Left exact radicals in module categories over principal ideal domains

O. Horbachuk, M. Komarnytskyi, Yu. Maturin

Abstract. In the paper left exact radicals in the category of right modules over a principal ideal domain are described.

Mathematics subject classification: 16S90, 16D90. Keywords and phrases: Principal ideal domain, left exact radicals, ring.

Throughout the whole text, all rings are considered to be associative with $1 \neq 0$. All modules are unitary right modules. Let A be a ring. The set of all invertible elements of A will be detoted by U(A). The set of all right ideals of A will be denoted by $L_r(A)$.

A right ideal \mathcal{U} of A is similar to a right ideal \mathcal{G} of A if $A/\mathcal{U} \cong \mathcal{A}/\mathcal{G}$. In this case we shall write $\mathcal{U} \sim \mathcal{G}$.

An element $a_1 \in A$ is similar to an element $a_2 \in A$ if $a_1A \sim a_2A$. In this case we shall write $a_1 \sim a_2$.

Set for a right ideal I of A and for an element $q \in A$

$$(I:q) := \{a \in A \mid qa \in I\}.$$

Then (I:q) is a right ideal of A.

A radical filter of A is a set \mathcal{E} of right ideals satisfying the following conditions [Mishina A.P, Skorniakov L.A.,1]:

G1. $I \in \mathcal{E}, J \in L_r(A), I \subseteq J \Rightarrow J \in \mathcal{E}.$

G2. $I \in \mathcal{E}, a \in R \Rightarrow (I:a) \in \mathcal{E}.$

G3. $I \in \mathcal{E}, J \in L_r(A), J \subseteq I \land \forall u \in I : (J : u) \in \mathcal{E} \Rightarrow J \in \mathcal{E}.$

Proposition 1 (Cohn P.M., 3). Let A be a ring and \mathcal{U} , \mathcal{G} be right ideals of A. Then $\mathcal{U} \sim \mathcal{G} \Leftrightarrow \exists a \in A : aA + \mathcal{G} = R \land \mathcal{U} = (\mathcal{G} : a)$.

A ring R is said to be a principal ideal domain in case it is an integral domain such that every its right ideal is a right principal ideal and every its left ideal is a left principal ideal.

Let R be a principal ideal domain.

An element $p \in R$ is said to be an atom in case

 $p \neq 0 \land p \notin U(R) \land (\forall a, b \in R : (p = ab \Rightarrow a \in U(R) \lor b \in U(R))).$

[©] O. Horbachuk, M. Komarnytskyi, Yu. Maturin, 2005

The set of all atoms of R will be denoted by Ω_R . A set $\mathcal{P} \subseteq R$ is said to be similarly-closed in case

$$\forall p \in \mathcal{P} \ \forall r \in R : \ r \sim p \Rightarrow r \in \mathcal{P}.$$

Proposition 2. Let R be an integral domain, $\{a, b\} \subseteq R$. If $aR \cap bR = cR$ then there exists only one element $d \in R$ such that bd = c. Moreover, in this case (aR:b) = dR.

Proof. Since $aR \cap bR = cR$, there exist elements $d, e \in R : ae = c, bd = c$. The uniqueness of the element $d \in R$ for which bd = c follows from the fact that R is an integral domain.

We shall prove that (aR:b) = dR. It is clear that $\forall r \in R: b(dr) = (bd)r = cr = (ae)r = a(er) \in aR$. Therefore $dR \subseteq (aR:b)$.

Conversely, $\forall r \in (aR:b): br \in aR \cap bR = cR = (bd)R$. Hence $\exists t \in R: br = bdt$. Since R is an integral domain, from the last equality we obtain $r = dt \in dR$. Therefore $(aR:b) \subseteq dR$.

We think that the following Proposition is well-known:

Proposition 3. Let A be a ring and I be a right ideal of A. Then $\forall w, g \in A : (0 : w) = 0 \Rightarrow (I : g) = (wI : wg).$

Proof. $\forall x \in A : x \in (I : g) \Leftrightarrow gx \in I \Leftrightarrow \exists i \in I : gx = i \Leftrightarrow \exists i \in I : wgx = wi \Leftrightarrow (wg)x \in wI \Leftrightarrow x \in (wI : wg).$

Proposition 4. Let R be an integral domain. If $\forall i \in \{1, 2, ..., n\} : a_i \in R \setminus \{0\} \land a_i R$ is a maximal right ideal of R, $\forall i \in \{1, 2, ..., k\} : b_i \in R \setminus \{0\} \land b_i R$ is a maximal right ideal of R and $a_1 a_2 ... a_n \sim b_1 b_2 ... b_k$ then n = k and there exists a bijection $z : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$ such that $a_i \sim b_{z(i)}, \forall i \in \{1, 2, ..., n\}$.

Proof. Set

$$L_{s} = a_{1}a_{2}\dots a_{n-s}R/a_{1}a_{2}\dots a_{n}R, \ s \in \{1, 2, \dots, n-1\}, \ L_{n} = R/a_{1}a_{2}\dots a_{n}R,$$
$$M_{i} = b_{1}b_{2}\dots b_{k-l}R/b_{1}b_{2}\dots b_{k}R, \ i \in \{1, 2, \dots, k-1\}, \ M_{k} = R/b_{1}b_{2}\dots b_{k}R.$$

It is clear that $L_n \cong M_k$. Since

$$L_{s+1}/L_s \cong R/a_{n-s}R, \ s \in \{1, 2, \dots, n\}, \ M_{i+1}/M_i \cong R/b_{k-1}R, i \in \{1, 2, \dots, k\},\$$

 $L_0 \subseteq L_1 \subseteq \ldots \subseteq L_{n-1} \subseteq L_n, M_0 \subseteq M_1 \subseteq \ldots \subseteq M_{k-1} \subseteq M_k$ are composition series for $L_n \cong M_k$. By the Jordan-Hölder Theorem, n = k and there exists a bijection $z : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, k\}$ such that $L_{s+1}/L_s \cong M_{z(s+1)}/M_{z(s)}, \forall s \in \{1, 2, \ldots, n\}$.

Hence $R/a_{n-s}R \cong R/b_{z(n-s)}R$, $\forall s \in \{1, 2, \dots, n\}$, i.e. $a_{n-s} \sim b_{z(n-s)}$, $\forall s \in \{1, 2, \dots, n\}J$.

Proposition 5 (Jacobson N., 2). Let R be a principal ideal domain. If $a \in R \land a \notin U(R) \land a \neq 0$ then $a = a_1 a_2 \dots a_n$ for some set $\{a_1, a_2, \dots, a_n\} \subseteq \Omega_R$.

Moreover, if $b_1b_2...b_n = c_1, c_2...c_k$ and $\{b_1, b_2, ..., b_n, c_1, c_2, ...c_k\} \subseteq \Omega_R$ then n = k and there exists a bijection $z : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$ such that $b_i \sim c_{z(i)}$, $\forall i \in \{1, 2, ..., n\}$.

Now set $\mathcal{E}_{\mathcal{P}} := \{ I \in L_{r(R)} \mid (\exists n \in \mathbb{N} \ \exists a_1, a_2, \dots a_n \in \mathcal{P} : I = a_1 a_2 \dots a_n R \lor I = R \}.$

Lemma 1. Let R be a principal ideal domain and let $\mathcal{P} \subseteq \Omega_R$ be a similarly-closed set. Then $\mathcal{E}_{\mathcal{P}}$ is a radical filter.

Proof. We shall verify conditions **G1–G3** [1].

Gl. Let $I \in \mathcal{E}_{\mathcal{P}}, J \in L_r(\mathbb{R}), I \subseteq J$. We shall show that $J \in \mathcal{E}_{\mathcal{P}}$.

If I = R then $R = I \subseteq J \subseteq R$. Hence $J = R \in \mathcal{E}_{\mathcal{P}}$. So, consider the case when $I \neq R$. It is clear that $\exists a, b \in R : I = aR \land J = bR$, where $a = a_1a_2...a_n$, $\{a_1, a_2, ..., a_n\} \subseteq \mathcal{P}$ (see Proposition 5). Since $(a_1a_2..., a_nR = aR \subseteq bR, \exists r \in R : a_1a_2...a_n = br$. Two cases are possible $b \in U(R) \lor b \notin U(R)$.

If $b \in U(R)$, then $J = bR = R \in \mathcal{E}_{\mathcal{P}}$. So, let $b \notin U(R)$. Taking into consideration that $a_1 a_2 \dots a_n = br$, by Proposition 5, we have $b = a'_1 a'_2 \dots a'_m$, where $a'_i \sim a_{k(i)}$, $\forall i \in \{1, 2, \dots, m\}, \ 1 \leq m \leq n, \ k : \{1, 2, \dots, m\} \rightarrow \{1, 2, \dots, n\}$ is an injection. Since \mathcal{P} is a similarly-closed set, it follows from $a'_i \sim a_{k(i)}, \ \forall i \in \{1, 2, \dots, m\}$ that $\{a'_1, a'_2, \dots, a'_m\} \in \mathcal{P}$. Hence $J = bR = (a'_1 a'_2 \dots a'_m)R \in \mathcal{E}_{\mathcal{P}}$.

G2. Let $I \in \mathcal{E}_{\mathcal{P}}$, $a \in R$. We shall show that $(I : a) \in \mathcal{E}_{\mathcal{P}}$.

Two cases are possible: $I = R \vee I \neq R$. In the first case $(I:a) = (R:a) = R \in \mathcal{E}_{\mathcal{P}}$. Consider the second case. It is clear that I = bR for some $b = b_1b_2...b_n$, where $\{b_1, b_2, ..., b_n\} \subseteq \mathcal{P}$. Let aR + bR = uR, where $u \in R$. It is obvious that $u \neq 0, a = u\alpha, b = u\beta$, where $\{\alpha, \beta\} \subseteq R$. Hence $\alpha R + \beta R = R$. By Proposition 3, $(\beta R : \alpha) = (u\beta R : u\alpha) = (bR : a)$. By Proposition 1, $\beta R \sim (\beta R : \alpha)$. It follows from this that $\beta R \sim (bR : a)$. Let (bR : a) = hR, where $h \in R$. Hence $\beta \sim h$. Taking into account that $b = b_1, b_2, ..., b_n$ and $b = u\beta$, by Proposition 5, we have that $\beta = b'_1b'_2...b'_q$, where $b'_i \sim b_{z(i)}, \forall i \in \{1, 2, ..., q\}, 1 \leq q \leq n, z: \{1, 2, ..., q\} \rightarrow \{1, 2, ..., n\}$ is an injection. Taking into consideration that $\beta \sim h$, by Proposition 4, we have that $h = b''_1b''_2...b''_q$, where $b''_i \sim b'_{p(i)}, \forall i \in \{1, 2, ..., q\}, p: \{1, 2, ..., q\} \rightarrow \{1, 2, ..., q\}$ is a bijection.

Hence $b''_i \sim b'_{p(i)} \sim b_{z \circ p(i)}, \forall i \in \{1, 2, \dots, q\}$, i.e. $b''_i \sim b_{z \circ p(i)} \in \mathcal{P}, \forall i \in \{1, 2, \dots, q\}$. It is clear that $z \circ p$ is an injection. Since \mathcal{P} is a similarly-closed set, $b''_i \in \mathcal{P}, \forall i \in \{1, 2, \dots, q\}$. Hence $(bR:a) = hR \in \mathcal{E}_{\mathcal{P}}$, i.e. $(I:a) \in \mathcal{E}_{\mathcal{P}}$.

G3. Let $I \in \mathcal{E}_{\mathcal{P}}, J \in L_r(R), J \subseteq I \land \forall u \in I : (J : u) \in \mathcal{E}_{\mathcal{P}}$. We shall show that $J \in e\mathcal{E}_{\mathcal{P}}$.

It is clear that J = aR, I = bR, where $a \in R$, $b = b_1 b_2 \dots b_m$, $\{b_1, b_2, \dots, b_m\} \subseteq \mathcal{P}$. It is obvious that $J \cap I = aR \cap bR = aR$. It follows from $aR \subseteq bR$ that a = bd for some $d \in R$. Hence, by Proposition 2 (J : b) = dR. Since $(J : b) \in \mathcal{E}_{\mathcal{P}}$, $(J : b) = (d_1 d_2 \dots d_n R \text{ and } \{d_1, d_2, \dots, d_n\} \subseteq \mathcal{P}$. Then $dR = (d_1 d_2 \dots d_n)R$. Hence $d = d_1 d_2 \dots d_n v$, where $v \in U(R)$. Then $a = bd = b_1 b_2 \dots b_m d_1 d_2 \dots d_n v$, where

$$\{b_1, b_2, \ldots, b_m, d_1, d_2, \ldots, d_{n-1}, d_n, v\} \subseteq \mathcal{P}.$$

Hence $J = aR \in \mathcal{E}_{\mathcal{P}}$.

Lemma 2. Let R be a principal ideal domain. If $0 \notin \mathcal{E}$ is a radical filter of R then there exists a similarly-closed set $\mathcal{P} \subseteq \Omega_R$ such that $\mathcal{P} = \mathcal{E}_{\mathcal{P}}$.

Proof. Let $0 \notin \mathcal{E}$ be a radical filter of R. Set $\mathcal{P} := \{a \mid aR \in \mathcal{E} \land a \in \Omega_R\}$. Let $a \sim b, a \in \mathcal{P}$. It is obvious that $b \in \Omega_R$. By Proposition 1, $\exists c \in R : bR = (aR : c)$. Thus, taking into consideration $aR \in \mathcal{E}$, by G2, we have $bR \in \mathcal{E}$. Hence $b \in \mathcal{P}$. Therefore \mathcal{P} is a similarly-closed set. We shall show that $\mathcal{E} = \mathcal{E}_{\mathcal{P}}$.

First let us show that $\mathcal{E} \subseteq \mathcal{E}_{\mathcal{P}}$.

Let $I = a_1 a_2 \ldots a_n R \in \mathcal{E}$, where $a_1, a_2, \ldots, a_n \in \Omega_R$. It is clear that $I = a_1 a_2 \ldots a_n R \subseteq a_1 a_2 \ldots a_i R$, $\forall i \in \{1, 2, \ldots, n\}$. By **Gl**, $a_1 a_2 \ldots a_i R \in \mathcal{E}$, $\forall i \in \{1, 2, \ldots, n\}$. It is obvious that $a_1 a_2 \ldots a_i R \subseteq a_1 a_2 \ldots a_{i-1} R$, $\forall i \in \{1, 2, \ldots, n\}$ and $(a_1 a_2 \ldots a_{i-1}) a_i = a_1 a_2 \ldots a_i$, $\forall i \in \{1, 2, \ldots, n\}$. Then by Proposition 2, $(a_1 a_2 \ldots a_i R : a_1 a_2 \ldots a_{i-1}) = a_i R$, $\forall i \in \{1, 2, \ldots, n\}$. By **G2**, $a_i R = (a_1 a_2 \ldots a_i R : a_1 a_2 \ldots a_{i-1}) \in \mathcal{E}$, $\forall i \in \{1, 2, \ldots, n\}$. Hence $a_i \in \mathcal{P}$, $\forall i \in \{1, 2, \ldots, n\}$. Therefore $I = a_1 a_2 \ldots a_n R \in \mathcal{E}_{\mathcal{P}}$.

Now we shall show that $\mathcal{E}_{\mathcal{P}} \subseteq \mathcal{E}$.

We shall prove by induction in n that $a_1a_2...a_nR \in \mathcal{E}$ for every set $\{a_1, a_2, ... a_n\} \subseteq \mathcal{P}$.

At n = 1 it is clear by the definition of \mathcal{P} .

Suppose $\forall n \leq k : a_1 a_2 \dots a_n R \in \mathcal{E}$, where $k \geq 1$.

We shall prove the statement for n = k + 1.

Since $a_{k+1}R \in \mathcal{E}$, by Proposition 3 and by **G2**,

$$\forall r \in R : (a_1 a_2 \dots a_{k+1} R : a_1, a_2 \dots a_k r) = (a_{k+1} R : r) \in \mathcal{E}.$$

By the induction hypothesis, $a_1a_2...a_kR \in \mathcal{E}$. Since $\forall r \in R : (a_1a_2...a_{k+1}R : a_1a_2...a_kr) \in \mathcal{E}$ and $a_1a_2...a_{k+1}R \subseteq a_1a_2...a_kR \in \mathcal{E}$, by **G3**, $a_1a_2...a_{k+1}R \in \mathcal{E}$.

A left exact radical t in the category of right modules over a ring A assigns to each A-module C a submodule t(C) in such a way that the following conditions are fulfilled:

- for every A homomorphism $\mu : C \to D \quad \mu(t(C) \subset t(D))$,
- for every right A-module $M \quad t(M/t(M)) = 0$,
- for every right A-module M and for every its submodule N $t(N) = t(M) \cap N$.

By Lemmas 1-2, from the Gabriel-Maranda Theorem [1] we obtain the following result:

Theorem 1. Over a principal ideal domain R there exists a bijective correspondence between left exact radicals $\neq 1$ in the category of right R - modules and similarlyclosed subsets of Ω_R .

Corollary 1. There is only one non-trivial left exact radical in the category of right R-modules over a principal ideal domain R if and only if $|\Omega_R| \neq 0$ and all atoms in R are similar.

By Corollary 1, taking into account the results obtained in [5] we have

Corollary 2. Let R = k[y, D], where k is a universal differential field with derivation D. Then there is only one non-trivial left exact radical in the category of right R-modules. Moreover, it coincides with the right socle and for every right R-module M there exists a submodule H of M such that $M = \operatorname{soc}(M) \oplus H$.

References

- MISHINA A.P., SKORNIAKOV L.A. Abelian groups and modules. Providence, Rhode Island: Amer. Math. Soc. Trans., series 2, vol. 107, 1976.
- [2] JACOBSON N. The theory of rings. Surveys of the Amer. Math. Soc., 1942, 2.
- [3] COHN P.M. Free rings and their relations. Academic Press, London–New York, 1971.
- [4] HORBACHUK O., KOMARNYTSKYI M. Radical filters in principal ideal domains. Dopovidi Akademii Nauk URSR, Fiz.-Mat. Ta Tehn. Nauky, 1977, 2, A, p. 103–104.
- [5] COZZENS J.H. Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc., 1970, 76, N 1, p. 15–19.
- [6] KASHU A.I. Radicals and torsions in modules. Kishinev, Stiintsa, 1983 (in Russian)

O. HORBACHUK, M. KOMARNYTSKYI Department of Mechanics and Mathematics Lviv National University Universitetska str. 1 Lviv 79000, Ukraine Received May 27, 2005

Yu. MATURIN Department of Physics, Mathematics and Computer Sciences Drohobych State Pedagogical University Stryjska str. 3 Drohobych 82100, Lvivska oblast, Ukraine