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Strong Stability of Linear Symplectic Actions

and the Orbit Method

Z. Rzeszótko

Abstract. Using the orbit method we give necessary and sufficient conditions for
a linear symplectic action of the group R

m to be strongly stable. This criterion
generalizes the respective one stated for linear Hamiltonian systems by Cushman and
Kelly.
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It is well known that necessary and sufficient condition for Lyapunov stability
of linear autonomous differential system is purely imaginary spectrum and absence
of Jordan’s blocks. In virtue of semi-continuity and symmetry of the spectrum, a
Hamiltonian matrix with purely imaginary simple spectrum satisfies even a more
strong stability condition, i.e. all sufficiently close linear Hamiltonian systems are
stable. As M.G. Krein [1] has shown, the system does not lose its stability by
perturbations, even if there exist multiple eigenvalues, provided they are definite.

Linear Hamiltonian differential systems have been considered also in [2–5], where
various strong stability criteria have been obtained. The main result of [3] consists
in the following: A linear system with the Hamiltonian matrix A is strongly stable
if and only if its centralizer C(A) consists of stable matrices. In [4] a geometrical
proof has been proposed.

A Hamiltonian system often admits an additional first integral. Such systems
usually define an action of the group R2 and are called bihamiltonian systems. In [6]
bihamiltonian systems on four-dimensional manifolds are considered. Among other,
a Poincaré-type classification of fixed points is given and some questions concerning
structural stability of such systems have been examined.

In this connection the problem of extension of the ”parametric resonance” meth-
ods, due to M.G. Krein, on systems with multi-dimensional time, including those
with symmetry, arises.

In [7,8] a generalization of strong stability notion on linear symplectic actions of
groups Rm and Zm is proposed and some sufficient conditions on the joint spectrum
of the generators, ensuring strong stability, are given.

The purpose of the present paper is to find a general criterion of strong stability
of linear symplectic actions of the group Rm, actions generated by linear completely
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integrable systems of the type

∂x

∂tj
= Ajx. (x ∈ R2n, tj ∈ R, j = 1, . . . ,m). (1)

The complete integrability means [Ai, Aj ] = AiAj −AjAi = 0, i, j = 1, 2, . . . ,m.
We endow R2n with the standard symplectic structure and denote by Sp(2n,R) the
Lie group of symplectic matrices and by sp(2n,R) the corresponding Lie algebra of
Hamiltonian matrices.

In virtue of commutativity, the fundamental matrix of the system (1) is e(A,t) :=
exp(A1t1 + · · · + Amtm). The system (1) is called stable if ∃r > 0 such that
‖exp(A, t)‖ < r for all t ∈ Rm. It is called strongly stable if there exists ε > 0
such that for any polyoperator B = {B1, . . . , Bm} ∈ (sp(2n,R))m, BiBj = BjBi,
‖Bi − Ai‖ < ε (i, j = 1, . . . ,m), the inequality ‖exp(B, t)‖ < r holds for some r > 0
and all t ∈ Rm.

To prove strong stability we use the orbit method [9]. For this we con-
sider the submanifold M ⊂ sp(2n,R)m defined by the equations [Ai, Aj ] = 0
(i, j = 1, 2, . . . ,m). For a stable element A ∈ M we construct a neighbourhood
of A in M which is ”almost quadrilateral”. The ”horizontal side” of this quadri-
lateral is situated on the orbit of A under the diagonal adjoint action of the Lie
group Sp(2n,R) on sp(2n,R)m, another ”side” is orthogonal to the ”horizontal”
one: orthogonality is defined by the scalar product trAB on sp(2n,R), extended to
the direct product sp(2n,R)m.

If A is stable, every generator Aj is stable as well, so each Aj is semi-simple.
In virtue of commutativity the tuple {A1, A2, . . . , Am} is simultaneously diagonaliz-
able. So does the tuple {adA1 , adA2 , . . . , adAm

}, considered as a linear operator from
Sp(2n,R) to Sp(2n,R)m and denoted by adA. If A is stable so does every element
B ∈ orb(A) (see below). Thus, for A to be strongly stable, it is necessary and suf-
ficient that any tuple {C1, C2, . . . , Cm} ∈ M, sufficiently close to A and orthogonal
to the orbit at the point A, should consist of stable matrices. This is the main result
of the paper. In proving it, we follow [3] and [4].

Consider the system (1) with the column tuple A = {A1, A2, . . . , Am}T . The
group Sp(2n,R) acts ”diagonally” on sp(2n,R)m:

π(g; {A1, A2, . . . , Am}) = {gA1g
−1, gA2g

−1, . . . , gAmg−1}.

The stabilizer of the point A = {A1, A2, . . . , Am}T is the Lie subgroup Stab(A) =
{g ∈ Sp(2n,R) : [Ai, g] = 0, j = 1, 2, . . . ,m}. Let stab(A) denote the corresponding
Lie subalgebra of Sp(2n,R) .

Proposition 1. The partial derivative D1 of the action

π : Sp(2n,R) × sp(2n,R)m −→ sp(2n,R)m

at the point (e,A) equals

D1π(e,A)U = {adA1U, adA2U, . . . , adAm
U} (U ∈ sp(2n,R)),

where adAB = [A,B].
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Proof. It is sufficient to consider the derivative for the equality of each ”coordi-
nate function” g 7−→ gAg−1. It is known (see, e.g.[2]), that this derivative equals
U 7−→ adAU . �

In other words, the ”velocity vector” of the action π at the point A and at the
”moment” U ∈ sp(2n,R) has the ”coordinates” (adA1U, adA2U, . . . , adAm

U).

Corollary 1. If all A1, A2, . . . , Am are semi-simple, then the orbit

orb(A) = {π(g; {A1, A2, . . . , Am} : g ∈ Sp(2n,R)}

is closed and the tangent space to the orbit at the point A = {A1, A2, . . . , Am}T is
isomorphic (as a vector space) to the quotient space

imadA/[stab(A)]m := (({adA1U, adA2U, . . . , adAm
U})+[stab(A)]m (U ∈ sp(2n,R)))

.

Remark 1. In the ordinary case m = 1, when A is semi-simple, one has the follow-
ing equality: im adA ⊕ stab(A) = sp(2n, r). In contrast with thus, for m > 1 with
the commutativity conditions [Ai, Aj ] = 0 (i, j = 1, 2, . . . ,m) the situation is more
complicated.

Let M denote the closed subset of sp(2n,R)m defined by the equations [Ai, Aj ] =
0 (i, j = 1, 2, . . . ,m). If A = {A1, A2, . . . , Am}T 6= {0, 0, . . . , 0} ∈ sp(2n,R)m, the
subset M is a submanifold. It is easy to verify that the subset M is invariant under
the action π.

Proposition 2. The tangent space to M at the point A equals

TAM = {{C1, . . . , Cm} ∈ sp(2n,R)m : adAi
Cj = adAj

Ci; i, j = 1, 2, . . . ,m}.

Proof. One has

[Ai + εCi, Aj + εCj ] = [Ai, Aj ] + ε([Ai, Cj ] − [Aj , Ci]) + ε2[Ci, Cj ].

Since [Ai, Aj ] = 0, the linear equations determining the tangent space are
[Ai, Cj ] − [Aj , Ci] = 0, (i, j = 1, 2, . . . ,m). �

Remark 2. It is worth noting that tangency to the orbit of the vector C = (C1, . . . ,
Cm)T implies its tangency to the manifold M. In other words, the necessary condi-
tion for the solvability of the system of equations

adAj
U = Cj (j = 1, 2, . . . ,m) (2)

with pairwise commuting operators of the left hand side (”exactness”) is the condition

adAi
Cj = adAj

Ci (i, j = 1, 2, . . . ,m) (3)

(i.e. ”closeness”).
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Recall (see e.g.[2]) that 〈A,B〉 := Tr(AB) defines an inner product on sp(2n,R).
We will extend it up to an inner product on sp(2n,R)m as follows: if A =
{A1, A2, . . . , Am}T , B = {B1, B2, . . . , Bm}T , then

〈A,B〉 =
m

∑

i=1

〈Ai, Bi〉 =
m

∑

i=1

tr AiBi.

Using properties of the trace, one has for any C = {C1, C2, . . . , Cm} ∈ sp(2n,R)m

and any U ∈ sp(2n,R)/stab(A):

〈adAU, C〉 =

m
∑

i=1

〈adAi
U,Ci〉 =

m
∑

i=1

〈[Ai, U ], Ci〉 =

= −

m
∑

i=1

〈U, [Ai, Ci]〉 = −

〈

U,

m
∑

i=1

[Ai, Ci]

〉

.

From this we obtain the following orthogonality condition:

Proposition 3. The tuple C = {C1, C2, . . . , Cm}T ∈ sp(2n,R)m is orthogonal to the

orbit at the point A if and only if
m
∑

i=1
[Ai, Ci] = 0.

After denoting by adA∗ the line-operator {adA1, adA2, . . . , adAm
}, one can iden-

tify the tangent space at A ∈ sp(2n,R)m with im adA/stab(A)m ⊕ ker adA∗ , where
imadA/stab(A)m coincides with the space tangent to the orbit at the point A, while
ker adA∗ represents the orthogonal complement.

Lemma 1 (On tubular neighborhood). If A ∈ M is semi-simple, then each element
B ∈ M, close enough to A, can be represented as a shift along the orbit of some
element D, from the intersection of the manifold M with the affine subspace of
sp(2n,R)m, orthogonal to the orbit at the point A.

Using this lemma we obtain the following generalization of the strong stability
criterion of an ordinary linear Hamiltonian systems, criterion given by R.Cushman
and A.Kelly [3].

Theorem 1. A stable system (1), with the polyoperator A as the right hand side, is
strongly stable if and only if each D ∈ M∩ ker adA∗, close enough to A, is stable.

As consequences one obtains the sufficient and necessary conditions, given in [7]
and [8]: if the union of centralizers

⋃

C(Aj) consists of stable matrices, then the
system (1) is strongly stable; respectively, if the system (1) is strongly stable, then
the intersection of the centralizers of the right hand sides consists of stable matrices.
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