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A nonlinear hydrodynamic stability criterion derived

by a generalized energy method

Cătălin Liviu Bichir, Adelina Georgescu, Lidia Palese

Abstract. By applying a new variant of the A. Georgescu – L. Palese – A. Redaelli
(G-P-R) method [8], based on the symmetrization of a linear operator, we deduce a
nonlinear stability criterion of a state of thermal conduction of a horizontal fluid layer
subject to a vertical upwards uniform magnetic field and a vertical upwards constant
temperature gradient. The Boussinesq approximation is used. The upper and lower
surfaces of the layer are two rigid walls. It is assumed that the magnetic Prandtl
number is strictly greater than unity.

Mathematics subject classification: 76-XX Fluid Dynamics.
Keywords and phrases: Nonlinear stability, Hydrodynamic, Magnetic Benard
problem.

1 The perturbation problem

Consider an infinite horizontal layer of a homogeneous viscous electrically con-
ducting fluid at rest (V = 0) subject to the influence of a uniform vertical upwards
magnetic field H and of an adverse constant vertical temperature gradient β > 0.
Let Oxyz be a Cartesian coordinate system, with i, j, k the unit vectors of the axes,
where the vertical axis Oz has the direction opposite to the gravity. Suppose that
the fluid is confined between the planes z = 0 and z = 1, on which the temperatures
T |z=0 = T0 and T |z=1 = −β + T0 respectively are kept constant.

In the Oberbeck-Boussinesq approximation, the stability of the basic state m0

(V = 0, H = Hk, T = −βz + T0, P ) is governed [1] by the following dimensionless
equations for the perturbation fields (u,h, θ, p1) of the state m0

∂u/∂t + (u · grad)u − Pm(h · grad)h =
= −grad p1 + Rθk + △u + Q∂h/∂z,

(1.1)

div u = 0, (1.2)

Pm(∂h/∂t + (u · grad)h − (h · grad)u) = △h + Q∂u/∂z, (1.3)

div h = 0, (1.4)

Pr(∂θ/∂t + (u · grad)θ) = Rw + △θ, (1.5)

where (t,x) ∈ (0,∞) × R
2 × (0, 1), x = (x, y, z), and by the conditions

u(0,x) = u0(x), h(0,x) = h0(x), θ(0,x) = θ0(x), x ∈ R
2 × (0, 1), (1.6)
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div u0 = div h0 = 0, (1.7)

u(t,x) = h(t,x) = 0, θ(t,x) = 0 at z = 0, z = 1, t ≥ 0. (1.8)

Here u = (u, v,w) = (u1, u2, u3), w = u · k, h = (h1, h2, h3), θ, p1 are the pertur-
bations of the velocity, magnetic, temperature and pressure (including the magnetic
pressure) fields respectively. The dimensionless numbers are the Prandtl number
Pr = ν/κ, the Rayleigh number R2 = gαβd4/(κν), the magnetic Prandtl number
Pm = ν/η, and the Chandrasekhar number Q2 = µH2d2/(4πρνη), where ν is the
coefficient of kinematic viscosity, κ is the coefficient of thermometric conductivity,
−gk is the gravitational acceleration, α is the coefficient of volume expansion, ρ
is the density, η = 1/(4πµσ) is the resistivity, µ is the magnetic permeability, and
σ is the coefficient of electrical conductivity. Assume that the perturbation fields
are periodic functions of x and y, of periods 2π/ax and 2π/ay respectively, where
ax, ay > 0. Denote by V the periodicity cell, V = [0, 2π/ax]× [0, 2π/ay ]× [0, 1] and
let ∂Vh be the horizontal boundary. We have ∂Vh = ∂V1 ∪ ∂V0, where ∂V1 and
∂V0 are the upper and lower boundary respectively. In the sequel, the brackets 〈 · 〉
stand for the integration over V , i.e. 〈 · 〉 =

∫
V

· dV . We impose the extra conditions

〈u〉 = 〈v〉 = 0. (1.9)

2 Energy relation

In order to obtain nonlinear stability criteria, let us apply the G-P-R method [8]
to the perturbation problem (1.1) – (1.8). To this aim, first we write the system
(1.1) – (1.5) as the equivalent system consisting of the equations (1.1), (1.3) and
(1.5), in the space

N1 = {(θ,u,h) ∈ H2(V )7 | div u = div h = 0;

u = h = 0, θ = 0 on ∂Vh}.

In turn, this system is equivalent to the modified system in N1

∂θ/∂t + (u · grad)θ = P−1
r △θ + P−1

r Ru · k, (2.1)

a(∂u/∂t + (u · grad)u) + ag3Pm(∂h/∂t + (u · grad)h) =
= −a grad p1 + aRθk + a△u + aQ∂h/∂z + aPm(h · grad)h+
+ag3Q∂u/∂z + ag3△h + ag3Pm(h · grad)u,

(2.2)

bPm(∂h/∂t + (u · grad)h) + bg2(∂u/∂t + (u · grad)u) =
= bQ∂u/∂z + b△h + bPm(h · grad)u− bg2grad p1+
+bg2Rθk + bg2△u + bg2Q∂h/∂z + bg2Pm(h · grad)h,

(2.3)

obtained by the following algebraic operations: (2.1) = (1.5)P−1
r , (2.2) = a(1.1) +

ag3 (1.3), (2.3) = b(1.3) + bg2(1.1), where a, b, g2 and g3 are, so far, undetermined
nonnull constants.

Consider on N1 the scalar product (·, ·) of L2(V ) (≡ L2(V )7). Introduce two
linear operators L1 ∈ L(N1,L

2(V )), L2 ∈ L(N1,N1) and use the notation U =
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(θ,u,h)T ∈ N1, U1 = L2U = (θ, au + ag3Pmh, bg2u + bPmh)T , where L1 and L2

are defined by

L1 =




P−1
r △ P−1

r Rk 0
aRk a△ + ag3Q∂/∂z ag3△ + aQ∂/∂z

bg2Rk bg2△ + bQ∂/∂z b△ + bg2Q∂/∂z


 ,

L2 =




1 0 0
0 a ag3Pm

0 bg2 bPm


 .

In addition, we define the nonlinear mapping

T =




0 0 0
0 ag3Pm(h · grad) aPm(h · grad)
0 bPm(h · grad) bg2Pm(h · grad)


 .

It follows that the system (2.1) - (2.3) in U ∈ N1 reads

(∂/∂t + u · grad)U1 = L1U + (0,−a grad p1,−bg2 grad p1)
T + T (U)

or, equivalently,
∂U1/∂t = L1U + N(U) + T (U), (2.4)

where the mapping N(U) corresponds to the advective and pressure terms, i.e.

N(U) = −(u · grad)U1 + (0,−a grad p1,−bg2 grad p1)
T .

According to the Weyl decomposition lemma, a vector from L2(V ) is uniquely
written as a sum of a solenoidal vector and a gradient of a scalar function. Then a
projection of L2(V ) to N1 can be defined. If (·, ·) stands for the inner product in
L2(V ), this projection of the system (2.1)-(2.3) to N1 is defined by the inner product
of (2.4) by U. As a result, from (2.4), we obtain the energy relation

(∂U1/∂t,U) = (L1U,U) + (N(U),U) + (T (U),U). (2.5)

If a = b, then (T (U),U) = 0 because
∫
V

(h ·grad)u ·u dV =
∫
V

(h ·grad)h ·h dV
= 0 and

∫
V

(h · grad)h · u dV = −
∫
V

(h · grad)u · h dV . Moreover, in order for the
coefficients of (∂u/∂t) · h and (∂h/∂t) · u in the left - hand side of (2.5) be equal,
we must have g3Pm = g2. Then (2.5) becomes

1

2
d(U1,U)/dt = (L1U,U) + (N(U),U). (2.6)

Using Green identities, the relation g3Pm = g2 and the fact that grad p1 is
orthogonal to the solenoidal vectors u and h, it follows that (N(U),U) = 0. Con-
sequently, the energy relation (2.6) becomes

1

2
d(U1,U)/dt = (L1U,U). (2.7)
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The symmetric part of L1 reads

L1s =




P−1
r △ δ1k δ2k

δ1k a△ δ3△
δ2k δ3△ b△


 ,

where δ1 = 0.5(a + P−1
r )R, δ2 = 0.5ag2R, δ3 = 0.5a(g3 + g2). Since (L1U,U) =

(L1sU,U), (2.7) becomes

1

2
· d(U1,U)/dt = P−1

r [−〈|grad θ|2〉 − Pra〈|grad u|2〉−

− Pra〈|grad h|2〉 − Pra(g3 + g2)〈grad u · grad h〉+

+ PrR(a + P−1
r )〈θw〉 + PrRag2〈θh3〉].

(2.8)

3 The algebraic associated system

Introduce the functions

φ1 = a1u + a2h, φ2 = b1u + b2h,

where the constants a1, a2, b1, b2 ∈ R are to be determined and φ1 = φ1(t,x), φ2 =
φ2(t,x). Remark that this choice represents an extension of the G-P-R method,
because here φ1 and φ2 are vector functions. Thus, the expression

(U1,U) = 〈 |θ|2〉 + a〈|u|2 + (g3Pm + g2) u · h + Pm|h|2〉

must read, equivalently,

(U1,U) = 〈 |θ|2〉 + d1〈 |φ1|
2〉 + d2〈 |φ2|

2〉,

where d1, d2 ∈ R
+, implying

d1a
2
1 + d2b

2
1 = a, d1a1a2 + d2b1b2 = ag2, d1a

2
2 + d2b

2
2 = aPm, (3.1)

where d1, d2, b1, b2 are determined up to some factor. Eliminating d1 and d2 between
these equalities, we obtain the relationship between b1 and b2

a2b2 + Pma1b1 − g2(a2b1 + a1b2) = 0, a2
2b

2
1 − a2

1b
2
2 6= 0, (3.2)

defining φ2 up to a factor.
Let us find a1 and a2 such that (2.8) has the simple form

1

2
· d(U1,U)/dt = P−1

r [−〈|grad θ|2 + |grad φ1|
2〉 + PrRk′〈θφ1 · k〉], (3.3)

where k′ is an undetermined factor. By identifying (2.8) and (3.3), it follows

−Pra〈| grad u|2〉 − Pra〈| grad h|2〉−
−Pra(g3 + g2)〈grad u · grad h〉 = −〈|grad φ1|

2〉,
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PrR(a + P−1
r )〈θw〉 + PrRag2〈θh3〉 = PrRk′〈θφ1 · k〉.

If Pm > 1, we obtain

a = (Pm + 1)[Pr(Pm − 1)]−1, a1 = ±a2,

g2 = ±2Pm(Pm + 1)−1, g3 = P−1
m g2,

where the signs + and − correspond, and

a1 = ±
√

(Pm + 1)(Pm − 1)−1, k′ = ±2Pm(Pr

√
P 2

m − 1)−1,

where the signs + and − correspond.
From (3.11,3) it follows that

d1 = (b2
2 − Pmb2

1)/[Pr(b
2
2 − b2

1)], d2 = a(Pm − 1)/(b2
2 − b2

1).

Then, for a1 = a2, (3.2) implies b2/b1 = Pm, while, for a1 = −a2, (3.2) implies
b2/b1 = −Pm. In both these cases, we have

d1 = Pm/[Pr(Pm + 1)], d2 = aP 2
m/[b2

2(Pm + 1)].

Therefore all these four solutions a, b, g2, g3, a1, a2, b2/b1, k′ are convenient. In the
next Section, we show that they lead to the same stability criterion.

4 The stability criterion

Introduce the functions

E(t) = 〈 |θ|2 + d1 |φ1|
2〉/2, Ψ(t) = d2〈 |φ2|

2〉/2

and the notation

ξ2 = min
θ,φ1

2〈 |grad θ|2 + |grad φ1|
2〉

〈 |θ|2 + |φ1|2〉
,

1√
R∗

a

= max
θ,φ1

2〈θφ1 · k〉

〈 |grad θ|2 + |grad φ1|2〉
. (4.1)

Then, due to the fact that φ1 = 0 on ∂Vh, for k′ > 0, the energy relation (2.7)
becomes successively

dE

dt
+

dΨ

dt
= P−1

r [−〈|grad θ|2 + |grad φ1|
2〉 + PrRk′〈θφ1 · k〉] =

= −P−1
r 〈|grad θ|2 + |grad φ1|

2〉 · [1 −
PrRk′〈θφ1 · k〉

〈|grad θ|2 + |grad φ1|2〉
],

(4.2)

implying
dE

dt
+

dΨ

dt
≤ −P−1

r ξ2 1

max{1, d1}
· [1 − PrRk′

1

2
√

R∗

a

]E, (4.3)

whence the stability criterion
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Theorem 1. Suppose that Pm > 1. If R <
√

P 2
m − 1

√
R∗

a/Pm, then the basic state

m0 is nonlinearly stable.

Let k′ < 0 and remark that, from the definition of N1, it follows that if (θ,u,h)
∈ N1 than (θ, φ1, φ2) ∈ N1, (−θ, φ1, φ2) ∈ N1.

Introduce the space

Ñ1 = {(θ, φ1) ∈ H2(V )4 | div φ1 = 0; φ1 = 0, θ = 0 on ∂Vh}.

Obviously, Ñ1 is imbedded in N1, i.e. Ñ1 ⊂ N1. In addition, if (θ, φ1) runs over Ñ1,
than (−θ, φ1) runs over Ñ1 too.

We have k′〈θφ1 · k〉 = |k′|〈−θφ1 · k〉 and |grad θ|2 = |grad (−θ)|2. Therefore
(4.1) holds also for θ replaced by −θ. Consequently, (4.3) hold for k′ replaced by
|k′|. In this way, for the case k′ < 0, Theorem 1 holds too.
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Ann. Mat. Pura Appl., 1968, 78, p. 339–364.
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