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Left exact radicals in module categories

over principal ideal domains

O. Horbachuk, M. Komarnytskyi, Yu. Maturin

Abstract. In the paper left exact radicals in the category of right modules over a
principal ideal domain are described.
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Throughout the whole text, all rings are considered to be associative with 1 6= 0.
All modules are unitary right modules. Let A be a ring. The set of all invertible
elements of A will be detoted by U(A). The set of all right ideals of A will be
denoted by Lr(A).

A right ideal U of A is similar to a right ideal G of A if A/U ∼= A/G. In this case
we shall write U ∼ G.

An element a1 ∈ A is similar to an element a2 ∈ A if a1A ∼ a2A. In this case
we shall write a1 ∼ a2.

Set for a right ideal I of A and for an element q ∈ A

(I : q) := {a ∈ A | qa ∈ I}.

Then (I : q) is a right ideal of A.
A radical filter of A is a set E of right ideals satisfying the following conditions

[Mishina A.P, Skorniakov L.A.,1]:

G1. I ∈ E , J ∈ Lr(A), I ⊆ J ⇒ J ∈ E .

G2. I ∈ E , a ∈ R ⇒ (I : a) ∈ E .

G3. I ∈ E , J ∈ Lr(A), J ⊆ I ∧ ∀u ∈ I : (J : u) ∈ E ⇒ J ∈ E .

Proposition 1 (Cohn P.M., 3). Let A be a ring and U , G be right ideals of A.

Then U ∼ G ⇔ ∃a ∈ A : aA + G = R ∧ U = (G : a).

A ring R is said to be a principal ideal domain in case it is an integral domain
such that every its right ideal is a right principal ideal and every its left ideal is a
left principal ideal.

Let R be a principal ideal domain.
An element p ∈ R is said to be an atom in case

p 6= 0 ∧ p /∈ U(R) ∧ (∀a, b ∈ R : (p = ab ⇒ a ∈ U(R) ∨ b ∈ U(R))).
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The set of all atoms of R will be denoted by ΩR.
A set P ⊆ R is said to be similarly-closed in case

∀p ∈ P ∀r ∈ R : r ∼ p ⇒ r ∈ P.

Proposition 2. Let R be an integral domain, {a, b} ⊆ R. If aR ∩ bR = cR then

there exists only one element d ∈ R such that bd = c. Moreover, in this case

(aR : b) = dR.

Proof. Since aR ∩ bR = cR, there exist elements d, e ∈ R : ae = c, bd = c. The
uniqueness of the element d ∈ R for which bd = c follows from the fact that R is an
integral domain.

We shall prove that (aR : b) = dR. It is clear that ∀r ∈ R : b(dr) = (bd)r = cr =
(ae)r = a(er) ∈ aR. Therefore dR ⊆ (aR : b).

Conversely, ∀r ∈ (aR : b) : br ∈ aR∩ bR = cR = (bd)R. Hence ∃t ∈ R : br = bdt.
Since R is an integral domain, from the last equality we obtain r = dt ∈ dR.
Therefore (aR : b) ⊆ dR. �

We think that the following Proposition is well-known:

Proposition 3. Let A be a ring and I be a right ideal of A. Then ∀w, g ∈ A : (0 :
w) = 0 ⇒ (I : g) = (wI : wg).

Proof. ∀x ∈ A : x ∈ (I : g) ⇔ gx ∈ I ⇔ ∃i ∈ I : gx = i ⇔ ∃i ∈ I : wgx = wi ⇔
(wg)x ∈ wI ⇔ x ∈ (wI : wg). �

Proposition 4. Let R be an integral domain. If ∀i ∈ {1, 2, . . . , n} : ai ∈ R\{0}∧aiR
is a maximal right ideal of R, ∀i ∈ {1, 2, . . . , k} : bi ∈ R \ {0} ∧ biR is a maximal

right ideal of R and a1a2 . . . an ∼ b1b2 . . . bk then n = k and there exists a bijection

z : {1, 2, . . . , n} → {1, 2, ..., k} such that ai ∼ bz(i),∀i ∈ {1, 2, ..., n}.

Proof. Set

Ls = a1a2 . . . an−sR/a1a2 . . . anR, s ∈ {1, 2, . . . , n − 1}, Ln = R/a1a2 . . . anR,

Mi = b1b2 . . . bk−lR/b1b2 . . . bkR, i ∈ {1, 2, . . . , k − 1}, Mk = R/b1b2 . . . bkR.

It is clear that Ln
∼= Mk. Since

Ls+1/Ls
∼= R/an−sR, s ∈ {1, 2, . . . , n}, Mi+1/Mi

∼= R/bk−1R, i ∈ {1, 2, . . . , k},

L0 ⊆ L1 ⊆ . . . ⊆ Ln−1 ⊆ Ln, M0 ⊆ M1 ⊆ . . . ⊆ Mk−1 ⊆ Mk are composition series
for Ln

∼= Mk. By the Jordan-Hölder Theorem, n = k and there exists a bijection z :
{1, 2, . . . , n} → {1, 2, . . . , k} such that Ls+1/Ls

∼= Mz(s+1)/Mz(s), ∀s ∈ {1, 2, . . . , n}.
Hence R/an−sR ∼= R/bz(n−s)R, ∀s ∈ {1, 2, . . . , n}, i.e. an−s ∼ bz(n−s), ∀s ∈

{1, 2, . . . , n}J . �

Proposition 5 (Jacobson N., 2). Let R be a principal ideal domain. If a ∈
R ∧ a /∈ U(R) ∧ a 6= 0 then a = a1a2 . . . an for some set {a1, a2, . . . , an} ⊆ ΩR.



74 O. HORBACHUK, M. KOMARNYTSKYI, YU. MATURIN

Moreover, if b1b2 . . . bn = c1, c2 . . . ck and {b1, b2, . . . , bn, c1, c2, . . . ck} ⊆ ΩR then

n = k and there exists a bijection z : {1, 2, . . . , n} → {1, 2, . . . , k} such that bi ∼ cz(i),

∀i ∈ {1, 2, . . . , n}.

Now set EP := {I ∈ Lr(R) | (∃n ∈ N ∃a1, a2, . . . an ∈ P : I = a1a2 . . . anR ∨
I = R}.

Lemma 1. Let R be a principal ideal domain and let P ⊆ ΩR be a similarly-closed

set. Then EP is a radical filter.

Proof. We shall verify conditions G1–G3 [1].

Gl. Let I ∈ EP , J ∈ Lr(R), I ⊆ J . We shall show that J ∈ EP .

If I = R then R = I ⊆ J ⊆ R. Hence J = R ∈ EP . So, consider the case when
I 6= R. It is clear that ∃a, b ∈ R : I = aR ∧ J = bR, where a = a1a2 . . . an,
{a1, a2, ..., an} ⊆ P (see Proposition 5). Since (a1a2 . . . , anR = aR ⊆ bR, ∃r ∈ R :
a1a2 . . . an = br. Two cases are possible b ∈ U(R) ∨ b /∈ U(R).

If b ∈ U(R), then J = bR = R ∈ EP . So, let b /∈ U(R). Taking into consideration
that a1a2 . . . an = br, by Proposition 5, we have b = a′1a

′
2 . . . a′m, where a′i ∼ ak(i),

∀i ∈ {1, 2, . . . ,m}, 1 ≤ m ≤ n, k : {1, 2, . . . ,m} → {1, 2, . . . , n} is an injection.
Since P is a similarly-closed set, it follows from a′i ∼ ak(i), ∀i ∈ {1, 2, . . . ,m} that
{a′1, a

′
2, . . . , a

′
m} ∈ P. Hence J = bR = (a′1a

′
2 . . . a′m)R ∈ EP .

G2. Let I ∈ EP , a ∈ R. We shall show that (I : a) ∈ EP .

Two cases are possible: I = R ∨ I 6= R. In the first case (I : a) = (R : a) =
R ∈ EP . Consider the second case. It is clear that I = bR for some b = b1b2 . . . bn,
where {b1, b2, . . . , bn} ⊆ P. Let aR + bR = uR, where u ∈ R. It is obvious that
u 6= 0, a = uα, b = uβ, where {α, β} ⊆ R. Hence αR + βR = R. By Proposition
3, (βR : α) = (uβR : uα) = (bR : a). By Proposition 1, βR ∼ (βR : α). It
follows from this that βR ∼ (bR : a). Let (bR : a) = hR, where h ∈ R. Hence
β ∼ h. Taking into account that b = b1, b2, . . . , bn and b = uβ, by Proposition
5, we have that β = b′1b

′
2 . . . b′q, where b′i ∼ bz(i), ∀i ∈ {1, 2, . . . , q}, 1 ≤ q ≤ n,

z : {1, 2, . . . , q} → {1, 2, . . . , n} is an injection. Taking into consideration that β ∼ h,
by Proposition 4, we have that h = b′′1b

′′
2 . . . b′′q , where b′′i ∼ b′

p(i), ∀i ∈ {1, 2, . . . , q},

p : {1, 2, . . . , q} → {1, 2, . . . , q} is a bijection.

Hence b′′i ∼ b′
p(i) ∼ bz◦p(i), ∀i ∈ {1, 2, . . . , q}, i.e. b′′i ∼ bz◦p(i) ∈ P, ∀i ∈

{1, 2, . . . , q}. It is clear that z ◦ p is an injection. Since P is a similarly-closed
set, b′′i ∈ P, ∀i ∈ {1, 2, . . . , q}. Hence (bR : a) = hR ∈ EP , i.e. (I : a) ∈ EP .

G3. Let I ∈ EP , J ∈ Lr(R), J ⊆ I ∧ ∀u ∈ I : (J : u) ∈ EP . We shall show that
J ∈ eEP .

It is clear that J = aR, I = bR, where a ∈ R, b = b1b2 . . . bm, {b1, b2, . . . , bm} ⊆
P. It is obvious that J ∩ I = aR ∩ bR = aR. It follows from aR ⊆ bR that
a = bd for some d ∈ R. Hence, by Proposition 2 (J : b) = dR. Since (J : b) ∈ EP ,
(J : b) = (d1d2 . . . dnR and {d1, d2, . . . , dn} ⊆ P. Then dR = (d1d2 . . . dn)R. Hence
d = d1d2 . . . dnv, where v ∈ U(R). Then a = bd = b1b2 . . . bmd1d2 . . . dnv, where

{b1, b2, . . . , bm, d1, d2, . . . , dn−1, dn, v} ⊆ P.
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Hence J = aR ∈ EP . �

Lemma 2. Let R be a principal ideal domain. If 0 /∈ E is a radical filter of R then

there exists a similarly-closed set P ⊆ ΩR such that P = EP .

Proof. Let 0 /∈ E be a radical filter of R . Set P := {a | aR ∈ E ∧ a ∈ ΩR}. Let
a ∼ b, a ∈ P. It is obvious that b ∈ ΩR. By Proposition 1, ∃c ∈ R : bR = (aR : c).
Thus, taking into consideration aR ∈ E , by G2, we have bR ∈ E . Hence b ∈ P.
Therefore P is a similarly-closed set. We shall show that E = EP .

First let us show that E ⊆ EP .

Let I = a1a2 . . . anR ∈ E , where a1, a2, . . . , an ∈ ΩR. It is clear that
I = a1a2 . . . anR ⊆ a1a2 . . . aiR, ∀i ∈ {1, 2, . . . , n}. By Gl, a1a2 . . . aiR ∈ E ,
∀i ∈ {1, 2, . . . , n}. It is obvious that a1a2 . . . aiR ⊆ a1a2 . . . ai−1R, ∀i ∈ {1, 2, . . . , n}
and (a1a2 . . . ai−1)ai = a1a2 . . . ai, ∀i ∈ {1, 2, . . . ., n}. Then by Proposition 2,
(a1a2 . . . aiR : a1a2 . . . ai−1) = aiR, ∀i ∈ {1, 2, . . . , n}. By G2, aiR = (a1a2 . . . aiR :
a1a2 . . . ai−1) ∈ E , ∀i ∈ {1, 2, . . . , n}. Hence ai ∈ P, ∀i ∈ {1, 2, . . . , n}. Therefore
I = a1a2 . . . anR ∈ EP .

Now we shall show that EP ⊆ E .

We shall prove by induction in n that a1a2 . . . anR ∈ E for every set {a1, a2, . . .
an} ⊆ P.

At n = 1 it is clear by the definition of P.

Suppose ∀n ≤ k : a1a2 . . . anR ∈ E , where k ≥ 1.

We shall prove the statement for n = k + 1.

Since ak+1R ∈ E , by Proposition 3 and by G2,

∀r ∈ R : (a1a2 . . . ak+1R : a1, a2 . . . akr) = (ak+1R : r) ∈ E .

By the induction hypothesis, a1a2 . . . akR ∈ E . Since ∀r ∈ R : (a1a2 . . . ak+1R :
a1a2 . . . akr) ∈ E and a1a2 . . . ak+1R ⊆ a1a2 . . . akR ∈ E , by G3, a1a2 . . .
ak+1R ∈ E . �

A left exact radical t in the category of right modules over a ring A assigns to
each A-module C a submodule t(C) in such a way that the following conditions are
fulfilled:

• for every A - homomorphism µ : C → D µ(t(C) ⊂ t(D),

• for every right A-module M t(M/t(M)) = 0,

• for every right A-module M and for every its submodule N t(N) = t(M)∩N .

By Lemmas 1-2, from the Gabriel-Maranda Theorem [1] we obtain the following
result:

Theorem 1. Over a principal ideal domain R there exists a bijective correspondence

between left exact radicals 6= 1 in the category of right R - modules and similarly-

closed subsets of ΩR.
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Corollary 1. There is only one non-trivial left exact radical in the category of right

R-modules over a principal ideal domain R if and only if |ΩR| 6= 0 and all atoms in

R are similar.

By Corollary 1, taking into account the results obtained in [5] we have

Corollary 2. Let R = k[y,D], where k is a universal differential field with deriva-

tion D. Then there is only one non-trivial left exact radical in the category of right

R-modules. Moreover, it coincides with the right socle and for every right R-module

M there exists a submodule H of M such that M = soc(M) ⊕ H.
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