements from E, then the system

{

(x, a, y) = b

(x,∞, y) = c

has a unique solution in E × E.
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Proof. See Lemma 4 in [7].

Let 〈E, (x, t, y), 0, 1〉 be a finite DK-ternar. Let us introduce points (a, b), (m), (∞)
and lines [a, b], [m], [∞] (where a, b,m ∈ E) and define the following incidence rela-
tion I between points and lines:

(a, b) I [c, d] ⇐⇒ (a, c, b) = d,

(a, b) I [d] ⇐⇒ (a,∞, b) = d,

(a) I [c, d] ⇐⇒ a = c,

(a) I [∞], (∞) I [d], (∞) I [∞],
(a, b) I [∞] ⇐⇒ (a) I [d] ⇐⇒
(∞) I [c, d] ⇐⇒ false.

(6)

Lemma 5. The incidence system 〈X,L, I〉, where

X = {(a, b), (m), (∞) | a, b,m ∈ E},
L = {[a, b], [m], [∞] | a, b,m ∈ E},

I is the incidence relation, defined above in (6),

is a projective plane.

Proof. See Lemma 5 in [7].

Lemma 6. (Cell permutations) Let the system 〈E, (x, t, y), 0, 1〉 be a finite DK-
ternar. Let a, b be arbitrary elements from E and a 6= b. Then every unary operation
αa,b(t) = (a, t, b) is a permutation on the set E.

Proof. See Lemma 6 in [7].

Lemma 7. Cell permutations {αa,b}a,b∈E, a6=b of the finite DK-ternar 〈E, (x, t, y), 0, 1〉
satisfy the following conditions:

1. All cell permutations are distinct;

2. The set M of all cell permutations is sharply 2-transitive on the set E;

3. A permutation αa,b is a fixed-point-free cell permutation on the set E iff the
following condition holds

(a,∞, b) = (0,∞, 1).

4. There exists the fixed-point-free permutation ν0 on the set E such that we can
represent the set A of all fixed-point-free cell permutations together with the
identity cell permutation α0,1 in the following form:

A = {αa,b | b = ν0(a), a ∈ E} = {αa,ν0(a)}a∈E .

Proof. See Lemma 7 in [7].
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Lemma 8. Let M = {αa,b}a,b∈E, a6=b be a set of permutations on the set E (E is a
finite set with distinguished elements 0 and 1), and the following conditions hold:

1. α0,1 = id.

2. αa,b(0) = a, αa,b(1) = b.

3. The set M is a sharply 2-transitive set of permutations on E.

Let us suppose by definition:

(x, t, y)
def
= αx,y(t) if x 6= y,

(x, t, x)
def
= x.

Then the system 〈E, (x, t, y), 0, 1〉 is a finite DK-ternar.

Proof. See Lemma 8 in [7].

Next theorem shows a connection between finite sharply 2-transitive sets of per-
mutations and loop transversals in the symmetric group Sn.

Theorem 3. Let E be a finite set and cardM = n. Then the following conditions
are equivalent:

1. A set T of permutations of degree n is a sharply 2-transitive set of permutations
on the set E and id ∈ T .

2. A set T of permutations of degree n is a loop transversal in Sn to Sta,b(Sn)
(where a, b are arbitrary fixed elements from E and a 6= b).

3. A system 〈E × E − {△},
(T )
· , 〈a, b〉〉 is a sharply 2-transitive permutation loop

of degree n (a definition of permutation loop see in [11,12,14]).

Proof. See Theorem 1 in [6].

Lemma 9. Let Ta,b = {αx,y}x,y∈E, x 6=y be a loop transversal in Sn to Sta,b(Sn)
(where a, b are arbitrary fixed elements from E and a 6= b). Let a system 〈E × E −

{△},
(Ta,b)
· , 〈a, b〉〉 be a loop transversal operation corresponding to the transversal

Ta,b. Then

〈x, y〉
(Ta,b)
· 〈u, v〉 = 〈αx,y(u), αx,y(v)〉. (7)

Proof. See Lemma 10 in [7].
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5 A loop transversal in a sharply 2-transitive permutation loop

As it is shown above, there exist a 1-1 correspondences between

• a finite projective plane π of order n;

• a finite DK-ternar 〈E, (x, t, y), 0, 1〉 which gives a coordinatization of the pro-
jective plane π;

• a sharply 2-transitive permutation loop L = {αa,b}a,b∈E, a6=b of cell permuta-
tions of the DK-ternar 〈E, (x, t, y), 0, 1〉;

• a loop transversal Ta,b = {αx,y}x,y∈E, x 6=y in the symmetric group Sn to
Sta,b(Sn) (where a, b are arbitrary fixed elements from E and a 6= b);

• a loop transversal operation 〈E × E − {△},
(Ta,b)
· , 〈a, b〉〉 corresponding to the

transversal Ta,b (in [7] this loop is called a loop of pairs of the DK-ternar
〈E, (x, t, y), 0, 1〉).

Below for simplicity we shall consider that 〈a, b〉 = 〈0, 1〉.

Lemma 10. The set
H∗

0 = {〈0, a〉 | a ∈ E − {0}}

forms a subloop in the loop of pairs L∗ = 〈E × E − {△},
(T0,1)
· , 〈a, b〉〉.

Proof. See Lemma 11 in [7].

Lemma 11. A left Condition A is fulfilled for the loop of pairs L∗ to its proper
subloop H∗

0 .

Proof. Let us have

a0 = 〈a, b〉 ∈ L, b0 = 〈c, d〉 ∈ L,

x = 〈0, u〉 ∈ H∗
0 , y = 〈0, v〉 ∈ H∗

0 ,

where a, b, c, d ∈ E, a 6= b, c 6= d, u, v ∈ E − {0}. According to (7), we obtain

a0

(T0,1)
· (b0

(T0,1)
· x) = 〈a, b〉

(T0,1)
· (〈c, d〉

(T0,1)
· 〈0, u〉) = 〈a, b〉

(T0,1)
· 〈αc,d(0), αc,d(u)〉 =

= 〈a, b〉
(T0,1)
· 〈c, αc,d(u)〉 = 〈αa,b(c), αa,bαc,d(u)〉,

since αx,y(0) = x (see Lemma 8). By the analogous way we obtain

(a0
(T0,1)
· b0)

(T0,1)
· y = (〈a, b〉

(T0,1)
· 〈c, d〉)

(T0,1)
· 〈0, v〉 = 〈αa,b(c), αa,b(d)〉

(T0,1)
· 〈0, v〉 =

= 〈αa,b(c), ααa,b(c),αa,b(d)(v)〉.
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Because the function αa,b(t) is a permutation on the set E, then for every u ∈ E−{0}
there exists u ∈ E − {0} such that

αa,bαc,d(u) = ααa,b(c),αa,b(d)(v);

really
v = α−1

αa,b(c),αa,b(d)αa,bαc,d(u).

Let us note that
αa,bαc,d(0) = αa,b(c) = ααa,b(c),αa,b(d)(0).

Finally we obtain that for every x ∈ H∗
0 there exists y ∈ H∗

0 such that

a0

(T0,1)
· (b0

(T0,1)
· x) = (a0

(T0,1)
· b0)

(T0,1)
· y

for every a0, b0 ∈ L. A left Condition A is fulfilled for the loop of pairs L∗ to its
proper subloop H∗

0 . �

According to the last Lemma we obtain that the loop L = {αa,b}a,b∈E, a6=b of
cell permutations has a strong left coset decomposition by its proper subloop H0 =
{α0,a | a ∈ E − {0}}. So it is possible to define and investigate a left or right
transversals in the loop L = {αa,b}a,b∈E, a6=b to its proper subloop H0.

Let us study the set A = {αa,ν(a)}a∈E ⊂ L of all fixed-point-free permutations
and the identity permutation (see Lemma 8).

Lemma 12. The set A = {αa,ν(a)}a∈E is a loop transversal in the loop L =
{αa,b}a,b∈E, a6=b to its proper subloop H0.

Proof. Let us study left cosets (αa,b

(T0,1)
· H0) in the loop L = {αa,b}a,b∈E, a6=b to its

subloop H0. We have

αc,d ∈ αa,b

(T0,1)
· H0,

αc,d = αa,b

(T0,1)
· α0,u

for some u ∈ E − {0}. Then we obtain

{

c = αa,b(0) = a,

d = αa,b(u) 6= a,

i.e.

αa,b

(T0,1)
· H0 = {αa,v | v ∈ E − {a}}.

So for every a ∈ E a left coset Ha = (αa,b

(T0,1)
· H0) in the loop L = {αa,b}a,b∈E, a6=b

to its subloop H0 is a set of all permutations ϕ from L such that ϕ(0) = a.
Let us study the set A = {αa,ν(a)}a∈E from the Lemma’s condition. If a = 0

then
α0,ν(0) = α0,1 = id ∈ A ∩ H0,
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i.e. the unit id of the loop L belongs to the set A. Further,

αa,ν(a)(0) = a ⇒ αa,ν(a) ∈ Ha,

i.e. for every a ∈ E it is true that

A ∩ Ha = {αa,ν(a)}.

Then the set A = {αa,ν(a)}a∈E is a left transversal in the loop L = {αa,b}a,b∈E, a6=b

to its proper subloop H0.

Finally, let us consider a transversal operation 〈E,
(A)
· , 1〉 corresponding to the

transversal A:

x
(A)
· y = z ⇔ αx,ν(x)

(T0,1)
· αy,ν(y) = αz,ν(z)

(T0,1)
· α0,u, (8)

where α0,u ∈ H0. According to [11], the system 〈E,
(A)
· , 1〉 is a left loop with the unit

1. It is sufficient to prove that the system 〈E,
(A)
· , 1〉 is a right loop with the same

unit 1 too. So let us study for every a, b ∈ E the equation x
(A)
· a = b. According

(8), we have

x
(A)
· a = b,

αx,ν(x)

(T0,1)
· αa,ν(a) = αb,ν(b)

(T0,1)
· α0,u,

where u ∈ E − {0}. It is equivalent to the following system

{

αx,ν(x)(a) = αb,ν(b)(0) = b,

αx,ν(x)(ν(a)) = αb,ν(b)(u).

It is easy to see that it is sufficient to show, that for every a, b ∈ E there exists a
unique permutation γ ∈ A such that γ(a) = b. If a = b, then γ = id = α0,1. Let
a 6= b; then according to Lemma 4 we obtain:

{

αx,ν(x)(a) = b,

αx,ν(x) is a fixed-point-free permutation on the set E,
{

(x, a, ν(x)) = b,

(x, t, ν(x)) 6= t ∀t ∈ E,
{

(x, a, ν(x)) = b,

(x,∞, ν(x)) = (0,∞, 1).

According to Lemma 4 the last system has a unique solution in E × E, i.e. there
exists a unique such γ = αx,ν(x). �

Lemma 13. There exists a unique left loop transversal in the loop L = {αa,b}a,b∈E, a6=b

to its subloop H0.
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Proof. According to the last Lemma there exists a such left loop transversal: the
transversal A = {αa,ν(a)}a∈E of all fixed-point-free permutations and the identity
permutation. Let us prove that the transversal A = {αa,ν(a)}a∈E is a unique left
loop transversal in the loop L = {αa,b}a,b∈E, a6=b to its subloop H0.

Let T = {tx}x∈E be a left loop transversal in the loop L = {αa,b}a,b∈E, a6=b to its
subloop H0. Because the set T is a left transversal in the loop L = {αa,b}a,b∈E, a6=b

to its subloop H0, then

T = {αx,δ(x)}x∈E ,

where δ is some function on the set E; δ(x) 6= x for every x ∈ E. Moreover,

t1 = α0,δ(0) = id = α0,1 ∈ H0,

i.e. δ(0) = 1.

Let us study a transversal operation 〈E,
(T )
· , 1〉, corresponding to the transversal

T in the loop L = {αa,b}a,b∈E, a6=b to its subloop H0. According to the definition of
transversal operation, we have:

x
(T )
· y = z ⇔ αx,δ(x)

(T0,1)
· αy,δ(y) = αz,δ(z)

(T0,1)
· α0,u,

where α0,u ∈ H0. So we obtain the following system

{

αx,δ(x)(y) = αz,δ(z)(0) = z,

αx,δ(x)(δ(y)) = αz,δ(z)(u).

Since the transversal T = {tx}x∈E is a left loop transversal in the loop L =

{αa,b}a,b∈E, a6=b to its subloop H0, then for every a, b ∈ E the equation x
(T )
· a = b

has a unique solution in the set E; i.e. for every a, b ∈ E the equation

αx,δ(x)(a) = b

has a unique solution in the set E. It means that if x1, x2 ∈ E and x1 6= x2, then
must be

αx1,δ(x1)(a) 6= αx2,δ(x2)(a).

It is true for every a ∈ E, so we obtain for every a ∈ E and x1, x2 ∈ E, x1 6= x2:

αx1,δ(x1)(a) 6= αx2,δ(x2)(a),

i.e. for every a ∈ E and x1, x2 ∈ E, x1 6= x2:

(x1, a, δ(x1)) 6= (x2, a, δ(x2)).

According to Lemma 4, we obtain

(x1,∞, δ(x1)) = (x2,∞, δ(x2)). (9)
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It means that for any different elements αx1,δ(x1) and αx2,δ(x2) of the left loop
transversal T = {αx,δ(x)}x∈E the formula (9) holds. Moreover,

t1 = α0,δ(0) = α0,1 ∈ T,

since for every x ∈ E − {0} we have

(x,∞, δ(x)) = (0,∞, δ(0)) = (0,∞, 1).

According to Lemma 8 (statements 2 and 3), we obtain that δ(x) = ν(x) for every
x ∈ E, i.e.

T = {αx,δ(x)}x∈E = {αx,ν(x)}x∈E = A.

�

Corollary 1. There exist exactly n − 2 different non-reduced left loop transversals
in the loop L to its subloop H0.

Proof. The proof is analogous to the proof of the last Lemma till the moment,
when we obtain the following identity for the non-reduced left loop transversal T =
{αx,δ(x)}x∈E in the loop L to its subloop H0:

(x1,∞, δ(x1)) = (x2,∞, δ(x2)) (10)

for every x1, x2 ∈ E, x1 6= x2. Since T = {αx,δ(x)}x∈E is a non-reduced left
loop transversal in the loop L to its subloop H0, then T ∩ H0 = {α0,u0} for some
u0 ∈ E − {0, 1}. So we obtain from (10) for every x ∈ E

(x,∞, δ(x)) = (0,∞, δ(0)) = (0,∞, u0).

Since u0 6= 0, 1, then there exist exactly n − 2 such elements u0 in the set E. So
there exist exactly n − 2 different non-reduced left loop transversals in the loop L

to its subloop H0. �

Remark 3. We can note a correlation between the left loop transversal A in the
loop L to its subloop H0 and points of the line [(0,∞, 1)] in the projective plane π:

αx,ν(x) ∈ A ⇔ (x, ν(x)) ∈ [(0,∞, 1)].

There exists an analogous correlation between non-reduced left loop transversals in
the loop L to its subloop H0 and points of the lines [d] (d 6= 0) in the projective
plane π:

αx,δ(x) ∈ Tc ⇔ (x, δ(x)) ∈ [(0,∞, c)], c 6= 0, 1.

Corollary 2. The following condition is fulfilled for the loop 〈E,
(A)
· , 0〉 and permu-

tation ν: for every x ∈ E

ν(x) = x
(A)
· 1.
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Proof. According to formula (8) we have for the transversal operation 〈E,
(A)
· , 0〉:

x
(A)
· y = z ⇔ αx,ν(x)(y) = z.

If y = 1 then we obtain

x
(A)
· 1 = z ⇔ αx,ν(x)(1) = z ⇔ ν(x) = z,

i.e.

ν(x) = z = x
(A)
· 1.

�
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