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On a Functional Equation with a Group
Isotopy Property

Raisa Koval’

Abstract. The set of all solutions of functional equation Fi(Fz(z;z); F3(y;2)) =
Fu(F5(x;y);z) on quasigroup operations of an arbitrary fixed set are found. The
result implies W. Dudek’s theorem [1], which presents the operation in a quasigroup
satisfying the identity zy -z = zx - yz.
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Functional equations play a specific role in the quasigroup theory. V.D. Belousov
was the first who opened the new field. He announced in [2] the fact that later
became known as the Four quasigroup theorem. It was strengthened, complitely
proved and published in [3] two years later. The theorem received general acceptance
and wide application. He was also the first who applied the following theorem: if
a quasigroup satisfies an uncancellable balanced identity, then it is isotopic to a
group [4].

In [5] such identities are called identifies with group isotopy property (gip) and
a functional equation has a (full) group isotopy property if some (correspondingly,
any) component of every solution of the equation is isotopic to a group.

The class of all general quadratic functional identities with gip was described
in [6,7]. In [8] a complete classification was presented up to parastrophic equivalency
of all general parastrophic uncancellable quadratic functional equations having n
objective variables for n = 3, 4, 5. The results imply that there exists one equation
when n = 3 (general associativity); two equations when n = 4 (general mediality
and general pseudomediality); and four equations when n = 5. These are the only
equations having a full gip for all n = 3,4, 5.

Here we give a clear proof of the results announced in [9]. Namely, we consider
a general functional equation which is not quadratic, but has a gip:

Fi(Fy(z;0); F3(y; 2)) = Fu(Fs(x5y); 7). (1)

This equation corresponds to the identity zy -z = zz-yz considered by W.Dudek [1].
We obtained some of his results as consequences of our main theorem.

Theorem 1 (Four quasigroup theorem,[10]). The set of all solutions of the general
associativity equation

Py (Fy(w3y),2) = F3 (2, Fu(y; 2)) (2)
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on the set of all binary quasigroup operations of an arbitrary fived set Q) is described
by:
Fi(t,z) = pt+vz, Falzy) =p " (ax+ By),

Fy(z,u) = ax +vu, Fi(y;2) =v ' (By +72),
where (Q;+) is a group, p, v, o, B, v are substitutions on the set Q.

The following assertion easily follows from the Four quasigroup theorem.

Corollary 2. The set of all solutions of the functional equation
By (Fy(z3y), 2) = Fi (2, F3(y; 2)) (3)

on the set of all binary quasigroup operations of a set Q) are described by the following
equalities:

Fi(zy) = ez +yy, FB(ry) =a Yaz+0y), F(zy) =18z +7y), )
where (Q;+) is a group, «, B3, v are substitutions of the set Q.

Proof. Let a triple (fi, fo, f3) of quasigroup operations, defined on an arbitrary
fixed set @, be a solution of (3), then the tuple (f1, fo, f1, f3) is a solution of (2),
and then

filt2) = pt+ 702, falwy) =t (az + Boy), -
fil@,u) = ax +yu,  f3(y;2) =7 (Boy + 102) ©)

for a group (Q;+) and substitutions a, By, Y0, v, p of the set Q. So
ut + oz = at + vz (6)

for all ¢, z € Q. Let 0 denote the neutral element of the group (Q;+). Putting
z = 70_10 and t := a0 we obtain two equalities:

pt) = at +7(75'0),  v(2) = p(a”'0) + 02
Substitute them into (6):
at + (79 10) +y0z = ot + p(a10) + 702

It implies that (v, '0) = u(a™'0) =: a, so 4 = Ry, v = La7y. Denoting 3 :=
R 13y, we obtain the relations (4). O

The next statement is evident, but one can find its proof in [11] or in [12]. We
recall, a substitution « of a group (Q;+) is said to be unitary, if a0 = 0, where 0
denotes the neutral element of the group.
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Lemma 3. Let substitutions «, 3, v, §, p of a group (Q;+) satisfy the identity
a(Bz +yy) = du + pv,

then « is an automorphism (antiautomorphism) of the group (Q;+) if « is unitary
and u=x, v =y (corresponding u =1y, v = x).

Below we will follow the notations
Liz = fi(a;x),  Riz:= fi(z;a),  i=1,2,3. (7)

Theorem 4. A tuple (fi,...,f5) of quasigroup operations defined on a set Q is
a solution of the functional equation (1) iff there exist a group operation (+) and
substitutions o, B, v, §, i of the set Q such that

filasy) = ax + vy, falwyy) = oy — B), .
fa(zsy) =By +0x),  fs(z;y) = fiuz + dy;y)
for a quasigroup operation f4 being orthogonal to the group isotope (o), where xoy :=
pnx + 0y.
Proof. Let a tuple (fi,..., f5) of quasigroup operations defined on an arbitrary
fixed set @ be a solution of the functional equation (1), i.e. the equality
fi(fa(z2); f3(y; 2)) = fa(fs(@sy); @) (9)

holds for all z, y, z € Q. Let a be an element of the set () and let z := a, then we
get
falfs(@;y);2) = f1(Lox; Ray).

Comparing this equality with (9) we come to
fi(Low; Ryy) = fi(fa(z32); f3(y; 2)).-

To transform it into a general associativity-like equation we replace y with Ry Ly, x
with f5(z;x):
fi(Lafs(z2);y) = fi(z; f3(Ry'y; 2))

and replace f3 and fJ with their transposed ones:
FiLaf3* (@5 2);y) = fi(w; f5 (2 Ry 'y)).
Since fr*=f"""=f then, designating
ot 2) = Lafy' (8:2), f3(z9) == f3 (5 Ry'y), (10)
we receive the identical equality

(@) z) = fi(ws f5(y; 2)),
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which means that the tuple (fy, fé, f1, fé) of the operations is a solution of the
associativity functional equation (3). Corollary 2 implies the existence of a group
(Q; +) and substitutions «, 3, v such that

Almy) =az+yy, folzy) =a Yoz +By), filwy) =7 Bz +~y) (11)

come true. Let us find the operations f1, fa, f3. The first equality of (11) coincides
with (8) for the operation f;. Taking into account the third equality of (11) and the
notation (10) we have

f3(x; Ry'ty) = v~ (B + yy)
and, consequently,

fs(y; ) = v (B + YR3y).

Designating ¢ := yR3 we receive the relation (8) for the operation f3.
Again, from the equalities (10) and (11) we have

Lafs" (x;y) = o~ (oz + By).

Apply the substitution Ly ! to the both sides of the last equality:

(@yy) = (aLy) " (oz + By).

Since fi" = (f§)", according to the definition of the left and right quasigroup divi-
sions we obtain

fo(y; (aLe) Hax + By)) = z.

Let us designate u := alLs and t := p~*(ax + By), then z = a~!(ut — By). Thus,
the operation fo has decopmosition (8).

Using the received expressions (8) for the operations f1, fa, f3, calculate the left
part of the equality (9):

fi(fa(z2); f3(y;2)) = afa(ziz) +7f3(y;2) =
= pxr — Bz+ Pz 4+ dy = pxr + dy.

(12)

Taking into consideration (12), the equality (9) can be written as:

fa(fs(z;9);y) = px + 6y.

It is equivalent to (8) for the operation f5. By virture of the fact that f5 is a
quasigroup operation, the operation f; is orthogonal to (o), where z oy := pux + dy.

Vise versa, let (Q;+) be a group, «, (3, 7, 0, 1 be substitutions of @ and f4 be
a quasigroup operation being orthogonal to (o). The operations fi, fa, f3, defined
by (4), are group isotopes therefore they are quasigroups. Orthogonality of f; and
(o) implies that f5 is a quasigroup operation too.
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Let us show that the tuple (fi,..., f5) of quasigroup operations defined by (8)
on @ is a solution of the functional equation (1), i.e. (9) holds. The relation (12)
gives
filfa(z2); f3(y; 2)) = pa + dy.
Consider the right side of (9):
Falfs(@; )i 2) = falFi(ua + 0y; ) y) = pa + by,

The left sides are equal as the right sides of these equalities are equal. O

As a consequence we obtain the W. Dudek’s result from [1], which we give in
another form.

Corollary 5. A groupoid (Q;-) satisfies the identity
TY-T = 2T Yz (13)

if and only if x-y = px+ (e — )y for some automorphism ¢ of a commutative group
(Q;+) such as € — ¢ is a substitution of the set Q and the following relation is true

20% —2p +¢e=0. (14)

Proof. Fulfilment of the identity (13) means that the tuple (+;-;+; ;) is a solution
of the functional equation (1), so the relations (8) are true, where every of the
operations fi, ..., f5 coincides with (-).

According to Lemma 3 the equalities fo = f1 and f3 = fo imply that « and
are alinear transformations of the group (Q;+), i.e.

a= Ryp, v=L (15)

for some elements b, ¢ € @ and antiautomorphisms ¢, 1 of the group (Q;+).
Let 0 denote the neutral element of the group (Q;+). According to (13) the
equality 00 -0 =00 - 00 it true. By (8) and (15) it can be written as

(0 +a+b+90)+a+b+¢0=¢(e0+a+b+10)+a+b+1Y(p0+a+ b+ 10).
Taking into account that ¢0 = 0 = 0, we have
pla+b)+a+b=ypla+b)+a+b+(a+b).
Therefore a + b = 0, and the operation () has the decomposition
Ty = @x + Yy, (16)
Because of this the identity (13) can be written as

ey + ©°x + hr = ez + 2z + P22 + Poy. (17)
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Puttingz =y =0,z =2=0, y =z =0, we have the following equalities

P =Iy, v =vp, @ +P=py. (18)

The first equality implies that I = ¢?1)~2. Since ¢ and ¢ are antiautomorphisms,

then ¢? and 1 ~2 are automorphisms of the group (Q;+). So I is its automorphisms.

Consequently, the group is commutative and ¢, 1 are its automorphisms too.
Replace ¢? with I1? and ¢ with 9 in the third equality of (18):

U= =y

It implies ¥ = € — @, so € — ¢ is a substitution of the set (). Summing up the
obtained relations we have

0=¢? +? = +(e— )’ =¢* +> — 20+ ¢* =2¢° — 20 +¢,

ie. (14) is true.

Vice versa, let (Q;-) be a quasigroup and x -y = px + (¢ — )y for some au-
tomorphism ¢ of a commutative group (Q;+) such that € — ¢ is a substitution of
the set @ and equality (14) is true. Then the last equality immediately implies
©? —p+e=p—?and so we have

ay-x = oo+ (E—py)+(E—@)z =’z +p(e—ply+(c —p)r =
= (PP —p+e)z+(p— )y =(p— Mz + (¢ — ).

The right part of (13) can be calculated by the same way:

zx-yz = p(pz+(e—p)r)+ (e —9)(py+ (e —p)2) =
= Pz+ple—plxt+ole—y+(e—p)z=
= (20 —20+e)z+ (p—?)z+(p— Py = (p— )z + (0 — ©*)y.

Since the right sides are equal, then the left sides are equal as well. O
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