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Abstract. Orthogonality of a pair of binary groupoids, left quasigroups and quasi-
groups from some points of view is studied. Necessary and sufficient conditions of
orthogonality of a finite quasigroup and any its parastrophe (conjugate quasigroup
in other terminology), including ones in language of quasi-identities, are given. New
concept of gisotopy, which generalizes the concept of isotopy, is defined. There is
information on quasigroups with self-orthogonal conjugates.
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1 Introduction

Results presented in this article were received after reading the works [5, 10–12,
19,30]. With orthogonality of quasigroup parastrophes the authors met by the study
of codes with one check symbol [31,32].

Taking into consideration the rule that articles are written for readers in some
places of this paper we recall in details some known facts, many of which can be
found in [4,8,9,27,35], maybe, in an other form, or, more or less easy, can be proved
independently. Some results of this article were announced in [41].

It is not very difficult to see that the majority of results on orthogonality, espe-
cially, on orthogonality of quasigroups, which are included in this paper, are true
also in the infinite case.

1.1 Groupoids, quasigroups and loops

Definition 1. A binary operation A defined on a nonempty set Q is a map A :
Q × Q → Q such that A is defined for every pair of elements in Q and uniquely
associates each pair of elements in Q to some element of Q, i.e. D(A) = Q2,
ImA ⊆ Q ([21]).

Definition 2. A binary groupoid (G,A) is understood to be a non-empty set G
together with a binary operation A.

Any finite binary groupoid (Q,A) can be defined as the set T(A) of ordered
triplets (a1, a2, A(a1, a2)), where a1, a2 ∈ Q. Binary groupoids (Q,A) and (Q,B)
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are equal if and only if T(A) = T(B), where T(B) is the set of triplets of the groupoid
(Q,B).

If we need to show what groupoid operation was used by obtaining the third
component of a groupoid triplet, then we denote an element from the set T(Q,A)
as A(x1, x2, x3).

Definition 3. A groupoid (Q, ◦) is called a right quasigroup if, for all a, b ∈ Q, there
exists a unique solution x ∈ Q of the equation x ◦ a = b.

Definition 4. A groupoid (Q, ◦) is called a left quasigroup if, for all a, b ∈ Q, there
exists unique solution y ∈ Q of the equation a ◦ y = b.

Definition 5. A left and right quasigroup (Q, ◦) is called a quasigroup.

Definition 6. A binary groupoid (Q,A) with operation A such that in the equality
A(x1, x2) = x3 the knowledge of any two elements of x1, x2, x3 uniquely specifies the
remaining one is called a binary quasigroup [8].

It is easy to see that Definitions 5 and 6 are equivalent.

Definition 7. An element 1 of a groupoid (Q, ·) is called an identity element of the
groupoid (Q, ·) if 1 · x = x · 1 = x for all x ∈ Q.

Definition 8. A quasigroup with an identity element is called a loop.

We shall use definition of a quasigroup as an algebra with three binary opera-
tions [4].

Definition 9. A groupoid (Q, ·) is called a quasigroup, if on the set Q there exist
operations ”\” and ”/” such that in the algebra (Q, ·, \, /) the following identities
are fulfilled:

x · (x\y) = y, (y/x) · x = y, x\(x · y) = y, (y · x)/x = y. (1)

As usual, 1, n denotes the set {1, 2, . . . , n}.

Remark 1. We shall use the following order of multiplication (of composition) of
maps: (αβ)(x) = α(β(x)), where α, β are the maps.

1.2 Isotopy of groupoids, isostrophy and parastrophy

of quasigroups

We denote by SQ the group of all permutations (bijections in infinite case)
of a set Q.

A groupoid (Q,A) is an isotope of a groupoid (Q,B) if there exist permutations
µ1, µ2, µ3 of the set Q such that A(x1, x2) = µ−1

3 B(µ1x1, µ2x2) for all x1, x2 ∈ Q.
We also can write this fact in the form (Q,A) = (Q,B)T , where T = (µ1, µ2, µ3)

[4, 9, 35]. As usual, if µ1 = µ2 = µ3, then a groupoid (Q,A) is isomorphic to a
groupoid (Q,B).
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With any quasigroup (Q, ◦) it is possible to associate five further quasigroups
called parastrophes of (Q, ◦). This follows, for instance, from Definition 6.

If we denote a quasigroup operation by the letter A, then with this quasigroup
operation A we can associate the following quasigroup operations (see [4,7,8,29,35]):
A(x1, x2) = x3 ⇔ A(12)(x2, x1) = x3 ⇔ A(13)(x3, x2) = x1 ⇔ A(23)(x1, x3) = x2 ⇔
A(123)(x2, x3) = x1 ⇔ A(132)(x3, x1) = x2. In other words Aσ(xσ1, xσ2) = xσ3 ⇔
A(x1, x2) = x3 where σ ∈ S3.

For example, A(132)(x3, x1) = x2 ⇔ A(x1, x2) = x3: that is, A(132)(x(132)1,
x(132)2) = x(132)3 ⇔ A(x1, x2) = x3.

The concept of parastrophy has a well-known geometrical motivation. See, for
example, [7, 35].

In some articles, especially in combinatorics, see, for example [36], parastrophic
quasigroups are called conjugate quasigroups.

We can see on a classical definition of parastrophe of a quasigroup (Q,A) as on
a bijective map of a set of quasigroup triplets T(Q,A) in the set T(Q,A) such that
σ : A(x1, x2, x3) 7→ (A(x1, x2, x3))

σ = Aσ(xσ1, xσ2, xσ3) where σ ∈ S3.

To be able to restore a quasigroup (Q,A) from the set of quasigroup triplets
T(Q,A) we need to require that the set Q is a fully ordered set.

In this case, for example, triplet (3, 4, 5) shows that in Cayley table of quasigroup
(Q,A) the element 5 of this quasigroup is situated in the third row and in the fourth
column.

From ”triplets” point of view we can consider an isotopy T = (α1, α2, α3) as a
bijective map of a set of quasigroup triplets T(Q,A) in the set T(Q,B) of the form:
T : A(x1, x2, x3) 7→ B(α1x1, α2x2, α3x3).

We recall, as usual, if T = (α1, α2, α3) is an isotopy, σ is a parastrophy, then
T σ = (ασ1, ασ2, ασ3).

Lemma 1. (AT )σ = AσT σ, (T1T2)
σ = T σ1 T

σ
2 [4, 8].

Definition 10. A quasigroup (Q,B) is an isostrophic image of a quasigroup (Q,A)
if there exists a collection of permutations (σ, (α1, α2, α3)) = (σ, T ), where σ ∈ S3,
T = (α1, α2, α3) and α1, α2, α3 are permutations of the set Q such that B(x1, x2) =
A(σ, T )(x1, x2) = α−1

3 Aσ(α1x1, α2x2) for all x1, x2 ∈ Q [8].

A collection of permutations (σ, (α1, α2, α3)) = (σ, T ) will be called an isostrophy
of a quasigroup (Q,A).

Often an isostrophy (σ, T ) is called σ-isostrophy T or isostrophy of type σ. We
can re-write the equality from Definition 10 in the form AσT = B, where T =
(α1, α2, α3).

From the quasigroup triplets point of view we can write the definition of isostro-
phy in the form: A(σ, T ) = (Aσ)T = (x1, x2, x3)

σ(λ, µ, ν) = (xσ1, xσ2, xσ3)(λ, µ, ν) =
(λxσ1, µxσ2, νxσ3) = B for all triplets of the quasigroup (Q,A).

Lemma 2. ([8]). An isostrophic image of a quasigroup is a quasigroup.
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Proof. The proof follows from the fact that any parastrophic image of a quasigroup
is a quasigroup and any isotopic image of a quasigroup is a quasigroup. �

From Lemma 2 it follows that it is possible to define the multiplication of isostro-
phies of a quasigroup operation defined on a set Q.

Definition 11. If (σ, S) and (τ, T ) are isostrophies of a quasigroup (Q,A), then

(σ, S)(τ, T ) = (στ, SτT ),

where Aστ = (Aσ)τ and (x1, x2, x3)(S
τT ) = ((x1, x2, x3) S

τ )T for any quasigroup
triplet (x1, x2, x3).

Slightly different operation on the set of all isostrophies (multiplication of quasi-
group isostrophies) is defined in [8]. The definition from [28] is very close to Defini-
tion 11. See, also, [24].

Proposition 1. The set of all isostrophies of a quasigroup (Q,A) forms the group
of isostrophies ISOS(Q,A) with respect to the operation of multiplication, moreover
ISOS(Q,A) ∼= (SQ × SQ × SQ) ⋋ S3.

Proof. If A is a quasigroup operation and (σ, S) is an isostrophy, then A(σ, S) is a
quasigroup.

Further we have (A(σ, S))(τ, T ) = (AσS)(τ, T ) = (AσS)τT = (we use Lem-
ma 1) = AστSτT = A(στ, SτT ), i.e. if (σ, S), (τ, T ) ∈ ISOS(Q), then (σ, S)(τ, T ) ∈
ISOS(Q,A).

The associativity of this operation follows from the associativity of multiplication
of permutations.

Let S = (α1, α2, α3) be an isotopy of a quasigroup A, S−1 = (α−1
1 , α−1

2 , α−1
3 ),

Sσ = (ασ1, ασ2, ασ3). Then (σ−1, S)−1 = (σ, (S−1)σ). Indeed,

(σ−1, S)(σ, (S−1)σ) = (ε, Sσ(S−1)σ) = (ε, (SS−1)σ) = (ε, ε).

The proof of the fact that ISOS(Q,A) ∼= (SQ × SQ × SQ) ⋋ S3 is standard [23]
and we omit it. �

Remark 2. It is clear that for any pair of quasigroups (Q,A) and (Q,B) we have
ISOS(Q,A) = ISOS(Q,B) and it is possible to speak about the set (about the
group) of isostrophies of a set Q.

Lemma 3. A (12)-isostrophic image of a groupoid is a groupoid.

Proof. An isotopic image of a groupoid is a groupoid, (12)-parastrophic image
of a groupoid is a groupoid, therefore (12)-isostrophic image of a groupoid is a
groupoid. �

Proposition 2. The set of all ε-isostrophies and (12)-isostrophies of a groupoid
(Q,A) forms the group ISOS(12)(Q) of isostrophies with respect to the operation of
multiplication, moreover ISOS(12)(Q) ∼= (SQ × SQ × SQ) ⋋ Z2. If |Q| = m, then
|ISOS(12)(Q)| = 2(m!)3.
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Proof. It is possible to use standard facts from Group Theory [23]. �

Proposition 3. The set of all ε-isostrophies, (123)-isostrophies and (132)-isostrophies
of a quasigroup (Q,A) forms the group ISOS(123)(Q) of isostrophies with respect to
the operation of multiplication, moreover ISOS(123)(Q) ∼= (SQ × SQ × SQ) ⋋ Z3.

Proof. It is possible to use standard facts from Group Theory [23]. �

1.3 Translations of groupoids and quasigroups

Let (Q, ·) be a groupoid. As usual, the map La : Lax = a · x for all x ∈ Q is a
left translation of the groupoid (Q, ·) relatively to a fixed element a ∈ Q, the map
Ra : Rax = x · a is a right translation.

For some groupoids we can define the notion of a middle translation. A map
Pa : x · Pax = a, where x ∈ Q, is called a middle translation of a groupoid (Q, ·)
relatively to a fixed element a ∈ Q [4,6,9,35]. Usually middle translations are defined
for quasigroups.

In a right (left) quasigroup (Q, ◦) any right (left) translation is a permutation of
the set Q [35].

Lemma 4. Any isotope of a groupoid (Q, ◦) is a groupoid [35]. Any isotope of a
left (right) quasigroup (Q, ◦) is a left (right) quasigroup.

Proof. If (Q, ◦) is a (θ, φ, ψ)-isotope of a left quasigroup (Q, ·), then x ◦ y =

ψ−1(θx · φy) for all x, y ∈ Q. Hence, L
(◦)
x y = ψ−1L

(·)
θxφy and the map L

(◦)
x is a

permutation since the map L
(·)
θx is a permutation. �

In a quasigroup (Q, ·) all left, right and middle translations are permutations of
the set Q [35].

Lemma 5. There exist the following connections between different kinds of transla-
tions in the parastrophes of a quasigroup (Q, ·) [20,40].

Table 1

ε (12) (13) (23) (123) (132)

R R L R−1 P P−1 L−1

L L R P−1 L−1 R−1 P

P P P−1 L−1 R L R−1

R−1 R−1 L−1 R P−1 P L

L−1 L−1 R−1 P L R P−1

P−1 P−1 P L R−1 L−1 R

Proof. In Table 1, for example, R(23) = P (·). Indeed, if R
(23)
a x = x\a = b, then

x · b = a, P
(·)
a x = b, i.e. R(23) = P (·). �



8 GARY L. MULLEN, VICTOR A. SHCHERBACOV

The sets of all left, right and middle translations of a quasigroup (Q, ·) will be
denoted L(Q, ·), R(Q, ·), P(Q, ·), respectively. Further, let

L2(Q, ·) = {LaLa | a ∈ Q}; L−1(Q, ·) = {L−1
a | a ∈ Q};

R2(Q, ·) = {RaRa | a ∈ Q}; R−1(Q, ·) = {R−1
a | a ∈ Q};

LR(Q, ·) = {LaRa | a ∈ Q}; P−1(Q, ·) = {P−1
a | a ∈ Q};

RL(Q, ·) = {RaLa | a ∈ Q}; RL−1(Q, ·) = {RaL
−1
a | a ∈ Q}.

1.4 Squares and Latin squares

We give some definitions of squares and Latin squares.

Definition 12. An m×m square S(Q) is an arrangement of k variables x1, x2, . . . ,
xk, k ≤ m, into m rows and m columns [30].

We shall say that the square S(Q) is defined on the set Q, where Q =
{x1, x2, . . . , xk}. Sometimes we also shall write this fact in the form D(S) = Q.

We shall write the fact that in a square S(Q) in a cell with co-ordinates (i, j) an
element a ∈ Q, where i, j ∈ {1, . . . ,m}, is arranged as (i, j, a) ∈ S.

The squares S1(Q) and S2(Q) are equal if and only if (i, j, a) = (i, j, b) for all
(i, j, a) ∈ S1 and (i, j, b) ∈ S2.

Definition 13. A permutation square of order m is an arrangement of m variables
x1, x2, . . . , xm into m rows and m columns such that no row or no column contains
any of variables twice.

It is well known ([27, 34]), that a permutation square in which no row contains
any of variables twice is called a row-Latin square. Permutation square in which
no column contains any of variables twice, is called a column-Latin square. In this
article we prefer the term permutation square.

Definition 14. A Latin square is an arrangement of m variables x1, x2, . . . , xm into
m rows and m columns such that no row and no column contains any of variables
twice [30].

In [17] there is such definition of a Latin square.

Definition 15. For a positive integer n, Latin square L of order n is a n×n matrix
whose entries (or values) belong to a set X of n elements and such that every element
of X has exactly one occurrence in each row and each column.

It is easy to see that the body of Cayley table (i.e. a Cayley table without the
bordering row and the bordering column) of a groupoid (G,A) is a square S(G) and
any square S(G) can be a body of Cayley table of a groupoid (G,A).

The body of Cayley table of a left quasigroup (Q,A) is a permutation square
L(Q,A) in which no row contains any of variables twice, the body of Cayley table
of a right quasigroup (Q,A) is a permutation square R(Q,A) in which no column
contains any of variables twice.
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Any permutation square in which no row contains any of variables twice can be a
body of Cayley table of a left quasigroup (Q,A). Any permutation square in which
no column contains any of variables twice can be a body of Cayley table of a right
quasigroup (Q,A).

The body of Cayley table of a quasigroup (Q,A) is a Latin square L(Q,A) and
any Latin square can be a body of Cayley table of a quasigroup (Q,A).

Proposition 4. An unbordered square S corresponds to a groupoid (G, ·) and to all
isotopes of (G, ·), which arise from an isotopy T of the form T = (α, β, ε), where
α, β ∈ SQ.

Proof. Any isotopic image of a groupoid (G, ·) under the isotopy T can be obtained
by changing the bordering row and the bordering column of the Cayley table of the
groupoid (G, ·) without any changing the body of this Cayley table.

Let (G, ◦) = (G, ·)T , i.e. x ◦ y = αx · βy for all x, y ∈ Q. Then the permutation
α changes elements in the bordering column of the groupoid (G, ·) in the following
way: an element b in the bordering column of the groupoid (G, ·)T is equal to the
element α−1a, where the element a takes the same position in the bordering column
of the groupoid (G, ·) as the element b in the bordering column of the groupoid
(G, ·)T .

The permutation β changes the elements in the bordering row of the groupoid
(G, ·) in the similar way as the permutation α changes the elements in its bordering
column.

Indeed, if x · y = z, i.e. the element x is the first co-ordinate of the element
z, the element y is the second co-ordinate of the element z in the Cayley table of
the groupoid (G, ·), then α−1x ◦ β−1y = α(α−1x) · β(β−1y) = x · y = z, i.e. the
element α−1x is the first co-ordinate of the element z, the element β−1y is the second
co-ordinate of the element z in the Cayley table of the groupoid (G, ◦). �

Remark 3. A fixation of any order in the bordering row and any order in the
bordering column of all groupoids which are defined on a non-empty set Q gives us
a bijection between the class of all groupoids, defined on the set Q, and the class of
all squares defined on Q.

Remark 4. Below in this article we suppose that the set Q is a well ordered set.
We shall fix an order of any bordering row and bordering column of any groupoid,
moreover, we shall suppose that orders in bordering row and bordering column of
any groupoid coincide with the order of the set Q.

Remark 5. It is possible do define an infinite square as the body of Cayley table
of an infinite groupoid.

1.5 m-Tuples of maps and its product

In [30] Mann defined so-called set of permutations of a Latin square S. Mann
wrote: “The rows of a Latin square are permutations of the row x1, x2, . . . , xm. Let
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pi be the permutation which transforms x1, x2, . . . , xm into the i-th row of the Latin
square. Then pip

−1
j leaves no variables unchanged for i 6= j. For otherwise one col-

umn would contain a variable twice. On the other hand each set of m permutations
(p1, p2, . . . , pm) such that pip

−1
j (i 6= j) leaves no variable unchanged generates a

Latin square. We may therefore identify every Latin square with a set of m permu-
tations (p1, p2, . . . , pm) such that pip

−1
j (i 6= j) leaves no variable unchanged”.

Therefore Mann obtained a new presentation of a Latin square S(Q), |Q| = m,
as a set of m permutations of the set Q. As Denes and Keedwell wrote [17], the
similar presentation of a Latin square as a set of permutations can be found in the
earlier article of Schöngardt [39].

From the article [30] it follows that by permutations in a permutation square
H.B. Mann understood rows of this square, i.e. left translations in terminology
of this article. Moreover, by the set of permutations (s1, s2, . . . , sm) he, in fact,
understood an ordered set of permutations, i.e. m-tuple of permutations of a set Q.
Later many authors used this presentation in their articles [12,27,34].

Definition 16. Let Q be a non-empty well ordered finite set of order m. By m-tuple
M of maps defined on the set Q we shall understand any well ordered m-element set
of maps of Q indexed by elements of the set Q, i.e. M = (µa1 , µa2 , . . . , µam

), where
ai ∈ Q, µai

is a map of the set Q into the set Q, ai < aj if and only if i < j for all
i, j ∈ 1,m such that i 6= j.

Below we shall often consider a non-empty set Q of order m as the set of natural
numbers Q = {1, 2, . . . ,m} with their natural order, i.e. 1 < 2 < 3 < · · · < m. We
do not lose the generality since there exists a bijective map between the set Q and
any other set of a finite order m.

Definition 17. An m-tuple of maps T = (µ1, µ2, . . . , µm) of a set Q such that any
map µi is a permutation of the set Q will be called an m-tuple of permutations of
the set Q.

In other words, the tuple M is a vector whose co-ordinates are m fixed maps of
the set Q, the permutation tuple T consists of m permutations of the group SQ.

Example 1. Let Q = {1, 2, 3}. The following ordered sets of permutations are
3-tuples of permutations: T1 = (ε, (123), (132)), T2 = ((12), (13), (132)).

Definition 18. If M1 = (µa1 , µa2 , . . . , µam
) and M2 = (νa1 , νa2 , . . . , νam

) are m-
tuples of maps defined on a set Q, Q = {a1, a2, . . . , am}, then the product M1 ∗M2

is an m-tuple of the form (µa1νa1 , µa2νa2 , . . . , µam
νam

).

Below we shall omit usually a symbol of an operation of the product of m-tuples.

Proposition 5. The set M of all m-tuples of maps, defined on a non-empty set Q
of order m, forms a semigroup (M, ∗) relative to the operation ∗. The semigroup
(M, ∗) is isomorphic to the direct product of m copies of the symmetric semigroup
SQ, i.e. (M, ∗) ≃ SQ × SQ × · · · × SQ =

⊗m
i=1(SQ)i, |(M, ∗)| = (mm)m.
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Proof. We omit the proof, since it is easy and standard. �

Corollary 1. ([34]) The set P of all m-tuples of permutations, defined on a non-
empty set Q of order m, forms a group (P, ∗) relative to the operation ∗. The group
(P, ∗) is isomorphic to the direct product of m copies of the symmetric group SQ,
i.e. (P, ∗) ≃ SQ × SQ × · · · × SQ =

⊗m
i=1(SQ)i, |(P, ∗)| = (m!)m.

Proof. We also omit the proof, since it is easy and standard. �

1.6 Connections between groupoids and m-tuples of maps,

kinds of tuples

Let (Q,A) be a finite groupoid of order m which is defined on the well-ordered
set Q = {1, 2, . . . ,m}. This groupoid defines two sets of translations, namely the
set of all left translations and the set of all right translations. It is clear, that the
last statement is true for any groupoid, not only for a finite groupoid (Q,A).

Moreover, the groupoid (Q,A) defines uniquely two m-tuples of maps, namely
T1 = (L1, L2, . . . , Lm) and T2 = (R1, R2, . . . , Rm).

Any of the m-tuples T1 and T2 specifies the groupoid (Q,A) uniquely if we
indicate a method (rows or columns) of filling Cayley table of groupoid (Q,A).

It is easy to see that any m-tuple of maps T = {µ1, µ2, . . . , µm} of a well-ordered
set Q, |Q| = m, defines uniquely the following two groupoids: groupoid (Q,A), in
which the maps µi are left translations and groupoid (Q,B), in which the maps µi
are right translations.

We shall denote an m-tuple T of maps that consists of all left (respectively, right,
middle, inverse of left, inverse of right, inverse of middle) translations of a groupoid
(Q,A) by T l (respectively, by T r, T p, T Il, T Ir, T Ip). In this case we shall say that
the tuple T l has the kind l, or we shall say that the tuple T l is of the kind l.

Remark 6. A kind of maps (of permutations) defines the way of writing the maps
(the permutations) in a square (in a permutation square) S. The left translations
correspond to rows of the square S, the right translations correspond to columns of
the square S and the middle translations correspond to cells of the square S (see
Example 3).

We denote by T l(Q) the class of all m-tuples of maps of the kind l, which are
defined on a well ordered set Q, |Q| = m, and denote by G(Q) the class of all
groupoids defined on the set Q.

By the analogy with m-tuples of maps, we shall denote a square S that consists
of all left (respectively, right, middle, inverse to the left, inverse to the right, inverse
to the middle) translations of a groupoid (Q,A) by Sl (respectively, by Sr, Sp, SIl,
SIr, SIp).

We denote by Sl(Q) the class of all squares of the kind l that are defined on a
set Q. In conditions of Remark 3 and Remark 4 we can formulate the following

Proposition 6. There exist bijections between the classes T l(Q), Sl(Q), Sr(Q) and
G(Q).
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It is well known that a Latin square L defines m-tuples of permutations of all six
kinds. If Q(Q) denotes the class of all quasigroups that are defined on a well ordered
set Q, then Proposition 6 is also true for classes of tuples and classes of squares of
the kinds {Il, Ir, p, Ip}.

Proposition 7. Any permutation square defines m-tuples of at least of three kinds.

Proof. From the definition of a permutation square it follows that a permutation
square defines at least one m-tuple of permutations T . Since the tuple T is a
permutation tuple, then T−1 is a permutation tuple, too. �

Example 2. The permutation square

S =
1 2
1 2

defines the following 2-tuples: T1 = (L1, L2) = (ε, ε) of the kind l, T2 =
(L−1

1 , L−1
2 ) = (ε, ε) of the kind Il and T3 = (R1, R2) of the kind r, where

R1(1) = R1(2) = 1, R2(1) = R2(2) = 2.

Proposition 8. If a square S(Q) defines m-tuples of permutations of the kind l and
r, then this square is a Latin square.

Proof. Let Q = {a1, . . . , am}. We denote by T1 the m-tuple of permutations of kind
l and by T2 the m-tuple of permutations of the kind r which generate the square
S(Q).

If we suppose that there exist permutations p1 and p2 of the m-tuple T1 such
that p1(ai) = p2(ai) = aj , then the column number ai contains twice the element
aj, therefore the square S(Q) does not define an m-tuple of the kind r.

If we suppose that there exist permutations p1 and p2 of the m-tuple T2 such
that p1(ai) = p2(ai) = aj, then the row number ai contains twice the element aj ,
therefore the square S(Q) does not define an m-tuple of the kind l.

Therefore, if a permutation square S(Q) defines m-tuples of the kind l and r,
then this square is a Latin square. �

Proposition 9. A square S(Q) defines an m-tuple of permutations of the kind p if
and only if this square is a Latin square.

Proof. Let Q = {a1, . . . , am}. We suppose that the square S(Q) defines the m-
tuple T of permutations of the kind p. We recall px(y) = z, where px is a middle
translation of the groupoid (Q,A) which corresponds to the square S(Q), means
that in the square S(Q) in the position (y, z) the element x is situated.

If we suppose that there exist permutations pax
and pay

(ax 6= ay) of the m-tuple
T such that pax

(ai) = pay
(ai) = aj, then we have that in the position (ai, aj) the

elements ax and ay are situated simultaneously.
Therefore we can conclude that the m-tuple T contains pairwise different per-

mutations of the set Q such that “pip
−1
j leaves no variables unchanged for i 6= j ”,

i.e. the square S(Q) is a Latin square.
It is easy to see that any Latin square defines an m-tuple of the kind p. �
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Corollary 2. Any permutation square S defines one or three m-tuples of permuta-
tions from the following set of the kinds of m-tuples of permutations {l, r, p}.

Proof. The proof follows from Example 2, Propositions 8 and 9. �

We notice it is possible to define tuples of maps of an infinite groupoid.

1.7 The τ -property of m-tuples of permutations

We denote the property of a set of permutations {p1, p2, . . . , pm} of an m-element
set Q “pip

−1
j (i 6= j) leaves no variable unchanged” [30] as the τ -property. An m-

tuple of permutations T can also have the τ -property. We shall call the m-tuple T
as a τ -m-tuple.

In [30], in fact, Mann proves the following

Theorem 1. A set T = {p1, p2, . . . , pm} of m permutations of a finite set Q of order
m of a kind α, where α ∈ {l, Il, r, Ir}, defines Cayley table of a quasigroup if and
only if T has the τ -property.

A permutation α of a finite non-empty set Q which leaves no elements of the set
Q unchanged will be called a fixed point free permutation.

Definition 19. Let Q be a non-empty finite set of an order m. A set M =
{µ1, µ2, . . . , µm} of m maps of the set Q is called strictly transitive (more precise,
the set M acts on the set Q strictly transitively) if for any pair of elements x, y of
the set Q there exists a unique map µj of the set Q such that µj(x) = y.

Theorem 2. A set M = {µ1, µ2, . . . , µm} of maps of a finite set Q of order m is a
strictly transitive set if and only if M is a set of permutations of the set Q.

Proof. Let Q = {1, 2, . . . ,m}. We construct the map θM of the set Q2 in the
following way θM : (j;x) 7→ (j;µj(x)), i.e.

(1; 1) −→ (1;µ1(1))
(1; 2) −→ (1;µ1(2))
. . . . . . . . .
(1;m) −→ (1;µ1(m))
(2; 1) −→ (2;µ2(1))
(2; 2) −→ (2;µ2(2))
. . . . . . . . .
(m;m) −→ (m;µm(m)).

The set M is a strictly transitive set of maps if and only if the map θM is a permu-
tation of the set Q.

If θM is a permutation of the set Q2, then |Imµi| = m for any map µi. Indeed,
if we suppose that there exists a map µj such that |Imµi| < m, then we obtain that
θM is not a permutation of the set Q2. �

An m-tuple of permutations also can have the property of strictly transitivity.
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Theorem 3. A set T = {p1, p2, . . . , pm} of m permutations of a finite set Q of order
m is strictly transitive if and only the set T has the τ -property.

Proof. Mann (Theorem 1) proved that the set T ofm permutations of anm-element
set Q defines a Latin square if and only if the set T has the τ -property. He also
proved ([30]) that the set T has the property of strict transitivity if and only if the
set T defines a Latin square.

Therefore we can conclude that for the set T the τ -property and the property of
strict transitivity are equivalent. �

Proposition 10. An m-tuple of permutations T is a tuple of the kind p or of the
kind Ip if and only if the tuple T is a τ -m-tuple of permutations.

Proof. The proof follows from Proposition 9. �

Any m-tuple T = (p1, p2, . . . , pm) defines m-tuple T−1 such that T−1 =
(p−1

1 , p−1
2 , . . . , p−1

m ).

Proposition 11. An m-tuple T = (p1, p2, . . . , pm) has the τ -property if and only if
the m-tuple T−1 has the τ -property.

Proof. From Theorem 3 it follows that this proposition will be proved if we prove
the following equivalence: an m-tuple T = (p1, p2, . . . , pm) is strictly transitive m-
tuple if and only if the m-tuple T−1 is strictly transitive.

But it is easy to see the the following statements are equivalent: (∀ a, b ∈
Q) (∃! pi ∈ T ) pi(a) = b and (∀ a, b ∈ Q) (∃! p−1

i ∈ T−1) p−1
i (b) = a. �

Proposition 12. An m-tuple of permutations T = (p1, p2, . . . , pm) has the τ -
property if and only if the m-tuple pTq = (pp1q, pp2q, . . . , ppmq), where p, q are
some fixed permutations of the set Q, has the τ -property.

Proof. It is easy to see that the following statements are equivalent: ”for any fixed
elements a, b ∈ Q there exists an unique permutation pi ∈ T such that pi(a) = b”
and ”for any fixed elements a, b ∈ Q there exists a unique permutation piq ∈ Tq
such that piq(a) = q(b)”.

Since elements a, b are arbitrary fixed elements of the set Q, we can denote the
element q(b) by b1. Therefore, we can re-write the last statement in the following
equivalent form ”for any fixed elements a, b1 ∈ Q there exists a unique permutation
piq ∈ Tq such that piq(a) = b1”.

The last statement is equivalent to the following ”for any fixed elements a, b1 ∈ Q
there exists a unique permutation ppiq ∈ pTq such that ppiq(a) = p(b1)”.

Similarly, as it was pointed above, further we can re-write the last statement in
the following equivalent form “for any fixed elements a, b2 ∈ Q there exists a unique
permutation ppiq ∈ pTq such that ppiq(a) = b2”, where b2 = p(b1). �

Remark 7. In fact, Proposition 12 in an other form can be found in article of
Mann [30].
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Corollary 3. An m-tuple of permutations pT = (pp1, pp2, . . . , ppm) has the τ -
property if and only if the m-tuple Tp = (p1p, p2p, . . . , pmp), where p is a permutation
of the set Q, has the τ -property.

Proof. By Proposition 11 we have that an m-tuple pT has the τ -property if and
only if the m-tuple p−1pTp = Tp has the τ -property. �

Corollary 4. An m-tuple of permutations T = (p1, p2, . . . , pm) has the τ -property
if and only if the m-tuple p−1Tp = (p−1p1p, p

−1p2p, . . . , p
−1pmp), where p is a per-

mutation of a set Q, has the τ -property.

Proof. It is easy to see. �

Lemma 6. In a quasigroup (Q, ·) any of the sets L(Q, ·), R(Q, ·), P(Q, ·), L−1(Q, ·),
R−1(Q, ·) and P−1(Q, ·) has the τ -property.

Proof. Let us suppose the contrary that there exist translations La, Lb, a 6= b, of
a quasigroup (Q, ·) and an element x ∈ Q such that LaL

−1
b x = x. If in the last

equality we change the element x by the element Lbx, then we obtain Lax = Lbx,
a · x = b · x, a = b. We received a contradiction. Therefore the set L(Q, ·) has the
τ -property.

Similarly it can be proved the remaining cases. �

Remark 8. Any of the sets L, R, P, L−1, R−1 and P−1 of a quasigroup (Q, ·)
defines this quasigroup in the unique way. Indeed, we can take into consideration
the agreements of Remark 4 and the fact that all these quasigroup translations are
indexed by the elements of set Q.

Example 3. If P−1
1 = (23), P−1

2 = (13), P−1
3 = (12) are inverse permutations

for middle translations of a quasigroup (Q, ◦), then we can construct (Q, ◦) in the
following way:

1 2 3

1 1
2 1
3 1

1 2 3

1 1 2
2 2 1
3 2 1

◦ 1 2 3

1 1 3 2
2 3 2 1
3 2 1 3

We can supplement Proposition 6 in the following way. Let Q be a finite well
ordered set.

We denote:

- by LQ(Q) the class of all left quasigroups, which are defined on the set Q;

- by Q(Q) the class of all quasigroups, which are defined on the set Q;

- by PS(LQ) (PS(Q)) the class of all permutation squares, which are bodies of
Cayley tables of left quasigroups (quasigroups) from LQ(Q) (Q(Q));

- by Tα(Q) we denote the class of m-tuples of permutations of a kind α, α ∈
{l, Il, r, Ir, p.Ip} that are defined on the set Q.

In conditions of Remark 3 and Remark 4 is true the following
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Proposition 13. (i) There exist bijections between the classes LQ(Q), PS(LQ) and
Tα(Q), α ∈ {l, Il};

(ii) there exist bijections between the classes Q(Q), PS(Q) and Tα(Q), α ∈
{l, Il, r, Ir, p.Ip}.

Proof. The proof follows from results of Subsection 1.6 and this subsection. �

Proposition 14. A τ -m-tuple T of a finite set Q of order m “defines” six Latin
squares, namely: Ll, Lr, Lp, LIl, LIr, LIp, which correspond to six quasigroups
(Q,A), (Q,A(12)), (Q,A(132)), (Q,A(23)), (Q,A(123)) and (Q,A(13)), respectively.

Proof. The tuple T can have the following kinds {l, r, p, Il, Ir, Ip}. Thus this tuple
defines six Latin squares. If we denote the Latin square, that corresponds to the
tuple T l by Ll, then we can denote other Latin squares by Lr, Lp, LIl, LIr, LIp. If
we denote the quasigroup that corresponds to the square Ll by (Q,A), then other
five quasigroups are (Q,A(12)), (Q,A(132)), (Q,A(23)), (Q,A(123)) and (Q,A(13)),
respectively. �

Corollary 5. Latin squares Ll, Lr, Lp, LIl, LIr and LIp which are constructed
from a τ -m-tuple T define at most six τ -m-tuples, namely six tuples that are left,
right, middle translations and their inverse one’s of the quasigroup (Q,A) which
corresponds to the square Ll.

Proof. Any of Latin squares Ll, Lr, Lp, LIl, LIr and LIp from Proposition 14 defines
six, in general various, τ -m-tuples of permutations. But, as it follows from Table
1, any of this 36 τ -m-tuples of permutations coincides with the τ -m-tuples which
are left (=T ), right, middle translations and their inverse one’s of the quasigroup
(Q,A). �

It is not very difficult to understand that the number n of various τ -m-tuples
which can be constructed from a τ -m-tuple T , using the way of Proposition 14, is
equal to 1, 2, 3 or 6.

For example, it is easy to see, if the tuple T defines a TS-quasigroup, then n = 1,
since in any TS-quasigroup (Q, ·) all its parastrophes coincide with (Q, ·) [4]. We
notice TS-quasigroup of order 3 is given in Example 3.

1.8 Definitions of orthogonality of groupoids, squares

and m-tuples

One of the most frequently applied and historically one of the first studied prop-
erties of Latin squares is the property of orthogonality. Orthogonality of quasigroups
and Latin squares is used by application of quasigroups in Coding Theory and Cryp-
tology [17]. The famous Euler problem on Latin squares is devoted to the question
of the existence of a pair of orthogonal Latin squares of order 4k+ 2, k ∈ N [17,27].

Definition 20. ([30]). Two m×m squares S1 and S2, defined on the sets Q1 and
Q2 respectively, |Q1| = |Q2| = m, are called orthogonal if when one is superimposed
upon the other every ordered pair of variables occurs once in the resulting square,
i.e. the resulting square S12 is defined on the set Q1 ×Q2.
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Example 4. Let a square S1 be defined on the set Q1 = {1, 2, 3, 4}, a square S2 be
defined on the set Q2 = {a, b, c, d}. Let

S1 =

1 2 3 3
1 1 2 2
2 1 3 3
4 4 4 4,

S2 =

a a a b
b c b c
d d c d
a b c d.

Then S12 =

1a 2a 3a 3b
1b 1c 2b 2c
2d 1d 3c 3d
4a 4b 4c 4d.

Proof. The squares S1 and S2 are orthogonal since the square S12 is defined on the
set Q1 ×Q2. �

We can give the following definition.

Definition 21. We suppose that m×m squares S1 and S2 are defined on the sets
Q1 and Q2, respectively. We define the operation ⊕ of superimposition of the squares
S1 and S2 in the following way: S1 ⊕ S2 = S12 is an m×m square such that in any
position (i, j), i, j ∈ {1, 2, . . . ,m}, in S12 is arranged an ordered pair of elements
(a, b), where the element a is arranged in position (i, j) in the square S1 and the
element b is arranged in position (i, j) in the square S2.

It is easy to see that the square S12 is defined on the set Q12 such that Q12 ⊆
Q1 ×Q2.

In language of notions of Definition 21 we can re-write Definition 20 in the
following form.

Definition 22. Two m × m squares S1 and S2, defined on the sets Q1 and Q2

respectively, |Q1| = |Q2| = m, are called orthogonal if and only if D (S1 ⊕ S2) =
Q1 ×Q2.

Definition 23. If a square S2(Q2) is Cayley table of a groupoid (Q2, B) and a square
S1(Q1) is Cayley table of a groupoid (Q1, A), then the square S2(Q2) is an isotopic
image of the square S1(Q1) with an isotopy T if and only if (Q2, B) = (Q1, A)T .

We formulate well known lemma which is a mathematical folklore.

Lemma 7. Squares S1(Q1) and S2(Q2) are orthogonal if and only if their isotopic
images are orthogonal with the isotopies of the form T1 = (ε, ε, ϕ) and T2 = (ε, ε, ψ),
respectively.

Proof. We recall the isotopy T1 changes an element b ∈ S1(Q1) with co-ordinates
(i, j) by the element ϕb ∈ S1(Q1)T1 with co-ordinates (i, j).

If S1(Q1)T1 is an isotopic image of a square S1(Q1), S2(Q2)T2 is an isotopic
image of a square S2(Q2) and D(S1(Q1) ⊕ S2(Q2)) = Q1 ×Q2, then D(S1(Q1)T1 ⊕
S2(Q2)T2) = ϕ(Q1) × ψ(Q2). �

Corollary 6. Squares S1(Q1) and S2(Q2) are orthogonal if and only if are orthog-
onal the squares S1(Q1) and S ′

2(Q1) = S2(Q2)T2, where ψ is a third component of
isotopy T2 such that ψ(Q2) = Q1.
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Proof. In conditions of Lemma 7 it is sufficient to suppose that ϕ = ε and to choose
the component ψ of the isotopy T2 such that ψ(Q2) = Q1. �

Remark 9. Below in this article we shall study only orthogonality of squares, which
are defined on the same set Q.

Definition 24. ([17]). Two groupoids (Q, ·) and (Q, ∗) defined on the same set Q
are said to be orthogonal if the system of equations x · y = a and x ∗ y = b (where a
and b are any two given elements of Q) has a unique soluion.

We shall denote a fact that groupoids (Q, ·) and (Q, ∗) are orthogonal by
(Q, ·)⊥(Q, ∗). There exist various generalizations of Definitions 20 and 24 on n-
ary case, i.e. on hypercubes and n-ary groupoids [2, 26].

1.9 Numerical estimations for the property of orthogonality

of squares

It is well known that on a finite set G of an order m there exist (m)m
2

binary
groupoids and (m)m

2
squares.

Following [17] we shall call any square S2 which is orthogonal to a square S1

orthogonal mate of a square S1. Similarly, we shall call any groupoid (G,B) which
is orthogonal to a groupoid (G,A) orthogonal mate, too.

In [17] (on page 155) there are necessary and sufficient conditions for a Latin
square in order to have an orthogonal mate.

We give the similar condition for a square to have an orthogonal mate.

Lemma 8. An m × m square S defined on the set Q = {1, 2, . . . ,m} has an or-
thogonal mate if and only if in this square there are m entries of any element of the
set Q.

Proof. This proof is a version of the proof of Theorem 5.1.1 from [17]. Let S(Q)
be an m ×m square with m entries of any element of the set Q. We will be able
to construct an orthogonal mate to the square S if and only if we will be able to
change all entries of the element 1 in the square S by all elements of the set Q in
any order, all entries of the element 2 in the square S by all elements of the set Q
in any order and so on. �

The proof of Lemma 8 provides, probably, one of the most universal and the
most simple methods of construction of an orthogonal mate to any binary groupoid
which has such a mate. In [3] V.D. Belousov called operations with the property
that is similar to the property of squares from Lemma 8 full operations.

Corollary 7. There exist (n2)! squares defined on a set Q of the order n that have
an orthogonal mate.

Proof. In the square S there exist n2 cells. To obtain a square with an orthogonal
mate we must fill n cells by the element 1. We have n2(n2−1)(n2−2) . . . (n2−n+1)
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different variants to do this. Further we have (n2 − n) . . . (n2 − 2n + 1) variants to
fill remaining cells by the element 2. Therefore we have n2(n2 − 1)(n2 − 2) . . . (n2 −
n)(n2 − n − 1) . . . (n2 − 2n + 1) variants to write the elements 1 and 2 in the cells
of the square S. Further we have n2 . . . (n2 − 3n+ 1) variants to fill the cells of the
square S by the elements 1, 2, 3 and so on.

Finally, we obtain that we have (n2)! variants to construct a groupoid with an
orthogonal mate. �

Corollary 8. If a square S which is defined on n-element set Q, Q = {1, 2, . . . , n},
has an orthogonal mate, then there exist at least (n!)n squares which are orthogonal
to the square S.

Proof. The proof follows from Lemma 8. We can fill all entries of the element 1 by
all elements of the square Q in any order, we can fill all entries of the element 2 by
all elements of the square Q in any order and so on. �

1.10 Orthogonality in works of V.D. Belousov

In a series of articles, see, for example, [3,5,7,10,11], V.D. Belousov studied the
property of orthogonality of binary and n-ary operations and systems of operations
from algebraic and geometric point of view. Later his researches were continued by
his pupils and by many others mathematicians.

In this subsection we suppose that all binary operation are defined on the same
non-empty set Q = {1, 2, . . . ,m}.

V.D. Belousov by his study of the property of orthogonality used the idea, that
a pair of binary operations A(x, y) and B(x, y) defines a map θ of the set Q2 such
that θ(x, y) = (A(x, y), B(x, y)). It is easy to see that the operations A and B are
orthogonal if and only if θ is a permutation of the set Q×Q.

Following [3, 5], the binary operation F (x, y) = x for all x, y ∈ Q will be called
the left identity operation, the operation E(x, y) = y will be called the right identity
operation. It is easy to see that the squares F and E that correspond to the groupoids
(Q,F ) and (Q,E), respectively, have the forms

F =

1 1 . . . 1
2 2 . . . 2
. . . . . . . . . . . .
m m . . . m,

E =

1 2 . . . m
1 2 . . . m
. . . . . . . . . . . .
1 2 . . . m.

It is easy to see that to the square F corresponds to the m-tuple T rε = (ε, ε, . . . , ε)
of the kind r and the square E corresponds to the m-tuple T lε = (ε, ε, . . . , ε) of the
kind l.

We re-formulate the well known [34], [5], [17], [27] results on orthogonality of
left quasigroups, right quasigroups and quasigroups with the identity permutation
squares of the kind l and r in the following manner :
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Lemma 9. (i) A square S is a permutation square of the kind l or the kind Il if
and only if S ⊥ F ;

(ii) a square S is a permutation square of the kind r or the kind Ir if and only
if S ⊥ E;

(iii) a permutation square S of the kind l is a Latin square if and only if S ⊥ E;
(iv) a permutation square S of the kind r is a Latin square if and only if S ⊥ F ;
(v) a square S is a Latin square if and only if S ⊥ F and S ⊥ E.

We denote by F rp the square, which is determined by the following tuple of per-

mutations T r = (p, p, . . . , p), and we denote by Elg the square, which is determined

by the following tuple of permutations T l = (g, g, . . . , g), where p and g are permu-
tations of the set Q = {1, 2, . . . ,m}.

We can re-write Lemma 9 in the following form:

Lemma 10. (i) A square S is a permutation square of the kind l or the kind Il if
and only if S ⊥ F rp ;

(ii) a square S is a permutation square of the kind r or the kind Ir if and only
if S ⊥ Elg;

(iii) a permutation square S of the kind l is a Latin square if and only if S ⊥ Elg;
(iv) a permutation square S of the kind r is a Latin square if and only if S ⊥ F rp ;

(v) a square S is a Latin square if and only if S ⊥ F rp and S ⊥ Elg.

1.11 Mann’s product of permutation squares and product

of squares

In [30] H.B. Mann defined the product of two permutation squares in such a way:
“Denote now by an m sided square S any set of m permutations (s1, s2, . . . , sm) and
by the product SS ′ of two squares S and S ′ the square (s1s

′
1, s2s

′
2, . . . , sms

′
m)”.

Using Definition 17 we can give Mann’s definition of product of squares and
corresponding groupoids in the following form.

Definition 25. If (p1, p2, . . . , pm) and (q1, q2, . . . , qm) are m-tuples of the kind l
of the permutation squares L1 and L2 respectively, then the product L1L2 is the
permutation square (p1q1, p2q2, . . . , pmqm) of the same kind.

Using Definition 25 of the product of squares it is possible to define the concept
of the power of a square and, in particular, the concept of the power of a Latin
square.

We can give the following generalization of Definition 25.

Definition 26. If (p1, p2, . . . , pm) and (q1, q2, . . . , qm) are m-tuples of maps of some
fixed kinds of squares L1 and L2, respectively, then the product L1L2 is the square
(p1q1, p2q2, . . . , pmqm) of an admissible kind.

We notice, in general, Ll1L
l
2 6= Lr1L

r
2.

In conditions of Definition 26 the multiplication of a pair of Latin squares L1

and L2 defines at least 62 · 4 = 144 squares. Indeed, Lα1L
β
2 = Lγ , where α, β ∈
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{l, r, p, Il, Ir, Ip}, γ ∈ {l, r, Il, Ir}. The multiplication of a pair of Latin squares of
equal kinds defines at least 24 squares.

Example 5. If T1 and T2 are some m-tuples of maps, then m-tuple T = T1T2

defines a square of kind α, where α ∈ {l, r}.
If T1 and T2 are some m-tuples of permutations, then m-tuple T = T1T2 defines

a permutation square of kind α, where α ∈ {l, r, Il, Ir}.
If, in addition, the m-tuple T has the τ -property, then T defines six Latin squares

of any kind from the set of kinds {l, r, p, Il, Ir, Ip}.

Remark 10. Below in this article we shall suppose that we multiply squares only
of equal kinds α and that resulting square also has the kind α.

2 Orthogonality and parastroph orthogonality

We give necessary and sufficient conditions of orthogonality of permutation
squares, Latin squares, quasigroups and their parastrophes.

2.1 Orthogonality of quasigroups and left quasigroups

In this subsection we give necessary and sufficient conditions of orthogonality of
permutation squares, Latin squares, quasigroups and left (right) quasigroups.

Below in this article we shall suppose that we multiply squares only of equal
kinds α and that resulting square also has the kind α.

For Latin squares H.B. Mann proved the following basic theorem [30], which we
give in a bit more general form. See, also, [17,27,34].

Theorem 4. Permutation squares L1 and L2 of kind α, α ∈ {l, Il, r, Ir}, are or-
thogonal if and only if there exists a Latin square L3 such that L3L1 = L2.

Proof. Let L1⊥L2, α = l. We suppose that m-tuple T1 = (p1, p2, . . . , pm) corre-
sponds to the permutation square L1, m-tuple T2 = (q1, q2, . . . , qm) corresponds to
the permutation square L2.

If we superimpose the square L1 on the square L2, then in any cell (i, j) of the
square of pairs P we shall have the pair (pi(j), qi(j)). The fact that the squares L1

and L2 are orthogonal means that in the square P any pair of elements (x, y) ∈ Q×Q
appears exactly one time.

In other words for any pair of elements (a, b), where a, b are some fixed elements
of the set Q, there exists unique pair of elements i, j ∈ Q such that pi(j) = a and
qi(j) = b.

Since p−1
i (a) = j, further we have qip

−1
i (a) = b. The last equality means that the

tuple T2T
−1
1 = (q1p

−1
1 , q2p

−1
2 , . . . , qmp

−1
m ) is a strictly transitive set of permutations

that acts on the set Q.
From Theorem 3 it follows that the tuple T2T

−1
1 has the τ -property. Then the

tuple T2T
−1
1 defines a Latin square. It is easy to see that if the T2T

−1
1 defines the

Latin square L3 of the kind l, then L3 = L2L
−1
1 .
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Converse. Let τ -m-tuple T1 = (p1, p2, . . . , pm) (respectively, T2 = (q1, q2, . . . ,
qm), T3 = (s1, s2, . . . , sm)) of the kind l correspond to the permutation square L1

(L2, L3, respectively).
The equality L3L1 = L2 means that si(pi(j)) = qi(j) for any fixed element

pi(j) ∈ Q. Since the squares L1 and L2 are permutations squares, then in every row
of the square of pairs P the set of the first components of pairs is equal to the set
Q and the set of the second components of any row of the square P coincides with
the set Q, too.

Since the tuple T3 is a strictly transitive set of permutations that acts on the set
Q, we obtain that for any pair of elements (a, b) ∈ Q2 there exists a unique element
si ∈ T3 such that si(a) = b, i.e. si(pi(j)) = qi(j), for an element j of the set Q.

Therefore, in the square P any ordered pair (a, b) appears exactly one time, i.e.
L1⊥L2.

For permutation squares of the kind Il, r, Ir the proof is similar. �

Remark 11. Theorem 4 describes all orthogonal mates of a permutation square L1

which are permutation squares, but, in general, there exist orthogonal mates of the
square L1 which are not permutation squares. For example, L1 ⊥ L2, but L2 is not
a permutation square:

L1 =

1 2 3
3 2 1
2 1 3,

L2 =

1 1 1
3 3 2
2 3 2.

We denote the number of all Latin squares that are defined on a set Q of an
order m by L(m).

Corollary 9. The number of permutation squares of the kind l that are defined on
a set Q of order m and that are orthogonal to a fixed permutation square S(Q) of
the kind l is equal to the number L(m).

Proof. This is a direct consequence of Theorem 4. �

Corollary 10. Latin squares L1 and L2 of a kind α are orthogonal if and only if
the square L2L

−1
1 is a Latin square of the kind α, where α ∈ {l, r, Il, Ir}.

Proof. In is easy to see. �

The problem of construction of a Latin square Lj which is orthogonal to a fixed
Latin square L is reduced to the problem when Mann’s product of two Latin squares
(of a square Lj and the square L−1) is a Latin square. We think, it is possible to
use computer by the check if Mann’s product of Latin squares is a Latin square.

Corollary 11. Latin squares L1 and L2 are orthogonal if and only if L1L
−1
2 is a

Latin square.

Proof. The proof follows from Corollary 10 and the following notice: L1 ⊥ L2 if
and only if L2 ⊥ L1. Then L1 ⊥ L2 if and only if L1L

−1
2 is a Latin square. �

Theorem 4 allows us to give the following definition of orthogonality of m-tuples
of permutations.
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Definition 27. m-Tuples of permutations T1 and T2 are called orthogonal if T1T
−1
2

has the τ -property.

Since the product of squares ( Definition 25 ) is defined with the help of the
notion of the product of permutation tuples, we can re-formulate Theorem 4 in the
language of m-tuples of permutations.

Theorem 5. Permutation squares L1 and L2 of a kind α, α ∈ {l, Il, r, Ir}, are
orthogonal if and only if T1T

−1
2 is a τ -m-tuple, where T1, T2 are m-tuples of permu-

tations of the kind α that correspond to the squares L1 and L2, respectively.

Taking into consideration bijections which we formulated in Proposition 13 we
can formulate Theorem 4 for finite right quasigroups, left quasigroups and for quasi-
groups.

Theorem 6. Left (right) quasigroups (Q,A) and (Q,B) are orthogonal if and only
if there exists a τ -m-tuple T3 such that T3TA = TB, where TA is an m-tuple of the
kind α that corresponds to left (right) quasigroup (Q,A), TB is an m-tuple of the
kind α that corresponds to left (right) quasigroup (Q,B), α ∈ {l, Il} (α ∈ {r, Ir}).

Theorem 7. Quasigroups (Q,A) and (Q,B) are orthogonal if and only if T3 =
TαA(TαB)−1 is a τ -m-tuple, where TαA is a τ -m-tuple of the kind α that corresponds
to the quasigroup (Q,A), TαB is a τ -m-tuple of the kind α that corresponds to the
quasigroup (Q,B) and α ∈ {l, r, Il, Ir}.

We notice it is possible to formulate conditions of orthogonality of quasigroups on
the language of the τ -m-tuples of the kind p. But these conditions differ sufficiently
sharply from conditions of orthogonality of quasigroups given in language of the
τ -m-tuples of the kinds l and r.

2.2 Orthogonality of quasigroups and its parastrophes

In this subsection we give some conditions of orthogonality of a quasigroup and
its parastrophes.

We suppose that Q = {1, 2, . . . ,m}. For convenience we denote a finite quasi-
group (Q,A) by the letter A. We denote m-tuples of translations of the quasi-
group A in the following way L = (L1, L2, . . . , Lm), L−1 = (L−1

1 , L−1
2 , . . . , L−1

m ),

R = (R1, R2, . . . , Rm), R−1 = (R−1
1 , R−1

2 , . . . , R−1
m ).

Theorem 8. For a finite quasigroup A the following equivalences are fulfilled:

(i) A⊥A(12) ⇐⇒ R L−1 is a τ -m-tuple;

(ii) A⊥A(13) ⇐⇒ R R is a τ -m-tuple;

(iii) A⊥A(23) ⇐⇒ L L is a τ -m-tuple;

(iv) A⊥A(123) ⇐⇒ L R is a τ -m-tuple;

(v) A⊥A(132) ⇐⇒ R L is a τ -m-tuple.
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Proof. (i) We can identify Cayley table of a quasigroup A with a τ -m-tuple T1 of
the kind r, i.e. T1 is a vector whose components are all right translations Ra, a ∈ Q,
of the quasigroup A.

It is possible to identify Cayley table of the quasigroup A(12) with τ -m-tuple T2

of the kind r, too, where T2 is composed of the permutations R
(12)
a , a ∈ Q. From

Table 1 it follows, that R
(12)
a = La.

In order to obtain a criterion of orthogonality of the quasigroups A and A(12) we
can apply Theorem 7, since the τ -tuples T1 and T2 are of the same kind. Therefore
we have that A⊥A(12) if and only if T1T

−1
2 = (R1L

−1
1 , R2L

−1
2 , . . . , RmL

−1
m ) = R L−1

is a τ -tuple.

(ii) In this case we identify Cayley tables of quasigroups A and A(13) with the

τ -m-tuples T1 and T2 of the kind r, too. From Table 1 it follows that R
(13)
a = R−1

a ,
i. e. T2 = (R−1

1 , . . . , R−1
m ), where Ra is a right translation of the quasigroup A,

a ∈ Q. Application of Theorem 7 gives us that A⊥A(13) if and only if T1T
−1
2 =

(R1R1, R2R2, . . . , RmRm) = R R = R2 is a τ -tuple.

(iii) We identify Cayley tables of quasigroups A and A(23) with the τ -tuples

T1 and T2 of the kind l. From Table 1 it follows that L
(23)
a = L−1

a , i. e. T2 =
(L−1

1 , . . . , L−1
m ). Then T1(T2)

−1 = L L = L2. From Theorem 7 it follows that

A⊥A(23) if and only if the tuple L2 is a τ -m-tuple.

(iv) In this case we identify Cayley tables of quasigroups A and A(123) with

the τ -tuples T1 and T2 of the kind l. From Table 1 it follows that L
(123)
a = R−1

a , i.
e. T2 = (R−1

1 , . . . , R−1
m ). Then T1(T2)

−1 = L R. From Theorem 7 it follows that
A⊥A(123) if and only if the tuple L R is a τ -m-tuple.

(v) In this case we identify Cayley tables of quasigroups A and A(132) with the

τ -tuples T1 and T2 of the kind r. From Table 1 it follows that R
(132)
a = L−1

a , i. e.
T2 = (L−1

1 , . . . , L−1
m ) in this case. Then T1(T2)

−1 = RL. From Theorem 7 it follows
that A⊥A(132) if and only if the tuple R L is a τ -m-tuple. �

Since by proving Theorem 8 we do not use the property, that the sets of permu-
tations of a quasigroup (Q, ·) are well ordered sets, then it is possible to re-formulate
Theorem 8 in the following form.

Theorem 9. For a finite quasigroup A the following equivalences are fulfilled:

(i) A⊥A(12) ⇐⇒ RL−1 has the τ -property;

(ii) A⊥A(13) ⇐⇒ R2 has the τ -property;

(iii) A⊥A(23) ⇐⇒ L2 has a τ -property;

(iv) A⊥A(123) ⇐⇒ LR has the τ -property;

(v) A⊥A(132) ⇐⇒ RL has the τ -property.

We recall if the set of permutations RL−1 (R2, L2, LR, RL) has the τ -property,
then this set defines a Latin square of a kind α, where α ∈ {l, r, p, Il, Ir, Ip}.
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Corollary 12. If L is a Latin square that coincides with Cayley table of a quasigroup
(Q,A), then:

(i) the square LrLIl is a Latin square if and only if A⊥A(12);
(ii) the square LrLr is a Latin square if and only if A⊥A(13);
(iii) the square LlLl is a Latin square if and only if A⊥A(23);
(iv) the square LlLr is a Latin square if and only if A⊥A(123);
(v) the square LrLl is a Latin square if and only if A⊥A(132).

Proof. The proof follows from Theorem 8. �

2.3 Orthogonality of quasigroups with its parastrophes

in the language of identities and quasi-identities

Conditions of orthogonality of a quasigroup and its parastrophe in language of
identities have long and rich history [10, 17, 18, 42]. Very deep and, unfortunately,
not finished results in this direction belong to T. Evans ([18], Chapter 7; [14],
Chapter 3).

In this subsection we suppose that any quasigroup is defined as an algebra with
three binary operations, see Definition 9.

We re-formulate Theorem 8 in language of quasi-identities and prove that it
is possible to characterize orthogonality of quasigroups and its σ-conjugates quasi-
groups in language of identities.

Theorem 10. For a finite quasigroup (Q, ·) the following equivalences are fulfilled:

(i) (Q, ·)⊥(Q, ·)(12) ⇐⇒ ((x\yz)x = zy =⇒ x = y) ⇐⇒ (PzyPyzx =
x =⇒ x = y);

(ii) (Q, ·)⊥(Q, ·)(13) ⇐⇒ (zx·x = zy ·y =⇒ x = y) ⇐⇒ (R2
xz = R2

yz =⇒ x = y);

(iii) (Q, ·)⊥(Q, ·)(23) ⇐⇒ (x·xz = y·yz =⇒ x = y) ⇐⇒ (L2
xz = L2

yz =⇒ x = y);

(iv) (Q, ·)⊥(Q, ·)(123) ⇐⇒ (x · zx = y · zy =⇒ x = y) ⇐⇒ (LxRxz =
LyRyz =⇒ x = y);

(v) (Q, ·)⊥(Q, ·)(132) ⇐⇒ (xz · x = yz · y =⇒ x = y) ⇐⇒ (RxLxz =
RyLyz =⇒ x = y).

Proof. (i) From Theorem 8 it follows that the tuple R L−1 has τ -property. The
τ -property means: if x, y, z ∈ Q, x 6= y, then the following inequality is fulfilled
(RxL

−1
x )(RyL

−1
y )−1z 6= z for all x, y, z ∈ Q.

Further proof is only a simplification of the last inequality. We can write the
last implication in an equivalent form: if (RxL

−1
x )(RyL

−1
y )−1z = z, then x = y. We

simplify equality (RxL
−1
x )(RyL

−1
y )−1z = z in the following way: RxL

−1
x LyR

−1
y z = z,

(z → Ryz), RxL
−1
x Lyz = Ryz, RxL

−1
x (yz) = zy, (x\yz)x = zy, (x\yz)\zy = x,

R
\
zyR

\
yzx = x, ( Table 1), PzyPyzx = x.

(ii) From Theorem 8 it follows that the tuple R R has τ -property. Then we have:
if x, y, z ∈ Q, x 6= y, then the following inequality is fulfilled (RxRx)(RyRy)

−1z 6= z
for all x, y, z ∈ Q.
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We can write the last implication in an equivalent form: if (RxRx)(RyRy)
−1z =

z, then x = y. We simplify equality (RxRx)(RyRy)
−1z = z in the following way:

RxRxR
−1
y R−1

y z = z, (z → RyRyz), RxRxz = RyRyz, zx · x = zy · y.

Cases (iii), (iv) and (v) are proved similarly to Case (i) and we omit the proofs
of these cases. �

We notice it is possible to deduce Theorem 10 from the following Belousov criteria
([5], Lemma 2) of orthogonality of two binary quasigroups.

Theorem 11. ([5]). Quasigroups (Q,A) and (Q,B) are orthogonal if and only if
the following binary operation C(x, y) = A(x,B(23)(x, y)) is a quasigroup.

Proof. From Definition 24 it follows that A ⊥ B if and only if the system

{

A(x, y) = a
B(x, y) = b

has a unique solution (x, y) ∈ Q 2 for any fixed elements a, b ∈ Q. The last system
is equivalent to the following

{

A(x, y) = a

B(23)(x, b) = y
⇐⇒

{

A(x,B(23)(x, b)) = a

B(23)(x, b) = y.

We denote the binary operation A(x,B(23)(x, y)) by C(x, y). It is easy to see that
the operation C is a left quasigroup. Therefore, quasigroups (Q,A) and (Q,B) are
orthogonal if and only if the operation C is a right quasigroup. Thus A ⊥ B if and
only if the operation C is a quasigroup. �

We shall denote a quasigroup class: with the quasiidentity x\yz)x = zy =⇒
x = y by C (12); with the quasiidentity zx · x = zy · y =⇒ x = y by C (13); with the
quasiidentity x · xz = y · yz =⇒ x = y by C (23); with the quasiidentity x · zx =
y · zy =⇒ x = y by C (123); with the quasiidentity xz ·x = yz · y =⇒ x = y by C (132).

Proposition 15. Any of classes C σ, where σ ∈ S3\{ε}, forms a quasi-variety and
this class is closed under the formation of subalgebras, products, ultraproducts, iso-
morphic algebras and it contains a trivial algebra.

Proof. This follows from definition of the classes C σ and standard information on
quasivarieties [15,22]. �

A quasivariety Q is a variety if and only if it is closed under the formation of
homomorphic (more precisely, epimorphic) images [15,22].

Lemma 11. If a quasi-identity of the form f(x, y, . . . , z) = g(x, y, . . . , z) =⇒ x =
y is true in a quasigroup (Q, ·, \, /), where f(x, y, . . . , z), g(x, y, . . . , z) are some
(generally speaking non-reduced) quasigroup words which are constructed from free
variables x, y, . . . , z and the binary operations ·, \, /, then this quasi-identity is true
in any homomoorphic image of the quasigroup (Q, ·, \, /).
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Proof. Let h be a homomorphism of a quasigroup (Q, ·, \, /) onto a quasigroup
(hQ, ◦, \\, //), i.e. h(x · y) = hx ◦ hy, h(x\y) = hx\\hy, h(x/y) = hx//hy for all
x, y ∈ Q.

Let us suppose that in a quasigroup (Q, ·, \, /) a quasi-identity of the form
(f(x, y, . . . , z) = g(x, y, . . . , z) =⇒ x = y) is true and that in the quasigroup
(hQ, ◦, \\, //) this quasi-identity is not fulfilled. Thus there exist elements ā, b̄, c̄ ∈
hQ such that (f(ā, b̄, . . . , c̄) = g(ā, b̄, . . . , c̄) =⇒ ā 6= b̄). Then, turning back to the
quasigroup (Q, ·), we obtain that there exist elements a, b, c ∈ Q, a ∈ ā, b ∈ b̄, c ∈ c̄
such that (f(a, b, . . . , c) = g(a, b, . . . , c) =⇒ a 6= b). We received a contradiction
that demonstrates that our supposition is not true.

Thus, if in a quasigroup (Q, ·, \, /) a quasi-identity of the form f(x, y, . . . , z) =
g(x, y, . . . , z) =⇒ x = y is true, then this quasi-identity is true in any homomorphic
image of the quasigroup (Q, ·, \, /). �

Corollary 13. Any of classes C σ, where σ ∈ S3\{ε}, is closed under the formation
of epimorphic images.

Proof. Any of quasi-identities from Theorem 10 fulfils the conditions of
Lemma 11. �

Theorem 12. Any of classes C σ, where σ ∈ S3\{ε}, forms a variety and it can be
defined by a set of identities.

Proof. The fact, that any of classes C σ, σ ∈ S3\{ε}, forms a variety, follows from
definition of classes C σ, Proposition 15 and Corollary 13.

From Theorem of G. Birkhoff ([15,22]) it follows that there exists a set of iden-
tities which define any of the classes C σ. �

From Theorem12 it follows that there exists a set of identities such that ful-
fillment in a finite quasigroup (Q, ·) of these identities is a sufficient and necessary
condition of orthogonality of (Q, ·) and its conjugate quasigroup.

In [10] all identities of the form Aα(x,Aβ(x,Aγ(x, y))) = y, where Aα, Aβ , Aγ

are some parastrophes of a quasigroup operation A which provide orthogonality of
operation A and some its parastrophe are classified up to parastrophical equiva-
lence. V.D. Belousov proved that these identities are minimal, i.e. these identities
have minimal number of variables (2), and minimal number of occurrences of these
variables in both sides of an identity (5).

He also proved that there exist 7 types of such identities and found a model (a
quasigroup) for some representatives (for some identities) of any from these 7 types
of identities.

Theorem 8 allows us to give some sufficient conditions of orthogonality of a
quasigroup and its parastroph on language of identities. In the following theorem
we list some identities which provide orthogonality of a quasigroup (Q, ·) and its
concrete parastrophe.
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Theorem 13. 1. Fulfilment in a finite quasigroup (Q, ·) of any of the identities

x · xy = yx (I), xy · y = yx (II), xy · yx = x (III), yx · xy = x (IV)

is a sufficient condition for orthogonality of (Q, ·) and (Q, ·)(12);

2. Fulfilment in a quasigroup (Q, ·) of any of the identities

(yx · x)x = y (V), yx · x = xy (VI), (xy · x)x = y (VII), y(yx · x) = x (VIII),
(yx · x)y = x (IX)

is a sufficient condition for orthogonality of (Q, ·) and (Q, ·)(13);

3. Fulfilment in a quasigroup (Q, ·) of any of the identities

x(x · xy) = y (X), x · xy = yx (XI), x(x · yx) = y (XII), y(x · xy) = x (XIII),
(x · xy)y = x (XIV)

is a sufficient condition for orthogonality of (Q, ·) and (Q, ·)(23);

4. Fulfilment in a quasigroup (Q, ·) of any of the identities

x(x · yx) = y (XV), x(yx · x) = y (XVI), y(x · yx) = x (XVII), (x · yx)y = x
(XVIII)

is a sufficient condition for orthogonality of (Q, ·) and (Q, ·)(123);

5. Fulfilment in a quasigroup (Q, ·) of any of the identities

(xy · x)x = y (XIX), (x · xy)x = y (XX), y(xy · x) = x (XXI), (xy · x)y = x
(XXII)

is a sufficient condition for orthogonality of (Q, ·) and (Q, ·)(132).

Proof. The truth of case 1 follows easy from Belousov’s results [5]. Also we can
apply Theorem 8. From this theorem it follows that, if we will be able to find a
τ -tuple T of permutations such that R L−1 = T , then (Q, ·)⊥(Q, ·)(12) . The first
candidates on the role of tuple T can be tuples of the left, right, middle translations
of the quasigroup (Q, ·) or their inverse tuples.

It is easy to see that for our purpose equalities RxL
−1
x y = Rxy and RxL

−1
x y =

L−1
x y for all x, y ∈ Q do not suit, since in these cases we obtain L−1

x y = y and
Rxz = z for all x, y, z ∈ Q. The fulfillment of any from last two equalities in a
quasigroup (Q, ·) means that |Q| = 1.

Other 4 possibilities give us the first 4 identities. Namely,

RxL
−1
x y = Lxy, y → Lxy, Rxy = L2

xy, x · xy = yx (I);

RxL
−1
x y = R−1

x y, R2
xL

−1
x y = y, R2

xy = Lxy, yx · x = xy, x ↔ y,
xy · y = yx (II);

RxL
−1
x y = Pxy, Rxy = PxLxy, yx = Px(xy), xy · yx = x (III);

RxL
−1
x y = P−1

x y, Rxy = P−1
x Lxy, yx = P−1

x (xy), yx · xy = x (IV).

Identities (V)-(XXII) are obtained similarly. �
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Corollary 14. If in a finite quasigroup (Q, ·) the identity x ·xy = yx (I) holds, then
(Q, ·) ⊥ (Q, ·)(12), (Q, ·) ⊥ (Q, ·)(23);

if in a quasigroup (Q, ·) the identity xy ·y = yx (II) holds, then (Q, ·) ⊥ (Q, ·)(12),
(Q, ·) ⊥ (Q, ·)(13);

if in a quasigroup (Q, ·) the identity x(x · yx) = y (XII) holds, then (Q, ·) ⊥
(Q, ·)(23), (Q, ·) ⊥ (Q, ·)(123);

if in a quasigroup (Q, ·) the identity (xy · x)x = y (VII) holds, then (Q, ·) ⊥
(Q, ·)(13), (Q, ·) ⊥ (Q, ·)(132).

Proof. In Theorem 13 there are the following equalities or equivalences of identities:
(XI)=(I), (VI)↔ (II) (x↔ y), (XV)=(XII), (XIX) = (VII). �

Remark 12. It is easy to see that identities from Theorem 13 have two variables and
five occurrences of these variables in any identity. In fact all these identities or their
parastrophically equivalent forms can be found in the preprint of V.D. Belousov [10].
Identity (I) is called in [10] the first Stein identity, identity (IV) is called the third
Stein identity. (III) ↔ yx · xy = y (x ↔ y), the last identity is called the second
Schreder identity.

2.4 Some transformations of groupoids and quasigroups

which preserve the property of orthogonality

From definitions of orthogonality of squares, groupoids and m-tuples of permu-
tations and properties of these objects it follows that the property of orthogonality
is symmetric, i.e. A⊥B if and only if B⊥A, where A and B are squares, groupoids
or m-tuples of permutations.

Let (Q,A) be a groupoid and S1(Q) be a square that coincides with the body
of the Cayley table of this groupoid, let (Q,B) be a groupoid and S2(Q) be a
square that coincides with the body of the Cayley table of this groupoid. Then
(Q,A)⊥(Q,B) if and only if S1(Q)⊥S2(Q).

Proposition 16. Groupoids (Q,A) and (Q,B) are orthogonal if and only if
(Q,A)T⊥(Q,B)T , where T is an isotopy.

Proof. Let T = (α, β, γ). We can decompose this isotopy in the product of isotopies
T1T2T3, where T1 = (α, ε, ε), T2 = (ε, β, ε) and T3 = (ε, ε, γ) [4].

It is well known that the isotopy T1 changes the order of rows in Cayley tables
of the groupoids (Q,A) and (Q,B), the isotopy T2 changes the order of columns in
these Cayley tables, the isotopy T3 changes elements in these Cayley tables.

It is easy to see, if (Q,A) ⊥ (Q,B), then

(Q,A)T1 ⊥ (Q,B)T1,
(Q,A)T1T2 ⊥ (Q,B)T1T2,
(Q,A)T1T2T3 ⊥ (Q,B)T1T2T3.

Therefore, if (Q,A) ⊥ (Q,B), then (Q,A)T ⊥ (Q,B)T .



30 GARY L. MULLEN, VICTOR A. SHCHERBACOV

It is clear that the implication (Q,A)T ⊥ (Q,B)T ⇒ (Q,A) ⊥ (Q,B) is
fulfilled, too. �

We notice in [11] Proposition 16 is proved for quasigroups. See, also, Lemma 7.

Proposition 17. Groupoids (Q,A) and (Q,B) are orthogonal if and only if
(Q,A(12))⊥(Q,B(12)).

Proof. From the properties of (12)-parastrophy of groupoids it follows that the
i-th row of the body of Cayley table of groupoid (Q,A(12)) coincides with the i-th
column of the body of Cayley table of groupoid (Q,A). Similar situation is with
groupoids (Q,B) and (Q,B(12)).

We denote by S1 and S2 the bodies of Cayley tables of groupoids (Q,A) and
(Q,B) respectively. By Definition 22 if S1⊥S2, then D (S1 ⊕ S2) = Q × Q. Since

i-th rows in the square S
(12)
1 ⊕ S

(12)
2 coincide with the i-th columns of the square

S1 ⊕ S2, we conclude that D (S
(12)
1 ⊕ S

(12)
2 ) = Q×Q, i.e. S

(12)
1 ⊥ S

(12)
2 .

Therefore, if (Q,A)⊥(Q,B), then (Q,A(12))⊥(Q,B(12)). Using the same argu-
ments we can prove that, if (Q,A(12))⊥(Q,B(12)), then (Q,A)⊥(Q,B). �

In [10] Proposition 17 is proved for quasigroups.

Corollary 15. Groupoids (Q,A) and (Q,B) are orthogonal if and only if (Q,A)β ⊥
(Q,B)β, where β ∈ ISOS(12)(Q).

Proof. The proof follows from Propositions 16 and 17. �

Unfortunately, in general, it is impossible to extend result of Proposition 17 on
other types of parastrophy of quasigroups.

Example 6. There exists a pair of orthogonal quasigroups (Q,A) and (Q,B) such
that quasigroups (Q,A(23)) and (Q,B(23)) are not orthogonal.

A,B 0 1 2 3 4

0 00 23 41 14 32
1 11 34 02 20 43
2 22 40 13 31 04
3 33 01 24 42 10
4 44 12 30 03 21

A(23), B(23) 0 1 2 3 4

0 00 32 14 41 23
1 23 00 32 14 41
2 41 23 00 32 14
3 14 41 23 00 32
4 32 14 41 23 00

Corollary 16. Suppose that quasigroups (Q,A) and (Q,B) are orthogonal. Then
(Q,Aσ)⊥(Q,Bσ) for any σ ∈ S3 if and only if (Q,Aδ)⊥(Q,Bδ), where δ ∈
{(13), (23), (123), (132)}.

Proof. The elements (12) and δ generate the group S3. �

Proposition 18. ([34]). The permutation squares S1 and S2 of a kind α, α ∈
{l, Il, r, Ir} are orthogonal if and only if S1S3⊥S2S3, where S3 is a permutation
square of the kind α.
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Proof. From Theorem 4 it follows that the permutation squares S1 and S2 are
orthogonal if and only if the tuple T2T

−1
1 of a kind α, α ∈ {l, Il, r, Ir} is strictly

transitive, where T1 and T2 are m-tuples of a kind α of the squares S1 and S2

respectively.
The permutation squares S1S3 and S2S3 are orthogonal if and only if the tu-

ple T2T3T
−1
3 T−1

1 of the kind α is a strictly transitive set of permutations. But
T2T3T

−1
3 T−1

1 = T2T
−1
1 . �

Proposition 18 leads us to the following generalization of the concept of isotopy.

2.5 On generalized isotopy of squares and permutation squares

It is possible give a concept which is a generalization of the concept of isotopy
in many cases. As we saw, the concept of isotopy has sense for any square and any
groupoid. The concept of generalized isotopy (probably, gisotopy for convenience)
also has sense for squares and groupoids. As we shall see, for permutation squares
and left (right) quasigroups the concept of generalized isotopy is more general than
the concept of “usual” isotopy.

Definition 28. Any m-tuple of permutations P of a kind α, α ∈ {l, Il, r, Ir, p, Ip},
will be called a generalized isotopy of the kind α or gisotopy of the kind α.

Definition 29. A groupoid (Q,A) is a gisotope of a kind α of a groupoid (Q,B),
where α ∈ {l, r}, if there exists an m-tuple of permutations P of the set Q of the
kind α such that TαA = TαBP , i.e. (tαA)i = (tαB)i pi for all suitable values of the index
i, where TαA , T

α
B are m-tuples of maps of the kind α that correspond to the groupoids

(Q,A), (Q,B), respectively.

Remark 13. We follow the agreements of Remark 1 in the order of multiplication
of maps and we write a gisotopy P from the right from a groupoid (Q,A), as we
write an isotopy T from the right from a groupoid (Q,A).

It is easy to see that the concept of gisotopy has sense for m-tuples of maps and
for squares, since gisotopy is defined using concept of multiplication of m-tuples.

For left (right) quasigroups the kind α from Definition 29 can be any element of
the set {l, Il, r, Ir}. Using Mann’s product of permutation squares, we can give the
following

Definition 30. A permutation square S1 of a kind α, α ∈ {l, Il, r, Ir}, is a gisotopic

image of a permutation square S2 of the kind α if and only if S1 = S2P , where P is
a gisotopy of the kind α.

Example 7. As it follows from Albert theorem ([4]), the groups Z2 ⊕ Z2 and Z4

Z2 ⊕ Z2 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Z4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
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are non-isotopic, but these groups are gisotopic with the left gisotopy P = (ε, (02),
ε, (02)).

Example 8. Groupoids (Q,A) and (Q,B) are isotopic: B(x, y) = γ−1A(x, y), where
γ = (01), but these groupoids are not gisotopic.

A 0 1

0 0 0
1 0 0

B 0 1

0 1 1
1 1 1

Proposition 19. For the class of groupoids G the class of isotopies I(G) and the
class of gisotopies GI(G) are intersected, but I * GI and GI * I.

Proof. The proof follows from Examples 7 and 8. �

Theorem 14. If (Q,A) is a left quasigroup, T is an isotopy, then there exists a
gisotopy GT of the kind l such that (Q,A)T = (Q,A)GT , i.e. any isotopy of a left
quasigroup is a gisotopy.

Proof. If (Q,A) is a left quasigroup, T is an isotopy, then by Lemma 4 (Q,A)T is
a left quasigroup.

If S1 is a permutation square of the kind l which corresponds to the left quasi-
group (Q,A), S2 is a permutation square of the kind l which corresponds to the
left quasigroup (Q,A)T , then S2 = S1(S

−1
1 S2). Thus m-tuple of permutation

GT of the kind l that corresponds to the square S−1
1 S2 is a gisotopy such that

(Q,A)T = (Q,A)GT .

Therefore any isotopy of a left quasigroup is a gisotopy. �

Remark 14. It is easy to see that the similar theorem is true for right quasigroups.

Corollary 17. Any isotopy of a quasigroup is a generalized isotopy.

Proof. The proof is a direct consequence of Theorem 14 and Remark 14. �

It is easy to see that, generally speaking, gisotopic image of a square is a square,
gisotopic image of a permutation square is a permutation square, gisotopic image of
a Latin square is a permutation square.

Proposition 20. The action of gisotopy P = (p1, p2, . . . , pn, . . . ) of the kind l on
a groupoid (Q, ·) coincides with the action of the tuple T of isotopies of the form
T = ((ε, p1, ε), (ε, p2, ε), . . . , (ε, pi, ε), . . . ), where the isotopy (ε, pi, ε) acts only on
the i-th row of Cayley table of the groupoid (Q, ·).

Proof. If Lai
is the i-th left translation of the groupoid (Q, ·), then in groupoid

(Q, ·)P the i-th row has the form L·
ai
pi(x) = ai · (pi(x)).

If we apply the isotopy (ε, pi, ε) to the groupoid (Q, ·), then we have x ◦ y =
x · pi(y). The i-th left translation of the groupoid (Q, ◦) has the form L◦

ai
y =

L·
ai
pi(y). �
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Proposition 21. The action of gisotopy P = (p1, p2, . . . , pn, . . . ) of the kind r on
a groupoid (Q, ·) coincides with the action of the tuple T of isotopies of the form
T = ((p1, ε, ε), (p2, ε, ε), . . . , (pi, ε, ε), . . . ), where the isotopy (pi, ε, ε) acts only on
the i-th column of Cayley table of the groupoid (Q, ·).

Proof. If Rai
is the i-th right translation of the groupoid (Q, ·), then in groupoid

(Q, ·)P the i-th column has the form R·
ai
pi(x) = (pi(x)) · ai.

If we apply the isotopy (pi, ε, ε) to the groupoid (Q, ·), then we have x ◦ y =
pi(x) · y. The i-th right translation of the groupoid (Q, ◦) has the form R◦

ai
x =

R·
ai
pi(x). �

Corollary 18. If a gisotopy T has the form T = (p, . . . , p) and the kind l or r,
where p ∈ SQ, then a gisotopic image LT of a Latin square L, which is defined on
the set Q, is a Latin square.

Proof. This follows from Propositions 20 and 21 and from well known fact that
isotopic image of a Latin square is a Latin square. �

The class of all permutation squares defined on a set Q will be denoted by S(Q).

Proposition 22. S(Q)P ⊆ S(Q) for any P ∈ S(Q), i.e. in other words
S(Q)S(Q) ⊆ S(Q).

Proof. Product of two m-tuples of permutations is an m-tuple of permutations. �

Proposition 23. If S1, S2 are permutation squares of a kind α, α ∈ {l, Il, r, Ir},
then there exists a generalized isotopy P of the kind α such that S1P = S2.

Proof. Indeed, P = S−1
1 S2. �

Corollary 19. If S1, S2 are Latin squares of a kind α, α ∈ {l, Il, r, Ir, p, Ip}, then
there exists a generalized isotopy P of the kind α such that S1P = S2.

Proof. Indeed, P = S−1
1 S2. �

We notice that Proposition 23 and Corollary 19 are true for a pair of left (right)
quasigroups, for a pair of quasigroups, respectively.

Proposition 24. If L1 is a Latin square of a kind α, α ∈ {l, Il, r, Ir}, P is a
permutation square of the kind α and P = L−1

1 L2, where L2 is a Latin square, then
L1P is a Latin square.

Proof. It is easy to see that L1P = L1L
−1
1 L2 = L2. �

2.6 Gisotopy and orthogonality

Gisotopy is a transformation which preserves the property of orthogonality of
squares, groupoids and m-tuples of maps. We formulate the following proposition
for squares.



34 GARY L. MULLEN, VICTOR A. SHCHERBACOV

Proposition 25. Squares S1 and S2, both of a kind α, α ∈ {l, r}, are orthogonal
if and only if any its gisotopic images S1P and S2P are orthogonal, where P is a
gisotopy of the kind α.

Proof. We denote by T1 m-tuple of the kind l that corresponds to the square S1,
i.e. T1 = (L1, L2, . . . , Lm), and T2 = (L′

1, L
′
2, . . . , L

′
m) is m-tuple of the kind l which

corresponds to the square S2. Thus in the square of pairs E in the position (i, j)
the pair (Lij, L

′
ij) is situated.

If P = (p1, p2, . . . , pm) is a left gisotopy, then in the square of pairs EP , in cell
(i, j) the pair (Lipi(j), L

′
ipi(j)) will be situated, the pair (Lij, L

′
ij) will be situated

in the cell (i, p−1
i (j)).

Thus, any gisotopy P of kind l changes the order of pairs in any row of the square
of pairs E.

Similarly, any gisotopy P of kind r changes the order of pairs in any column of
the square E.

Therefore, if S1⊥S2, then S1P⊥S2P for any gisotopy P of kind l or kind r. �

In article [30] H.B. Mann, in fact, proved the following

Theorem 15. If Latin squares L1 and L2 are orthogonal, then the Latin squares
L1P1 and L2P2 are also orthogonal, where P1 and P2 are gisotopies of the form
P1 = (p1, p1, . . . , p1) and P2 = (p2, p2, . . . , p2), respectively.

Proof. We suppose that Latin squares L1 and L2 have the kind l. If L1 ⊥ L2, then
by Theorem 4 L3 = L2L

−1
1 is a Latin square.

This theorem will be proved if we prove that the permutation square L4 =
L2P2P

−1
1 L−1

1 is a Latin square.

From Corollary 3 it follows that (P2P
−1
1 )L−1

1 is a Latin square if and only if
L−1

1 (P2P
−1
1 ) is a Latin square.

Therefore L4 is a Latin square if and only if L2L
−1
1 (P2P

−1
1 ) is a Latin square.

It is easy to see that L2L
−1
1 (P2P

−1
1 ) is a Latin square. This follows from the

forms of gisotopies P1, P2 and Corollary 18. �

A theorem that is a generalization of Theorem 15 can be found in [17].

Corollary 20. If Latin squares L1 and L2 are orthogonal, then the Latin squares
L1 and L2P are also orthogonal, where P is a gisotopy of the form P = (p, p, . . . , p).

Proof. It is easy to see. �

3 On orthogonality of T -quasigroups

In this section we give the conditions of orthogonality of a pair of T -quasigroups
defined on the same abelian group (Q,+) (not necessary a finite), also we study
parastrophe orthogonality of T-quasigroups.



ON ORTHOGONALITY OF BINARY OPERATIONS AND SQUARES 35

3.1 On parastrophe orthogonality of a pair of T -quasigroups

Definition 31. ([33]). A quasigroup (Q, ·) of the form x · y = ϕx + ψy + a, where
(Q,+) is an abelian group, ϕ,ψ are automorphisms of the group (Q,+), and the
element a is some fixed element of the set Q, is called a T-quasigroup.

Definition 32. ([4]). A quasigroup (Q, ·) of the form x · y = ϕx + ψy + a, where
(Q,+) is an abelian group, ϕ,ψ are commuting automorphisms of the group (Q,+),
and the element a is some fixed element of the set Q, is called a medial quasigroup.

Theorem 16. T-quasigroup (Q, ·) of the form x ·y = αx+βy+ c and T -quasigroup
(Q, ◦) of the form x ◦ y = γx + δy + d, both over a commutative group (Q,+) are
orthogonal if and only if the map α−1β − γ−1δ is an automorphism of the group
(Q,+).

Proof. Quasigroups (Q, ·) and (Q, ◦) are orthogonal if and only if the system of
equations

{

αx+ βy + c = a
γx+ δy + d = b

has a unique solution for any fixed elements a, b ∈ Q.

We solve this system of equations in the usual way.

{

αx+ βy = a− c
γx+ δy = b− d

⇐⇒

{

x+ α−1βy = α−1(a− c)
−x− γ−1δy = −γ−1(b− d).

Therefore, y = (α−1β − γ−1δ)−1(α−1(a − c) − γ−1(b − d)). Similarly, x = (β−1α −
δ−1γ)−1(β−1(a− c) − δ−1(b− d)).

It is clear that quasigroups (Q, ·) and (Q, ◦) are orthogonal if and only if the
endomorphisms (α−1β − γ−1δ) and (β−1α− δ−1γ) are automorphisms of the group
(Q,+).

The map (α−1β− γ−1δ) is a permutation of the set Q if and only if the map ε−
αγ−1δβ−1 is a permutation of the set Q. Indeed, α(α−1β−γ−1δ)β = ε−αγ−1δβ−1.

Similarly, (β−1α − δ−1γ) is a permutation of set Q if and only if the map ε −
βδ−1γα−1 is a permutation of the set Q. If we denote the map αγ−1δβ−1 by ψ, then
βδ−1γα−1 = ψ−1.

Further we have the following equivalence: the map ε−ψ is a permutation if and
only if the map ε−ψ−1 is a permutation of the set Q. Indeed, ε−ψ is a permutation
if and only if the map ψ − ε is a permutation, ψ − ε is a permutation if and only if
ψ−1(ψ − ε) = ε− ψ−1 is a permutation. �

Corollary 21. ([32]). T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + c over a
commutative group (Q,+) and its (12)-parastroph (Q, ⋆) of the form x ⋆ y = ψx +
ϕy + c are orthogonal if and only if the map ϕ−1ψ − ψ−1ϕ is an automorphism of
the group (Q,+) .
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Corollary 22. T-quasigroup (Q, ·) of the form x · y = αx + βy + c and medial
quasigroup (Q, ◦) of the form x ◦ y = γx + δy + d, both over a commutative group
(Q,+), are orthogonal if and only if the map αδ − γβ is an automorphism of the
group (Q,+).

Proof. From the proof of Theorem 16 it follows, that the quasigroups (Q, ·) and
(Q, ◦) are orthogonal if and only if the map ε − βδ−1γα−1 is a permutation of
the set Q. Further, since δγ = γδ, we have βδ−1γα−1 = βγδ−1α−1 and the map
ε−βδ−1γα−1 is a permutation of the setQ if and only if the map (ε−βγδ−1α−1)αδ =
αδ − βγ is a permutation of the set Q. �

Theorem 17. For a T-quasigroup (Q,A) of the form x · y = ϕx+ ψy + a over an
abelian group (Q,+) the following equivalences are fulfilled:

(i) A⊥A12 ⇐⇒ (ϕ− ψ), (ϕ + ψ) are permutations of the set Q;
(ii) A⊥A13 ⇐⇒ (ε+ ϕ) is a permutation of the set Q;
(iii) A⊥A23 ⇐⇒ (ε+ ψ) is a permutation of the set Q;
(iv) A⊥A123 ⇐⇒ (ϕ+ ψ2) is a permutation of the set Q;
(v) A⊥A132 ⇐⇒ (ϕ2 + ψ) is a permutation of the set Q.

Proof. (i) From Theorem 16 it follows that the T-quasigroup (Q, ·) of the form
x · y = ϕx+ψy + c over a commutative group (Q,+) and its (12)-parastroph (Q, ⋆)
of the form x ·y = ψx+ϕy+ c are orthogonal if and only if the map ϕ−1ψ−ψ−1ϕ is
a permutation of the set Q (i.e. this map is an automorphism of the group (Q,+)).

Below we repeat a part of the proof of Theorem 15 from [32]. We demonstrate
an equivalence of the following conditions:

(the maps ϕ− ψ and ϕ+ ψ are permutations of the set Q) and
(the map ϕ−1ψ − ψ−1ϕ is a permutation of the set Q).

We notice that the map ϕ−ψ is a permutation if and only if the map ϕ−1 −ψ−1

is a permutation of the set Q. Indeed, we have ψ−1(ϕ − ψ)ϕ−1 = ψ−1 − ϕ−1. It is
clear that the map ψ−1 − ϕ−1 is a permutation if and only if the map ϕ−1 − ψ−1 is
a permutation.

Then we have the following equivalence

(the maps ϕ− ψ and ϕ+ ψ are permutations of the set Q) ⇐⇒
(the maps ϕ−1 − ψ−1 and ϕ+ ψ are permutations of the set Q).

Since (ϕ−1 − ψ−1)(ϕ + ψ) = ε+ ϕ−1ψ − ψ−1ϕ− ε = ϕ−1ψ − ψ−1ϕ, we can say
that the following conditions

(the maps ϕ− ψ and ϕ+ ψ are permutations of the set Q) and
(the map ϕ−1ψ − ψ−1ϕ is a permutation of the set Q)

are equivalent, too.

(ii) We recall, x · y = z if and only if z/y = x. Then we have ϕx = z − ψy − a,
x = ϕ−1z − ϕ−1ψy − ϕ−1a = z/y, i.e. x/y = ϕ−1x− ϕ−1ψy − ϕ−1a.

From Theorem 16 it follows that A⊥A(13) if and only if ϕ−1ψ − ϕ(−ϕ−1ψ) is a
permutation of the set Q. The last condition is equivalent to the following: A⊥A(13)

if and only if ε+ ϕ is a permutation of the set Q.
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(iii) It is easy to see that x\y = −ψ−1ϕx+ψ−1y−ψ−1a. Application of Theorem
16 gives us that A⊥A(23) if and only if ϕ−1(ψ + ε) is a permutation of the set Q.
The last condition is equivalent to the following: A⊥A(23) if and only if ε + ψ is a
permutation of the set Q.

(iv) We have A(123)(x, y) = −ϕ−1ψx+ϕ−1y−ϕ−1a. From Theorem 16 it follows
that A⊥A(123) if only if ϕ−1ψ+ψ−1 is a permutation of the set Q. The last condition
is equivalent to the condition: ϕ+ ψ2 is a permutation of the set Q.

(v) We have A(132)(x, y) = ψ−1x− ψ−1ϕy − ψ−1a. From Theorem 16 it follows
that A⊥A(132) if only if ϕ−1ψ − (ψ(−ψ−1ϕ)) = ϕ−1ψ + ϕ is a permutation of the
set Q. The last condition is equivalent to the condition: ψ +ϕ2 is a permutation of
the set Q. �

Remark 15. It is possible to use Theorem 8 by proving Theorem 17 at least for
finite quasigroups.

From the form of quasigroup (Q, ·) it follows that L·
xy = Lϕx+aψy,

R·
yx = Lψy+aϕy. For instance, using Theorem 8 we can prove Case (ii) in the

following way.

Any map R·
yR

·
yx has the following form :

R·
yR

·
yx = Lψy+aϕLψy+aϕx =

ψy + a+ ϕ(ψy + a+ ϕx) = ϕ2x+ (ϕ+ ε)ψy + ϕa+ a =
L(ϕ+ε)ψy+ϕa+aϕ

2x.

It is easy to see that the m-tuple (R·
yR

·
y), where variable y runs over all the set Q,

will have the τ -property if and only if the map ϕ+ ε is a permutation of the set Q.

Corollary 23. If L is a Latin square that is Cayley table of a finite T-quasigroup
(Q, ·) of the form x · y = ϕx+ ψy + a, then:

(i) the square LrLIl is a Latin square if and only if (ϕ− ψ), (ϕ + ψ);

(ii) the square LrLr is a Latin square if and only if (ε+ ϕ);

(iii) the square LlLl is a Latin square if and only if (ε+ ψ);

(iv) the square LlLr is a Latin square if and only if (ϕ + ψ2);

(v) the square LrLl is a Latin square if and only if (ϕ2 + ψ).

Proof. The proof follows from Corollary 12 and Theorem 17. �

Example 9. The quasigroup (Zp, ◦) of the form x◦y = 1 ·x+2 ·y, where (Zp,+) is
the additive group of residues modulo p, p is a prime number, p ≥ 7, is orthogonal
to any of its parastrophes.

Example 10. The quasigroup (Z11, ◦) of the form x◦y = 3 ·x+9 ·y, where (Z11,+)
is the additive group of residues modulo 11, is an idempotent quasigroup, which is
orthogonal to any of its parastrophes.
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3.2 Orthogonality of a quasigroup and its conjugate

Orthogonality of a quasigroup and its (12)-parastrophe is more clear from the
intuitive point of view and this orthogonality was studied in many articles ([5, 13,
17,38]), see, also, Theorem 10 and Lemma 11 of this article.

A. Sade ([17, 38]) has called a quasigroup (Q, ·) anti-abelian if it is orthogonal
to its (12)-parastrophe (Q, ⋆): that is, if x · y = z · t and y · x = t · z (x ⋆ y = z ⋆ t)
imply x = z and y = t.

We recall ([31]), a quasigroup (Q, ·) with the quasi-identities x · y = y · x ⇒
x = y and x · x = y · y ⇒ x = y is called a totally anti-commutative quasigroup.
M. Damm ([16]) proved that any anti-abelian quasigroup is a totally anti-commu-
tative quasigroup.

The following two theorems were proved in [32].

Theorem 18. A T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + c is a totally

anti-commutative quasigroup if and only if it is an anti-abelian quasigroup .

Theorem 19. For a T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + c over a
commutative group (Q,+) the following conditions are equivalent:

• (x · y = y · x) ⇒ (x = y), (x · x = y · y) ⇒ (x = y) for all x, y ∈ Q;

• (x · y = z · t and y · x = t · z) ⇒ (x = z and y = t) for all x, y, z, t ∈ Q;

• the maps ϕ− ψ and ϕ+ ψ are permutations of the set Q;

• the maps ϕ−1 − ψ−1 and ϕ+ ψ are permutations of the set Q;

• the map ϕ−1ψ − ψ−1ϕ is a permutation of the set Q;

• the T-quasigroup (Q, ·) and its (12)-parastroph (Q, ⋆) are orthogonal.

Corollary 24. ([32]). For a medial quasigroup (Q, ·) of the form x ·y = ϕx+ψy+c
over a commutative group (Q,+) the following conditions are equivalent:

(the maps ϕ− ψ and ϕ+ ψ are permutations of the set Q) and
(the map ϕ2 − ψ2 is a permutation of the set Q).

Proof. From the definition of a medial quasigroup we have that ϕψ = ψϕ. Then
(ϕ− ψ)(ϕ + ψ) = ϕ2 + ϕψ − ψϕ− ψ2 = ϕ2 − ψ2. �

In [13] Bennet and Zhang study Latin squares with self-orthogonal conjugates.
In language of this paper Latin squares with self-orthogonal conjugates correspond
to quasigroups with the property: (Q,Aσ) ⊥ (Q,Aσ)(12) for any σ ∈ S3. For short
we shall call quasigroups with such property SOC-quasigroups.

For SOC-T -quasigroups we can prove the following

Theorem 20. A T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + c over a group
(Q,+) is a SOC-quasigroup if and only if the maps ϕ−ψ, ϕ+ψ, ε−ψ, ε+ψ, ε−ϕ
and ε+ ϕ are permutations of the set Q.
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Proof. If (Q, ·) is a T -quasigroup of the form x·y = ϕx+ψy+c, then its parastrophes
have the following forms, respectively:

x
(12)
· y = ψx+ ϕy + c,

x
(13)
· y = ϕ−1x− ϕ−1ψy − ϕ−1c,

x
(23)
· y = −ψ−1ϕx+ ψ−1y − ψ−1c,

x
(123)
· y = −ϕ−1ψx+ ϕ−1y − ϕ−1c,

x
(132)
· y = ψ−1x− ψ−1ϕy − ψ−1c.

From Theorem 17 Case (i) (see, also, Theorem 19) it follows that (Q, ·) ⊥ (Q,
(12)
· )

if and only ϕ− ψ, ϕ+ ψ are permutations of the set Q.

By Theorem 17 quasigroup (Q,
(13)
· ) is orthogonal to its (12)-parastrophe if and

only if ϕ−1 −ϕ−1ψ = ϕ−1(ε−ψ) and ϕ−1 +ϕ−1ψ = ϕ−1(ε+ψ) are permutations of
the set Q. The last two statements are equivalent to the following: the maps (ε−ψ)
and (ε+ ψ) are permutations of the set Q.

Similarly, by Theorem 17, quasigroup (Q,
(23)
· ) is orthogonal to its (12)-

parastroph if and only if −ψ−1ϕ + ψ−1 = ψ−1(−ϕ + ε) and −ψ−1ϕ − ψ−1 =
ψ−1(−ϕ− ε) are permutations of the set Q. The last two equality are equivalent to
the following: (ε− ϕ) and (ε+ ϕ) are permutations of the set Q. �

Example 11. The quasigroup (Z7, ◦) of the form x ◦ y = 3 · x+ 5 · y, where (Z7,+)
is the additive group of residues modulo 7, is SOC-quasigroup of order 7.

Proof. The proof follows from Theorem 20, since 3 + 5 ≡ 1 (mod 7), 3 − 5 ≡ 5
(mod 7), 1 − 3 ≡ 5 (mod 7), 1 + 3 ≡ 4 (mod 7), 1 − 5 ≡ 3 (mod 7), 1 + 5 ≡ 6
(mod 7). �

Example 12. The quasigroup (Z11, ◦) of the form x◦y = 3 ·x+9 ·y, where (Z11,+)
is the additive group of residues modulo 11, is a SOC-quasigroup of order 11.

Proof. The proof follows from Theorem 20, since 3 + 9 ≡ 1 (mod 11), 3 − 9 ≡ 5
(mod 11), 1− 3 ≡ 9 (mod 11), 1 + 3 ≡ 4 (mod 11), 1− 9 ≡ 3 (mod 11), 1 + 9 ≡ 10
(mod 11). �

Therefore, from Examples 11 and 12 it follows that there exist Latin squares with
self-orthogonal conjugates of order 7 and 11. These examples supplement results of
Bennet and Zhang [13].

Proposition 26. A quasigroup (Q, ◦) of the form x ◦ y = a · x + b · y + c, where
(Q,+) is the additive group of rational numbers, a 6= b, a 6= 1, a 6= 0, b 6= 1,b 6= 0,
is an infinite SOC-quasigroup.

Proof. The proof follows from Theorem 20. �
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Remark 16. It is easy to see that classes of SOC-quasigroups and quasigroups
which are orthogonal to all its parastrophes, intersect (Example 12 = Example 10),
but any of these two classes is not included in the other.

Constructed in Example 9 quasigroups are orthogonal to all its parastrophes and
are not SOC-quasigroups (1 − 1 ≡ 0 (mod p)).

In Example 11 a SOC-quasigroup is constructed which is not orthogonal to all
its parastrophes (32 + 5 ≡ 0 (mod 7)).
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