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Lie algebras of the operators and three-dimensional

polynomial differential systems
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Abstract. The defining equations are built for the representation of continuous
groups in the space of variables and coefficients of multi-dimensional polynomial differ-
ential systems of the first order. Lie theorem on integrating factor is obtained for three-
dimensional polynomial differential systems and the invariant GL(3, R)−integrals are
constructed for three-dimensional affine differential system.
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1 The system of defining equations

Consider the multi-dimensional polynomial differential system written in the
tensorial form as follows [1]:

dxj

dt
=

∑

k∈A

a
j
j1j2...jk

xj1xj2...xjk ≡ P j(x) (j, j1, j2, ..., jk = 1, n), (1)

where the coefficient tensor a
j
j1j2...jk

(k ∈ A) is symmetrical in lower indices, in which
the complete convolution takes place, A is a finite set of the different positive integers,
and x = (x1, x2, ..., xn) is the vector of phase variables of system (1).

Let in the space En(x) the continuous group of transformations G1 acts defined
by formulas

xj = f j(x, α) (j = 1, n), (2)

where α is the real parameter taking values in some interval in R, for which holds
xj|α=0 = xj (j = 1, n), and the value α = 0 with this property is the unique on this
interval.

Denote by EN (a) the space of coefficients of system (1), where N is the dimension
of this space, and by a the set of coefficients of the right-hand sides of system (1) is
denoted. Assume that after transformation (2) the system (1) does not change its
form and new coefficients a ∈ EN (a) of the system

dxj

dt
=

∑

k∈A

a
j
j1j2...jk

xj1xj2 ...xjk (j, j1, j2, ..., jk = 1, n)
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are linear functions on coefficients a and functions on α, i. e.

a
j
j1j2...jk

= b
j
j1j2...jk

(a, α) (j, j1, j2, ..., jk = 1, n). (3)

Then the last equalities define the linear group of transformations in the space
of coefficients EN (a) of system (1), homomorphic to the group G1, or, as they say,
(3) defines the linear representation of the group G1 in the space EN (a).

According to [2], Lie operator corresponding to the group G1 and acting in the
space En+N (x, a) = En(x)⊕EN (a) takes the form

X = ξj(x)
∂

∂xj
+ D, (j = 1, n), (4)

where

D =
∑

k∈A

η
j
j1j2...jk

(a)
∂

∂a
j
j1j2...jk

(j, j1, j2, ..., jk = 1, n; k ∈ A), (5)

for which

ξj(x) =
∂xj(x, a)

∂α
|α=0, η

j
j1j2...jk

(a) =
∂a

j
j1j2...jk

∂α
|α=0 (j, j1, j2, ..., jk = 1, n; k ∈ A).

(6)
The operator X (respectively D) is called the operator of the representation of

the group G1 in the space En+N (x, a) (respectively EN (a)).
Consider system (1) written in the form

Ui(x, a, ẋ) = 0 (i = 1, n), (7)

where
Ui(x, a, ẋ) = ẋi − P i(x) (i = 1, n) (8)

and ẋi =
dxi

dt
.

In this case we will say that (7) forms a manifold in the space Ẽ2n+N (x, a, ẋ) (for
ex., see this definition in [3]). Then the extended group of transformations G̃1 in
the space Ẽ2n+N (x, a, ẋ) corresponds to the representation of the group G1 defined
by formulas (2) and (3) in the space En+N (x, a).

Let the operator of the representation of the group G1 in the space En+N (x, a)
has the form (4)–(5). Then the operator of the group G̃1, called the extended
operator of the representation of the group G1, can be written as follows

X̃ = X + ζi(x, ẋ)
∂

∂ẋi
(i = 1, n), (9)

where

ζi(x, ẋ) =
∂ẋ

i

∂α
|α=0 = ẋk ∂ξi

∂xk
(i, k = 1, n). (10)

According to [3] we will say that the system of differential equations admits the
group G1 if its equations define an invariant manifold with respect to the extended
group G̃1.
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For the definition of the group G1 admitted by system (1) consider, according
to [3], necessary and sufficient conditions of invariance of the manifolds Ui = 0
(i = 1, n), which have the form

X̃(Ui)|Ui=0 = 0 (i = 1, n). (11)

The equations (11) are called defining equations of the group (of Lie operator)
admitted by system (7), or, what is the same, admitted by system (1).

Taking into consideration formulas of the operators X and X̃ from (4)–(5) and
(7)–(10), respectively, with the aid of (11) we obtain

[
ξi(x)

∂

∂xi
+ D + ẋk ∂

∂xk

∂ξi

∂xk

∂

∂ẋi

][
ẋi − P i(x)

]∣∣∣
ẋi=P i(x)

= 0 (i, k = 1, n).

After the simplification in the last expressions with the aid of convolution by i and
j we obtain finally system of defining equations as follows:

ξi
xkP k = ξjP i

xj + D(P i) (i, j, k = 1, n), (12)

where ξi
xk =

∂ξi

∂xk
and P i

xj =
∂P i

∂xj
.

The defining equations (12) are differential equations with respect to the function
ξi. Defining the general solution of this equations we obtain the explicit form and
number of Lie operators admitted by the differential system. Hence, by Lie equations
we define the widest group and corresponding Lie algebra, admitted by this system.

Remark 1. The defining equations for the operators of the representation of linear
group for system (1) in the case n = 2 were obtained in [2].

2 Lie theorem on integrating factor for system (1) for n = 3

Consider system (1) for n = 3 and write it as follows:

dxj

dt
= P j(x) (j = 1, 3). (13)

It is well known that F (x) = C is the first integrals of this system iff Λ(F ) = 0,
where

Λ = P j ∂

∂xj
(j = 1, 3) (14)

and the complete convolution takes place in index j.

The system consisting of two functional-independent first integrals is called ge-
neral integral of system (13).

To obtain the first integrals of system (13) with the aid of equation Λ(F ) = 0 it
is useful to write characteristic system of differential equations in the symmetrical
form

dx1

P 1
=

dx2

P 2
=

dx3

P 3
. (15)
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In some cases to find first integrals of system (13) it is useful to obtain from (15)
integrating equations of Pfaff [4, 5], which can be written in the form

P 1
1 dx1 + P 2

1 dx2 + P 3
1 dx3 = 0, (16)

where P
j
1 (j = 1, 3) is the function in P j (j = 1, 3).

Assume that the system (13) admits two-dimensional commutative Lie algebra
with operators

Xα = ξj
α(x)

∂

∂xj
(α = 1, 2; j = 1, 3), (17)

where ξ
j
α(x) (j = 1, 3) are polynomials on coordinates of vector x = (x1, x2, x3).

By action of group, generated by operators (17), any integral F (x) = C trans-
forms into integral F (x) = C ′. So by virtue of the representation of the one-
parameter group with exponent reflection [3] the functions Xα(F ) = Cα (α = 1, 2)
will be integrals too. Hence, beside F (x), the functions Xα(F ), where Xα (α = 1, 2)
are taken from (17), are also solutions of the system (13).

Then we have

Xα(F ) = Ψα(F ) (α = 1, 2), (18)

ΛF = 0, (19)

where Λ is from (14). So, we obtain that the integral F from general integral of the
system (13) has to satisfy the system of three equations (18)-(19).

Denote by

∆ =

∣∣∣∣∣∣

ξ1
1 ξ2

1 ξ3
1

ξ1
2 ξ2

2 ξ3
2

P 1 P 2 P 3

∣∣∣∣∣∣
(20)

the determinant of system (18)-(19) and assume that it is not equal to zero.

∂F

∂x1
=

1

∆

[
(ξ2

2P 3 − ξ3
2P

2)Ψ1 + (ξ3
1P 2 − ξ2

1P 3)Ψ2

]
,

∂F

∂x2
=

1

∆

[
(ξ3

2P 1 − ξ1
2P

3)Ψ1 + (ξ1
1P 3 − ξ3

1P 1)Ψ2

]
,

∂F

∂x3
=

1

∆

[
(ξ1

2P 2 − ξ2
2P

1)Ψ1 + (ξ2
1P 1 − ξ1

1P 2)Ψ2

]
.

With the aid of last equalities we obtain

dF =
Ψ1

[
(ξ2

2P 3 − ξ3
2P

2)dx1 + (ξ3
2P 1 − ξ1

2P
3)dx2 + (ξ1

2P 2 − ξ2
2P 1)dx3

]

∆
+

+
Ψ2

[
(ξ3

1P 2 − ξ2
1P

3)dx1 + (ξ1
1P 3 − ξ3

1P 1)dx2 + (ξ2
1P 1 − ξ1

1P
2)dx3

]

∆
, (21)

where ∆ is from (20).
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As the operators (17) form a commutative Lie algebra, we have [X1,X2](F ) = 0,
or X1(X2(F )) − X2(X1(F )) = 0. Hereby taking into account equalities (18) we
obtain X1(Ψ2(F )) − X2(Ψ1(F )) = 0, whence taking into account (18) again, two
independent solutions of this equation can be written as follows:

1) Ψ1(F ) 6≡ 0,Ψ2 ≡ 0;
2) Ψ1(F ) ≡ 0,Ψ2(F ) 6≡ 0.

According to this for each case we obtain

dF

Ψ1(F )
=

[
(ξ2

2P 3 − ξ3
2P 2)dx1 + (ξ3

2P 1 − ξ1
2P 3)dx2 + (ξ1

2P 2 − ξ2
2P

1)dx3
]

∆
,

dF

Ψ2(F )
=

[
(ξ3

1P 2 − ξ2
1P 3)dx1 + (ξ1

1P 3 − ξ3
1P

1)dx2 + (ξ2
1P

1 − ξ1
1P

2)dx3
]

∆
. (22)

As the expressions
dF

Ψ1(F )
and

dF

Ψ2(F )
are total differentials then we obtain with

the aid of (22) Lie theorem on integrating factor as follows:

Theorem 1. If three-dimensional differential system (13) admits the two-dimensional
commutative Lie algebra with operators (17), then the function µ = 1

∆ , where ∆ 6≡ 0
has form (20), is an integrating factor for the equations of Pfaff

(ξ3
αP 2 − ξ2

αP 3)dx1 + (ξ1
αP 3 − ξ3

αP 1)dx2 + (ξ2
αP 1 − ξ1

αP 2)dx3 = 0 (α = 1, 2), (23)

which define general integral of system (13).

3 First integrals of the affine differential system for δ4 6≡ 0

Consider three-dimensional affine differential system

dxj

dt
= aj + aj

αxα (j, α = 1, 3) (24)

and the group of centro-affine transformations GL(3, R) given by the equalities xr =
qr
i x

i (∆ = det(qr
i ) 6= 0; r, i = 1, 3). In [6] the functional base of centro-affine

comitants of system (24) is given as follows:

δ1 = aαuα, δ2 = aα
βaβuα, δ3 = aα

γaβ
αaγuβ, δ4 = aα

γ aβ
paγ

q uαuβurε
pqr,

κ1 = xαuα, κ2 = aα
βxβuα, κ3 = aα

γaβ
αxγuβ,

θ1 = aα
α, θ2 = aα

βaβ
α, θ3 = aα

γaβ
αa

γ
β, (25)

where coordinates of the vector u = (u1, u2, u3) are varying by the low of covariant
vector [7], and εpqr is unit three-vector with coordinates ε123 = −ε132 = ε312 =
= −ε321 = ε231 = −ε213 = 1 and εpqr = 0 (p, q, r = 1, 3) in other cases.
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In [6] it is shown that for δ4 6≡ 0 by a centro-affine transformation the system
(24) can be transformed into the system

dx1

dt
= a + x2,

dx2

dt
= b + x3,

dx3

dt
= c + lx1 + mx2 + nx3, (26)

where a, b, c, l,m, n are some parameters. One can verify that for some values of the
parameters the system (26) is at the GL(3, R)−orbit of maximal dimension [2].

Remark 2. We will not consider systems (26) if one of the right-hand sides of this
system is equal to zero, as in this case system (26) becomes a two-dimensional affine
system, which is investigated in [2].

One can verify with the aid of defining equations (14) that the following assertion
holds:

Corollary 1. The system (26) admits six operators of the representation of one-
parameter groups of transformation as follows

Y1 = x1 ∂

∂x1
+x2 ∂

∂x2
+x3 ∂

∂x3
+D1, Y2 = x2 ∂

∂x1
+x3 ∂

∂x2
+(lx1+mx2+nx3)

∂

∂x3
+D2,

Y3 = x3 ∂

∂x1
+ (lx1 + mx2 + nx3)

∂

∂x2
+ [lnx1 + (l + mn)x2 + (m + n2)x3]

∂

∂x3
+ D3,

Y4 =
∂

∂x1
+ D4, Y5 =

∂

∂x2
+ D5, Y6 =

∂

∂x3
+ D6, (27)

where

D1 = a
∂

∂a
+ b

∂

∂b
+ c

∂

∂c
, D2 = b

∂

∂a
+ c

∂

∂b
+ (al + bm + cn)

∂

∂c
,

D3 = c
∂

∂a
+ (la + mb + nc)

∂

∂b
+ [aln + b(l + mn) + c(m + n2)]

∂

∂c
,

D4 = −l
∂

∂c
, D5 = − ∂

∂a
− m

∂

∂c
, D6 = − ∂

∂b
− n

∂

∂c
. (28)

The nonzero structure equations which connect mentioned operators up to anti-
symmetry are the following

[Y1, Y4] = −Y4, [Y1, Y5] = −Y5, [Y1, Y6] = −Y6, [Y2, Y4] = −lY6,

[Y2, Y5] = −Y4 − mY6, [Y2, Y6] = −Y5 − nY6, [Y3, Y4] = −lY5 − lnY6,

[Y3, Y5] = −mY5 − (l + mn)Y6, [Y3, Y6] = −Y4 − nY5 − (m + n2)Y6.

Calculating the comitants (25) for the system (26) we obtain:

δ1 = au1 + bu2 + cu3, δ2 = bu1 + cu2 + (al + bm + cn)u3,
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δ3 = cu1 + (al + bm + cn)u2 + [aln + b(l + mn) + c(m + n2)]u3,

δ4 = u3
1 + nu2

1u2 + (2m + n2)u2
1u3 − mu1u

2
2 − (3l + mn)u1u2u3 + (m2 − 2ln)u1u

2
3+

+lu3
2 + lnu2

2u3 − lmu2u
2
3 + l2u3

3,

κ1 = u1x
1 + u2x

2 + u3x
3, κ2 = u1x

2 + u2x
3 + u3(lx

1 + mx2 + nx3),

κ3 = u1x
3 + u2(lx

1 + mx2 + nx3) + u3[lnx1 + (l + mn)x2 + (m + n2)x3],

θ1 = n, θ2 = 2m + n2, θ3 = 3l + 3mn + n3. (29)

Consider the first integrals of system (26) for l = m = n = 0 and in all cases
when (l2 + m2)(l2 + n2)(m2 + n2) = 0, l2 + m2 + n2 6= 0. With the aid of (29) these
conditions can be easily written as the following cases:

3.1 Let the conditions θ1 = θ2 = θ3 = 0 hold

Then with the aid of (29) we obtain that the system (26) takes the form

dx1

dt
= a + x2,

dx2

dt
= b + x3,

dx3

dt
= c. (30)

It is easily to verify that for

c 6= 0 (31)

the system (30) has two functional-independent first integrals as follows

F1 ≡ 2cx2−2bx3−(x3)2 = C1, F2 ≡ 6c2x1−6c(a+x2)x3+(3b+x3)(x3)2 = C2. (32)

3.2 Let the conditions θ1 6= 0, θ2 = θ2

1
, θ3 = θ3

1
hold

Then from (29) we have l = m = 0, n 6= 0 and the system (26) takes the form

dx1

dt
= a + x2,

dx2

dt
= b + x3,

dx3

dt
= c + nx3. (33)

Remark that for

c + nx3 6≡ 0 (34)

the system (33) has two functional-independent first integrals as follows:

F1 ≡ n2x2 − nx3 + (c − bn) ln |c + nx3| = C1, F2 ≡ 2n(n2x1 − x3)+

+2(c − an2 − n2x2 + nx3) ln |c + nx3| + (bn − c) ln2 |c + nx3| = C2. (35)

If c + nx3 ≡ 0 then the system (33) transforms into the two-dimensional case
which we will not consider.
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3.3 Let the conditions θ3 = θ1 = 0, θ2 6= 0 hold

Then from (29) we find l = n = 0, m 6= 0 and the system (26) takes the form

dx1

dt
= a + x2,

dx2

dt
= b + x3,

dx3

dt
= c + mx2. (36)

With the aid of group of transformations corresponding to the operators Y5, Y6

from (27)–(28) by the change of variables

x1 = x1, x2 = x2 +
c

m
, x3 = x3 + b (37)

the system (36) takes the form

dx1

dt
= a + x2,

dx2

dt
= x3,

dx3

dt
= mx2 (m 6= 0), (38)

where
a = a − c

m
. (39)

One can verify that from the second and third equations of (38) we obtain the
first integral

F 1 ≡ (x3)2 − m(x2)2 = C1. (40)

Proposition 1. If the condition (x3)2 − m(x2)2 6= 0 holds, then the system (38)
has, besides (40), first integrals as follows

F
(1)
2 ≡ mx1 − x3 − a

√
m ln |x3 +

√
mx2| = C2 for m > 0, x3 > 0; (41)

F
(2)
2 ≡ mx1 − x3 + a

√
m ln |x3 −

√
mx2| = C2 for m > 0, x3 < 0; (42)

F
(3)
2 ≡ mx1−x3 +a

√
−m arcsin

x2
√
−m√

(x3)2 − m(x2)2
= C2 for m < 0, x3 > 0; (43)

F
(4)
2 ≡ mx1−x3−a

√
−m arcsin

x2
√−m√

(x3)2 − m(x2)2
= C2 for m < 0, x3 < 0. (44)

Proof. From (40) it follows

|x3| =

√
m(x2)2 + C1. (45)

1) Let m > 0, x3 > 0. Then from the first and second equations of (38) we
obtain

dx2

dx1 =

√
m(x2)2 + C1

a + x2 , (46)

taking into consideration (38), we obtain the first integral (41).
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2) Let m > 0, x3 < 0. Then from the first and second equations of (44) we
obtain

dx2

dx1 = −

√
m(x2)2 + C1

a + x2 , (47)

hereby, taking into consideration (40), we obtain the first integral (42).

3) Let m < 0, x3 > 0. Then with the aid of (46) and taking into consideration
(40) we obtain the first integral (43).

4) Let m < 0, x3 < 0. Then with the aid of (47) and taking into consideration
(40) we obtain the first integral (44). Proposition 1 is proved.

With the aid of expressions (37), (39), (40) and Proposition 1 is proved

Lemma 1. For m 6= 0 the system (36) has the first integral

F1 ≡ m(x3 + b)2 − (mx2 + c)2 = C1, (48)

and for m(x3 + b)2 − (mx2 + c)2 6≡ 0 beside (48) it has another one first integral
among the following four:

F
(1)
2 ≡ m2x1 − mx3 − (am − c)

√
m ln |bm + mx3 + (mx2 + c)

√
m| = C2,

for m > 0, x3 + b > 0; (49)

F
(2)
2 ≡ m2x1 − mx3 + (am − c)

√
m ln |bm + mx3 − (mx2 + c)

√
m| = C2,

for m > 0, x3 + b < 0; (50)

F
(3)
2 ≡ m2x1 − mx3 − (am − c)

√
−m arcsin

mx2 + c√
(mx2 + c)2 − m(x3 + b)2

= C2,

for m < 0, x3 + b > 0; (51)

F
(4)
2 ≡ m2x1 − mx3 + (am − c)

√
−m arcsin

mx2 + c√
(mx2 + c)2 − m(x3 + b)2

= C2,

for m < 0, x3 + b < 0. (52)

3.4 Let the conditions θ2 = θ1 = 0, θ3 6= 0 hold

Then from (29) we find l 6= 0, m = n = 0 and the system (26) takes the form

dx1

dt
= a + x2,

dx2

dt
= b + x3,

dx3

dt
= c + lx1. (53)
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Lemma 2. The general integral of the system

dx

dt
= y,

dy

dt
= z,

dz

dt
= x (54)

consists of two first integrals

F1 ≡ x3 + y3 + z3 − 3xyz = C1, (55)

F2 ≡ 2 ln |x+y+z|−ln |x2+y2+z2−xy−xz−yz|−2
√

3 arctan
2x − y − z√

3(y − z)
= C2. (56)

Proof. Remark that the system (54) admits two-dimensional commutative Lie
algebra with operators

X1 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, X2 = z

∂

∂x
+ x

∂

∂y
+ y

∂

∂z
. (57)

Then according to Theorem 1 we obtain the following integrating Pfaff equations:

(xy − z2)dx + (yz − x2)dy + (xz − y2)dz = 0, (58)

(x2 − yz)dx + (y2 − xz)dy + (z2 − xy)dz = 0 (59)

with integrating factor

µ−1 = x3 + y3 + z3 − 3xyz. (60)

Making with the aid of (60) some elementary calculation on integrating equations
(58)–(59) we obtain the functional-independent first integrals (55)–(56). Lemma 2
is proved.

Consider the system (53). Assume that a2 + b2 + c2 6= 0 and l 6= 0, then with
the aid of the transformation

x1 = x1 +
c

l
, x2 = x2 + a, x3 = x3 + b (61)

we find
dx1

dt
= x2,

dx2

dt
= x3,

dx3

dt
= lx1. (62)

It is easy to verify that the system (62) admits the two-dimensional commutative
Lie algebra of operators

Z1 = x1 ∂

∂x1 + x2 ∂

∂x2 + x3 ∂

∂x3 , Z2 = x3 ∂

∂x1 + lx1 ∂

∂x2 + lx2 ∂

∂x3 . (63)

Then according to Theorem 1 we obtain the following integrating Pfaff equations:

[
lx1x2 − (x3)2

]
dx1 +

[
x2x3 − l(x1)2

]
dx2 +

[
(x1x3 − (x2)2

]
dx3 = 0, (64)
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[
l2(x1)2 − lx2x3

]
dx1 +

[
l(x2)2 − lx1x3

]
dx2 +

[
(x3)2 − lx1x2

]
dx3 = 0. (65)

with the integrating factor

µ−1 = l2(x1)3 + l(x2)3 + (x3)3 − 3lx1x2x3. (66)

Setting in (64)–(65) the notations

x = x1 3
√

l2, y = x2 3
√

l, z = x3 (67)

we obtain integrating Pfaff equations (58)-(59) with integrating factor (60) and,
hence, the first integrals (55)-(56). After inverse change of variables (67) and (61)
in the last expressions we obtain

Lemma 3. The general integral of the system (53) for l 6= 0 consists of the first
integrals

F1 ≡ l2(x1 +
c

l
)3 + l(x2 + a)3 + (x3 + b)3 − 3(lx1 + c)(x2 + a)(x3 + b) = C1, (68)

F2 ≡ 2 ln |(x1+
c

l
)

3
√

l2+(x2+a)
3
√

l+x3+b|−ln |l(x1+
c

l
)2

3
√

l+(x2+a)2
3
√

l2+(x3+b)2−

−(lx1 + c)(x2 + a) − (x1 +
c

l
)(x3 + b)

3
√

l2 − (x2 + a)(x3 + b)
3
√

l|−

−2
√

3 arctan
2(x1 + c

l
)

3
√

l2 − (x2 + a) 3
√

l − x3 − b
√

3
[
(x2 + a) 3

√
l − x3 − b

] = C2. (69)

4 Invariant expressions for the first GL(3, R)−integrals
of the system (24)

Theorem 2. If the conditions δ3δ4 6≡ 0 and θ1 = θ2 = θ3 = 0 hold then the system
(24) has an invariant GL(3, R)−integral as follows

F ≡ 2(δ3κ2 − δ2κ3) − κ
2
3 = C, (70)

where δ2, δ3, δ4, κ2, κ3, θ1, θ2, θ3 are taken from (25).

Proof. For the system (30) the values of the comitants (29) are the follows:

δ1 = au1 + bu2 + cu3, δ2 = bu1 + cu2, δ3 = cu1, δ4 = u3
1,

κ1 = u1x
1 + u2x

2 + u3x
3, κ2 = u1x

2 + u2x
3, κ3 = u1x

3.

Hereby for δ4 6≡ 0 we find

a =
δ1u

2
1 − δ2u1u2 + δ3u

2
2 − δ3u1u3

u3
1

, b =
δ2u1 − δ3u2

u2
1

, c =
δ3

u1
,
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x1 =
κ1u

2
1 − κ2u1u2 + κ3u

2
2 − κ3u1u3

u3
1

, x2 =
κ2u1 − κ3u2

u2
1

, x3 =
κ3

u1
.

After the substitution of these expressions in F1 from (32) we obtain the invariant
GL(3, R)−integral for system (24) of the form (70). Theorem 2 is proved.

Theorem 3. If the conditions δ4 6≡ 0, θ1 6= 0, θ2 = θ2
1, θ3 = θ3

1 hold then the
system (24) has an invariant GL(3, R)−integral as follows

F ≡ θ2
1κ2 − θ1κ3 + δ3 ln |δ3 + θ1κ3| − δ2θ1 ln |δ3 + θ1κ3| = C, (71)

where δ3 + θ1κ3 6≡ 0 and δ3, δ4, κ2, κ3, θ1, θ2, θ3 are taken from (25).

Proof. For system (33) the values of the comitants (29) are the follows:

δ1 = au1 + bu2 + cu3, δ2 = bu1 + cu2 + cnu3, δ3 = cu1 + cnu2 + cn2u3,

δ4 = u3
1 + nu2

1u2 + n2u2
1u3, κ1 = u1x

1 + u2x
2 + u3x

3, κ2 = u1x
2 + u2x

3 + u3nx3,

κ3 = u1x
3 + nu2x

3 + n2u3x
3.

Hereby for δ4 6≡ 0 we find

a =
1

u2
1(u1 + nu2 + n2u3)

[
δ1u

2
1 + nδ1u1u2 + n2δ1u1u3 − δ2u1u2 − nδ2u

2
2−

−n2δ2u2u3 + δ3u
2
2 − δ3u1u3 + nδ3u2u3

]
,

b =
δ2u1 + nδ2u2 + n2δ2u3 − δ3u2 − nδ3u3

u1(u1 + nu2 + n2u3)
, c =

δ3

u1 + nu2 + n2u3
,

x1 =
1

u2
1(u1 + nu2 + n2u3)

[
κ1u

2
1 + nκ1u1u2 + n2

κ1u1u3 − κ2u1u2−

−nκ2u
2
2 − n2

κ2u2u3 + κ3u
2
2 − κ3u1u3 + nκ3u2u3

]
,

x2 =
κ2u1 + nκ2u2 + n2

κ2u3 − κ3u2 − nκ3u3

u1(u1 + nu2 + n2u3)
, x3 =

κ3

u1 + nu2 + n2u3
.

After the substitution of these expressions in F1 from (35), taking into consider-
ation n = θ1, we obtain the invariant GL(3, R)−integral of system (24) of the form
(71). Theorem 3 is proved.

Theorem 4. If the conditions δ4 6≡ 0, θ3 = θ1 = 0, θ2 6= 0 hold then the system
(24) has an invariant GL(3, R)−integral as follows

F ≡ 2θ2(δ2 + κ3)
2 − (2δ3 + θ2κ2)

2 = C, (72)

where δ2, δ3, δ4, κ2, κ3, θ1, θ2, θ3 are taken from (25).
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Proof. For the system (36) the values of the comitants (29) are the follows:

δ1 = au1 + bu2 + cu3, δ2 = bu1 + cu2 + bmu3, δ3 = cu1 + bmu2 + cmu3,

δ4 = u3
1 + 2mu2

1u3 − mu1u
2
2 + m2u1u

2
3,

κ1 = u1x
1 +u2x

2 +u3x
3, κ2 = u1x

2 +u2x
3 +mu3x

2, κ3 = u1x
3 +mu2x

2 +mu3x
3.

Hereby for δ4 6≡ 0 we find

a =
δ1u

2
1 − mδ1u

2
2 + 2mδ1u1u3 + m2δ1u

2
3 − δ2u1u2 + δ3u

2
2 − δ3u1u3 − mδ3u

2
3

u1(u2
1 − mu2

2 + 2mu1u3 + m2u2
3)

,

b =
δ2u1 + mδ2u3 − δ3u2

u2
1 − mu2

2 + 2mu1u3 + m2u2
3

, c =
−mδ2u2 + δ3u1 + mδ3u3

u2
1 − mu2

2 + 2mu1u3 + m2u2
3

,

x1 =
κ1u

2
1 − mκ1u

2
2 + 2mκ1u1u3 + m2

κ1u
2
3 − κ2u1u2 + κ3u

2
2 − κ3u1u3 − mκ3u

2
3

u1(u2
1 − mu2

2 + 2mu1u3 + m2u2
3)

,

x2 =
κ2u1 + mκ2u3 − κ3u2

u2
1 − mu2

2 + 2mu1u3 + m2u2
3

, x3 =
−mκ2u2 + κ3u1 + mκ3u3

u2
1 − mu2

2 + 2mu1u3 + m2u2
3

.

After the substitution of these expressions in F1 from (48), taking into consid-
eration m = θ2

2 , we obtain invariant GL(3, R)−integral of system (24) of the form
(72). Theorem 4 is proved.

Theorem 5. If the conditions δ4 6≡ 0, θ2 = θ1 = 0, θ3 6= 0 hold then the system
(24) has invariant GL(3, R)−integral as follows

F ≡ (3δ3+θ3κ1)
3+3θ2

3(δ1+κ2)
3−9θ3(3δ3+θ3κ1)(δ1+κ2)(δ2+κ3)+9θ3(δ2+κ3)

3 = C,

(73)
where δ1, δ2, δ3, δ4, κ1, κ2, κ3, θ1, θ2, θ3 are taken from (25).

Proof. For the system (53) the values of the comitants (29) are the follows:

δ1 = au1 + bu2 + cu3, δ2 = bu1 + cu2 + alu3, δ3 = cu1 + alu2 + blu3,

δ4 = u3
1 + lu3

2 + l2u3
3 − 3lu1u2u3,

κ1 = u1x
1 + u2x

2 + u3x
3, κ2 = u1x

2 + u2x
3 + lu3x

1, κ3 = u1x
3 + lu2x

1 + lu3x
2.

Hereby for δ4 6≡ 0 we find

a =
δ1u

2
1 − lδ1u2u3 − δ2u1u2 + lδ2u

2
3 + δ3u

2
2 − δ3u1u3

u3
1 + lu3

2 + l2u3
3 − 3lu1u2u3

,

b =
lδ1u

2
2 − lδ1u1u3 + δ2u

2
1 − lδ2u2u3 − δ3u1u2 + lδ3u

2
3

u3
1 + lu3

2 + l2u3
3 − 3lu1u2u3

,

c =
−lδ1u1u2 + l2δ1u

2
3 + lδ2u

2
2 − lδ2u1u3 + δ3u

2
1 − lδ3u2u3

u3
1 + lu3

2 + l2u3
3 − 3lu1u2u3

,
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x1 =
κ1u

2
1 − lκ1u2u3 − κ2u1u2 + lκ2u

2
3 + κ3u

2
2 − κ3u1u3

u3
1 + lu3

2 + l2u3
3 − 3lu1u2u3

,

x2 =
lκ1u

2
2 − lκ1u1u3 + κ2u

2
1 − lκ2u2u3 − κ3u1u2 + lκ3u

2
3

u2
1 + lu3

2 + l2u3
3 − 3lu1u2u3

,

x3 =
−lκ1u1u2 + l2κ1u

2
3 + lκ2u

2
2 − lκ2u1u3 + κ3u

2
1 − lκ3u2u3

u3
1 + lu3

2 + l2u3
3 − 3lu1u2u3

.

After the substitution of these expressions in F1 from (68), taking into consideration

l =
θ3

3
, we obtain invariant GL(3, R)−integral for system (24) of the form (73).

Theorem 5 is proved.

There is an open question: Is it possible to write the first integrals F2, F
(i)
2

(i = 1, 4) from (32), (35), (49)–(52) and (69) through GL(3, R)−invariants, con-
travariants and comitants of system (24)?
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