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Abstract. The article is devoted to the study of absolute asymptotic stability
of discrete linear inclusions in Banach (both finite and infinite dimensional) space.
We establish the relation between absolute asymptotic stability, asymptotic stability,
uniform asymptotic stability and uniform exponential stability. It is proved that for
asymptotical compact (a sum of compact operator and contraction) discrete linear
inclusions the notions of asymptotic stability and uniform exponential stability are
equivalent. It is proved that finite-dimensional discrete linear inclusion, defined by
matrices {A1, A2, ..., Am}, is absolutely asymptotically stable if it does not admit
nontrivial bounded full trajectories and at least one of the matrices {A1, A2, ..., Am}
is asymptotically stable. We study this problem in the framework of non-autonomous
dynamical systems (cocyles).
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1 Introduction

The aim of this paper is studying of the problem of the absolute asymptotic
stability of discrete linear inclusion (see Gurvits [22] and the references therein)

xt+1 ∈ F (xt), (1)

where F (x) = {A1x,A2x, ..., Amx} for all x ∈ Ed (Ed is a d-dimensional euclidian
space) and Ai (1 ≤ i ≤ m) is a d × d-matrix.

The article is devoted to the study of absolute asymptotic stability of discrete
linear inclusions in Banach space (both finite and infinite-dimensional case). The
problem of asymptotic stability for the discrete linear inclusion arise in a number
of different areas of mathematics: control theory – Molchanov [29]; linear algebra
– Artzrouni [2], Beyn and Elsner [3], Bru, Elsner and Neumann [7], Daubechies
and Lagarias [16], Elsner and Friedland [17], Elsner, Koltracht and Neumann [18],
Gurvits [22], Vladimirov, Elsner and Beyn [40]; Markov Chains – Gurvits [19],
Gurvits and Zaharin [20, 21]; iteration process – Bru, Elsner and Neumann [7],
Opoitsev [30] and see also the bibliography therein.
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We establish the relation between absolute asymptotic stability (AAS), asymp-
totic stability (AS), uniform asymptotic stability (UAS) and uniform exponential
stability (UES). It is proved that for asymptotically compact (a sum of compact
operator and contraction) discrete linear inclusions these notions of stability are
equivalent. We study this problem in the framework of non-autonomous dynamical
systems (cocyles). We show that the problem of absolute asymptotic stability for
the discrete linear inclusions is related with the compact global attractors of non-
autonomous dynamical systems (both ordinary dynamical systems (with uniqueness)
and set-valued dynamical systems). We plan to continue the studying of discrete in-
clusions (both linear and nonlinear) in the framework of non-autonomous dynamical
systems. In our future publications we will give the proofs of the followings results:

(i) infinite-dimensional discrete linear inclusion, defined by compact operators
{A1, A2, ..., Am}, is absolutely asymptotically stable if it does not admit non-
trivial bounded full trajectories and at least one of the operators {A1, A2, ...,
Am} is asymptotically stable;

(ii) discrete inclusion, defined by nonlinear (in particularly, affine) contractive
mappings {A1, A2, ..., Am} admits a compact global chaotic attractor,

amongst others. We consider that this method of studying of discrete inclusions
(both linear and nonlinear) is fruitful and it permits to obtain the new and nontrivial
results.

This paper is organized as follows.

In Section 2 we give a new approach to the study of discrete linear inclusions
(DLI) which is based on non-autonomus dynamical systems (cocycles).

Section 3 is devoted to the study of DLIs in arbitrary Banach spaces. We show
that for an infinite-dimensional DLI the notions of asymptotic stability and uniform
asymptotic stability are not equivalent (Example 3.1). We prove the equivalence
of the uniform asymptotic stability and generalized contraction for DLIs (Theorem
3.5). If a discrete linear inclusion (DLI) is completely continuous (compact), then
we prove that absolute asymptotic stability and uniform exponential stability are
equivalent. We also give the description of absolute asymptotic stability in term of
joint spectral radius.

Section 4 is dedicated to the study of asymptotically compact discrete linear
inclusions. We establish the relation between different types of stability for this
class of DLIs. The main results of this sections are Theorems 4.16, 4.17 and 4.18.

In Section 5 we study the problem of absolute asymptotic stability for finite-
dimensional discrete linear inclusions. We establish some general properties of
semi-group non-autonomous linear dynamical systems and we prove that finite-
dimensional discrete linear inclusion, defined by matrices {A1, A2, ..., Am}, is ab-
solute asymptotic stable if it doesn’t admit non-trivial bounded full trajectories
and at least one of the matrices {A1, A2, ..., Am} is asymptotically stable (Theorem
5.24 - the main result of paper).
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2 Discrete Linear Inclusions and Cocycles

Let E be a real or complex Banach space with norm | · |, S be a group of real
(R) or integer (Z) numbers, T (S+ := {s ∈ S : s ≥ 0} ⊆ T) be a semi-group of
the additive group S. Denote by [E] the space of all bounded operators A : E → E.
Consider a set of operators M ⊆ [E].

Definition 2.1. A discrete linear (autonomous) inclusion DLI(M) is called (see,
for example,[22]) a set of all sequences {x(t)}t∈Z+ of vectors in E such that

x(t + 1) = A(t)x(t) (2)

for some A(t) ∈ M, i.e.

x(t) = A(t)A(t − 1)...A(1)A(0)x(0) all A(t) ∈ M,

where A(0) := IdE .

Definition 2.2. The bilateral sequence {x(t)}t∈Z of vectors in E is called a full
trajectory of DLI(M) (entire trajectory or trajectory on Z) if x(t+s+1) = A(t)x(t+
s) for all s ∈ Z and t ∈ Z+.

We may consider this a discrete control problem, where at each moment of time t
we may apply a control from the set M, and DLI(M) is the set of possible trajecto-
ries of the system. The basic issue for any control system concerns its stability. One
of the most important types of stability is so-called absolute asymptotic stability
(AAS).

Definition 2.3. DLI(M) is called absolutely asymptotically stable (AAS) (or con-
vergent) if for any its trajectory {x(t)} we have

lim
t→∞

x(t) = 0.

Equivalently, all operator products

lim
t→∞

A(t)A(t − 1)...A(1)A(0)x = 0 (all A(t) ∈ M) (3)

for very x ∈ E.

Definition 2.4. The set M ⊆ [E] of operators is called product bounded (or uni-
formly stable) if there exists a M > 0 such that ‖A(t)A(t − 1)...A(1)A(0)‖ ≤ M for
all finite sequence {A(t)}t∈Z+ (A(t) ∈ M).

Definition 2.5. DLI(M) is said to be asymptotically stable (AS) if it is product
bounded (or uniformly stable) and convergent.
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Let (X, ρ) be a complete metric space with the metric ρ. Denote by C(X) the
family of all compact subsets of X. Consider the set-valued function F : E → C(E)
defined by the equality F (x) := {Ax |A ∈ M}. Then the discrete linear inclusion
DLI(M) is equivalent to the difference inclusion

x(t + 1) ∈ F (x(t)). (4)

Denote by Fx0 the set of all trajectories of discrete inclusion (4) (or DLI(M))
issuing from the point x0 ∈ E and F :=

⋃
{Fx0 | x0 ∈ E}.

Below we will give a new approach concerning the study of discrete linear inclu-
sions DLI(M) (or difference inclusion (4)). Denote by C(Z+,X) the space of all
continuous mappings f : Z+ → X equipped with the compact-open topology. This
topology can be metrized, for example, by the equality

d(f1, f2) :=

∞∑

n=1

1

2n

dn(f1, f2)

1 + dn(f1, f2)

(dn(f1, f2) := max{|f1(k) − f2(k)| | 0 ≤ k ≤ n})

is defined a complete metric on C(Z+,X) which generates compact-open topology.
Denote by (C(Z+,X), Z+, σ) a dynamical system of translations (shifts dynamical
system or dynamical system of Bebutov [5,12,13,36–38]) on C(Z+,X), i.e. σ(k, f) :=
fk and fk is a k ∈ Z+ shift of f (i.e. fk(n) := f(n + k) for all n ∈ Z+).

Let now Q ⊆ X be a compact. Denote by C(Z+, Q) := {f ∈ C(Z+,X) | f(Z+) ⊆
Q}. It is easy to see that C(Z+, Q) is invariant (with respect to shifts) and closed
subset of (C(Z+,X), Z+, σ) and, consequently, on the space C(Z+, Q) is defined a
dynamical system of shifts (C(Z+, Q), Z+, σ) (induced by the dynamical system of
Bebutov (C(Z+,X), Z+, σ)). Note that by the theorem of Tikhonoff [26] the space
C(Z+, Q) is compact.

Let M be a compact subset of [E] (for example, M may be a finite set, i.e. M =
{A1, A2, ..., Am : Ai ∈ [E] (1 ≤ i ≤ m)}). Denote by Ω := {f ∈ C(Z+, [E]) | f(Z+) ⊆
M}. It is clear that Ω is an invariant (with respect to shifts) and closed subset
of C(Z+, [E]) and, hence, on the space Ω is defined a dynamical system of shifts
(Ω, Z+, σ) (induced by the dynamical system of Bebutov (C(Z+, [E]), Z+, σ)). Notice
that by the Tikhonoff’s theorem the space Ω is compact in C(Z+, [E]).

We may now rewrite equation (2) in the following way:

x(t + 1) = ω(t)x(t), (ω ∈ Ω) (5)

where ω ∈ Ω is the operator-function defined by the equality ω(t) := A(t) for all
t ∈ Z+. Denote by ϕ(t, x0, ω) a solution of equation (5) issuing from the point
x0 ∈ E at the initial moment t = 0. Note that Fx0 = {ϕ(·, x0, ω) | ω ∈ Ω} and
F = {ϕ(·, x0, ω) | x0 ∈ Ed, ω ∈ Ω}, i.e. DLI(M) (or inclusion (4)) is equivalent to
the family of linear non-autonomous equations (5) (ω ∈ Ω).

From the general properties of linear difference equations it follows that the
mapping ϕ : Z+ × Ed × Ω → E satisfies the following conditions:
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(i) ϕ(0, x0, ω) = x0 for all (x0, ω) ∈ E × Ω;

(ii) ϕ(t+τ, x0, ω) = ϕ(t, ϕ(τ, x0, ω), σ(τ, ω)) for all t, τ ∈ Z+ and (x0, ω) ∈ E×Ω;

(iii) the mapping ϕ is continuous;

(iv) ϕ(t, λx1 + µx2, ω) = λϕ(t, x1, ω) + µϕ(t, x2, ω) for all λ, µ ∈ R (or C),

x1, x2 ∈ E and ω ∈ Ω.

Let W,Ω be two complete metric spaces and (Ω, Z+, σ) be a discrete semi-group
dynamical system on Ω.

Definition 2.6. Recall [36] that a triplet 〈W,ϕ, (Ω, Z+, σ)〉 (or shortly ϕ) is called
a cocycle over (Ω, Z+, σ) with the fiber W if ϕ is a mapping from Z+ ×W ×Ω to W
satisfying the following conditions:

1. ϕ(0, x, ω) = x for all (x, ω) ∈ W × Ω;

2. ϕ(t+τ, x, ω) = ϕ(t, ϕ(τ, x, ω), σ(τ, ω)) for all t, τ ∈ Z+ and (x, ω) ∈ W ×Ω;

3. the mapping ϕ is continuous.

If W is a real or complex Banach space and

4. ϕ(t, λx1 + µx2, ω) = λϕ(t, x1, ω) + µϕ(t, x2, ω) for all λ, µ ∈ R (or C),

x1, x2 ∈ W and ω ∈ Ω,

then the cocycle ϕ is called linear.

Let X := W × Ω, and define the mapping π : X × T1 → X by the equality:
π((u, ω), t) := (ϕ(t, u, ω), σ(t, ω)) (i.e. π = (ϕ, σ)). Then it is easy to check that
(X, T1, π) is a dynamical system on X, which is called a skew-product dynamical
system [1,36]; but h = pr2 : X → Ω is a homomorphism of (X, T1, π) onto (Ω, T2, σ).

Definition 2.7. Let (X, T, π) and (Y, T, σ) be two dynamical systems and h : X → Y
be a homomorphism from (X, T, π) onto (Y, T, σ). A triplet 〈(X, T, π), (Y, T, σ), h〉
is called a non-autonomous dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Ω, T2, σ)〉 over the dynamical system (Ω, T2, σ)
with the fiber W , then there can be constructed a non-autonomous dynamical sys-
tem 〈(X, T1, π), (Ω, T2, σ), h〉 (X := W × Ω), which we will call a non-autonomous
dynamical system generated (associated) by the cocycle 〈W,ϕ, (Ω, T2, σ)〉 over
(Ω, T2, σ).

From the presented above it follows that every DLI(M) (respectively, inclu-
sion (4)) in a natural way generates a linear cocycle 〈E,ϕ, (Ω, Z+, σ)〉, where
Ω = C(Z+,M), (Ω, Z+, σ) is a dynamical system of shifts on Ω and ϕ(t, x, ω) is
a solution of equation (5) issuing from the point x ∈ E at the initial moment n = 0.
Thus, we can study inclusion (4) (respectively, DLI(M)) in the framework of the
theory of linear cocycles with discrete time.
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3 Absolute Asymptotic Stability of Discrete Linear Inclusions

in Banach Spaces

In this section we will study DLI(M) in an arbitrary Banach space. Let E be
a real or complex Banach space with the norm | · | and [E] be a Banach space of all
linear bounded operators acting on the space E and equipped with the operational
norm. Below we suppose that M := {A1, A2, ..., Am} and Ai ∈ [E].

Note that for infinite-dimensional discrete linear inclusions DLI(M) (dim(E) <
+∞) the notion of absolute asymptotic stability (AAS) and the equality

lim
t→+∞

‖A(t)A(t − 1)...A(1)A(0)‖ = 0 (6)

are equivalent. It is easy to see that for infinite-dimensional DLI(M) (dim(E) =
+∞) it is not true. This fact is confirmed by the following example.

Example 3.1. Let E := c0, A ∈ [c0] be the operator defined by the equality

Aξ := {ξk+1}

for all ξ := {ξk} ∈ c0. It is easy to verify that the operator A possesses the following
properties:

(i)
Anξ → 0 (7)

as n → ∞ for each ξ ∈ l2, where An := A ◦ An−1 (n ≥ 1) and A0 := IdE;

(ii)
Anen+1 = e1, (8)

where e1 = (1, 0, 0, ...), e2 = (0, 1, 0, ...), ... (n = 1, 2, ...).

Let M := {A}, i.e. m = 1. In this case DLI(M) is equivalent to the linear
autonomous difference equation

x(t + 1) = Ax(t).

From (7) it follows that DLI(M) (with M = {A}) is absolutely asymptotically
stable. On the other hand, from equality (8) we have ‖An‖ ≥ 1 and, consequently,
equality (6) does not hold.

Let (X,h, Y ) be a locally trivial Banach fiber bundle [4, 24].

Definition 3.2. A non-autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 is said
to be linear, if the map πt : Xy → Xσ(t,y) (Xy := h−1(y)) is linear for every t ∈ T

and y ∈ Y, where πt := π(t, ·).

Let 〈E,ϕ, (Y, T, σ)〉 be a linear cocycle over (Y, T, σ) with the fiber E (or shortly
ϕ). If X := E × Y and (X, T, π) is a skew-product dynamical system, then the
triplet 〈(X, T, π), (Y, T, σ), h〉, where h := pr2 : X → Y, is a linear non-autonomous
dynamical system generated by cocycle ϕ.
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Theorem 3.3. [13] Let E be a Banach space, Ω be a compact metric space and
〈E,ϕ, (Ω, Z+, σ)〉 be a linear cocycle over (Ω, Z+, σ)〉. Then the next conditions are
equivalent:

(i) the cocycle ϕ is uniformly asymptotically stable, i.e.

lim
n→+∞

sup
ω∈Ω

‖U(n, ω)‖ = 0;

(ii) the cocycle ϕ is uniformly exponentially stable, i.e. there are two positive
constants N and ν such that ‖U(n, ω)‖ ≤ N e−νt for all t ≥ 0 and ω ∈ Ω.

Let M ⊆ [E] be a nonempty bounded set of operators and denote by S = S(M)
the semigroup generated by M augmented with the identity operator I := IdE , so
that S =

⋃∞
n=0 M

n, where Mn := {
∏n

t=1 A(t) | A(t) ∈ M}.

Definition 3.4. The number

ρ(M) := lim sup
n→∞

‖Mn‖
1
n and ‖M‖ := sup{‖A‖ : A ∈ M}

is called [16,22,32] a joint spectral radius of bounded subset of linear operators M.

Theorem 3.5. Let M ⊂ [E] be a compact subset (in particular, the set M may
consist of finite number of elements, i.e. M = {A1, A2, ..., Am} with Ai ∈ [E]
(1 ≤ i ≤ m)). Then the following statements are equivalent:

a) the discrete linear inclusion DLI(M) is uniformly asymptotically stable;

b) ρ(M) < 1.

Proof. Let Ω := C(Z+,M). Then Ω is a compact subset of C(Z+, [E]) and on Ω
there is defined a dynamical system of translations (Ω, Z+, σ) induced by the Bebu-
tov’s dynamical system (C(Z+, [E]), Z+, σ). Consider the cocycle 〈E,ϕ, (Ω, Z+, σ)〉
generated by DLI(M), i.e. ϕ(t, ω, x) := A(t)A(t− 1)...A(1)A(0)x, where A(t) ∈ M
and ω ∈ Ω with ω(t) := A(t) (for all t ∈ Z+). According to Theorem 3.3 there exists
two positive constants N and ν such that |A(t)A(t − 1) . . . A(1)A(0)x| ≤ N e−νt|x|
for all A(t) ∈ M (t ∈ Z+). From the last inequality we obtain ρ(M) ≤ e−nu < 1.

Let now α := ρ(M) < 1. Then for all ε ∈ (0, 1 − ρ(M)) there exists a number
t(ε) ∈ N such that

‖A(t)A(t − 1)...A(1)A(0)‖ ≤ (α + ε)t (9)

for all t ≥ t(ε). Since β := α + ε < 1, then from inequality (9) follows the condition
a). The theorem is proved. �

Remark 3.6. The statement close to Theorem 3.5 it was established before in [22]
for infinite-dimensional DLIs and in [22,30] for finite-dimensional DLIs.
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Lemma 3.7. [15] Suppose that each operator A of M is compact, then for any
bounded set B ⊂ E and t ∈ N the set U(t,Ω)A is relatively compact, where U(t, ω) :=
ϕ(t, ·, ω) = A(t)A(t − 1)...A(1)A(0) (ω(t) := A(t) for all t ∈ Z+).

Definition 3.8. A cocycle 〈E,ϕ, (Ω, Z+, σ) is called compact (completely continu-
ous) if for each bounded subset B ⊂ E there exists an integer number t0 = t0(B) ∈ N

such that the set U(t0,Ω)B is relatively compact.

Theorem 3.9. [13] Let Ω be a compact space and 〈E,ϕ, (Ω, Z+, σ) be a compact
cocycle. Then the following conditions are equivalent:

(i) the cocycle ϕ is convergent, i.e.

lim
t→∞

|ϕ(t, x, ω)| = 0 (10)

for all (x, ω) ∈ E × Ω;

(ii) the cocycle ϕ is uniformly exponentially stable.

Theorem 3.10. Let M ⊆ [E] be a compact subset and suppose that each operator
A from M is compact. Then the next statements are equivalent:

(i) the discrete linear inclusion DLI(M) is absolutely asymptotically stable;

(ii) ρ(M) < 1.

Proof. Consider the cocycle 〈E,ϕ, (Ω, Z+, σ) generated by DLI(M). By Lemma
3.7, under the conditions of the theorem, this cocycle is compact. Now to finish the
proof it is sufficient to apply Theorems 3.5 and 3.9. �

Remark 3.11. In our paper [15] was established the equivalence of absolute asymp-
totic stability and uniform exponential stability for DLI(M) in Banach spaces if
M ⊆ [E] is compact and every operator A from M is compact.

4 Asymptotically Compact Discrete Linear Inclusions

Definition 4.1. The entire trajectory of the semigroup dynamical system (X, T, π)
passing through the point x ∈ X at t = 0 is defined as the continuous map γ : S → X
that satisfies the conditions γ(0) = x and πtγ(s) = γ(s + t) for all t ∈ T and s ∈ S,
where πt := π(t, ·).

Let Φx(π) be the set of all entire trajectories of (X, T, π) passing through x at
t = 0 and Φ(π) = ∪{Φx(π) : x ∈ X}.

Definition 4.2. A dynamical system (X, T, π) is said to be asymptotically compact
[23, 28] if for all bounded positively invariant set M ⊂ X there exists a nonempty
compact subset K from X such that lim

t→+∞
ρ(π(t,M),K) = 0.
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Definition 4.3. A measure of non-compactness [23,34] on a complete metric space
X is a function β from the bounded sets of X to the nonnegative real numbers
satisfying:

(i) β(A) = 0 for A ⊂ X if and only if A is relatively compact;

(ii) β(A ∪ B) = max[β(A), β(B)];

(iii) β(A + B) ≤ β(A) + β(B) for all A,B ⊂ X if the space X is linear.

Definition 4.4. The Kuratowsky measure of non-compactness α is defined by

α(A) = inf{d : A has a finite cover of diameter < d}.

Definition 4.5. A dynamical system (X, T, π) (respectively, a cocycle ϕ) is said to
be conditionally β-condensing [23] if there exists t0 > 0 such that β(πt0B) < β(B)
for all bounded sets B in X with β(B) > 0 (respectively, for any bounded set B ⊆ E
the inequality α(ϕ(t0, B, Y )) < α(B) holds if α(B) > 0.).

Definition 4.6. A dynamical system (X, T, π) (respectively, a cocycle ϕ) is said to
be β-condensing if it is conditionally β-condensing and the set πt0B is bounded for all
bounded sets B ⊆ X (respectively, the set ϕ(t0, B, Y ) = ∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y }
is bounded for all bounded set B ⊆ E.)

According to Lemma 2.3.5 in [23, p.15] and Lemma 3.3 in [9] the conditional
condensing dynamical system (X, T, π) is asymptotically compact.

Let X := E × Y , A ⊂ X, and Ay := {x ∈ A : pr2x = y}. Then A = ∪{Ay : y ∈
Y }. Let Ãy := pr1Ay and Ã := ∪{Ãy : y ∈ Y }. Note that if the space Y is compact,
then a set A ⊂ X is bounded in X if and only if the set Ã is bounded in E.

Lemma 4.7. [11, 13] The equality α(A) = α(Ã) takes place for all bounded sets
A ⊂ X, where α(A) and α(Ã) are the Kuratowsky measure of non-compactness for
the sets A ⊂ X and Ã ⊂ E.

Definition 4.8. A cocycle ϕ is called conditional α-contraction of order k ∈ [0, 1),
if there exists t0 > 0 such that for any bounded set B ⊆ E for which ϕ(t0, B, Y ) =
∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y } is bounded the inequality α(ϕ(t0, B, Y )) ≤ kα(B) holds.

Definition 4.9. The cocycle ϕ is called α-contraction if it is a conditional α-
contraction cocycle and the set ϕ(t0, B, Y ) = ∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y } is bounded
for all bounded sets B ⊆ E.

Lemma 4.10. [11,13] Let Y be compact and the cocycle ϕ be α-condensing. Then
the skew-product dynamical system (X, T, π), generated by the cocycle ϕ, is α-
condensing.

Denote by B(π) := {x ∈ X | ∃γ ∈ Φx(π), such that γ(S) is bounded } and
Bx(π) := B(π)

⋂
Φx(π).
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Theorem 4.11. [11,13] Let 〈(X, T, π), (Y, T, σ), h〉 be a linear non-autonomous dy-
namical system, Y be compact and (X, T, π) be conditionally α-condensing. Then
the following assertions are equivalent:

(i) (a) the non-autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 is conver-
gent, i.e. lim

t→+∞
|π(t, x)| = 0 for all x ∈ X;

(b) the dynamical system (X, T, π) doesn’t admit non-trivial bounded trajec-
tories on T, i.e. B(π) ⊆ Θ = {θy : y ∈ Y, θy ∈ Xy, |θy| = 0}.

(ii) the non-autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 is uniformly
exponentially stable, i.e. there are positive constants N and ν such that
|π(t, x)| ≤ N e−νt|x| for all x ∈ X.

Remark 4.12. If the vector bundle fiber (X,h, Y ) is finite dimensional (i.e. ev-
ery fiber Xy := h−1(y) is finite-dimensional) and Y is a compact metric space,
then the non-autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 is conditionally
α-condensing. Thus Theorem 4.11 is true for the finite-dimensional linear non-
autonomous dynamical system with compact base Y. This fact it was established
before by Cheban [8].

Theorem 4.13. Let the following conditions be fulfilled:

(i) the linear non-autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 is conver-
gent;

(ii) Y is compact;

(iii) the dynamical system (X, T, π) is conditionally α-condensing;

(iv) there exists a positive number M such that

|π(t, x)| ≤ M |x| (11)

for all x ∈ X.

Then the non-autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 is uniformly
exponentially stable.

Proof. Let 〈(X, T, π), (Y, T, σ), h〉 be a linear convergent non-autonomous dynam-
ical system, Y be compact and there exists a positive number M such that the
inequality (11) holds, then by Theorem 2.11.2 [12] (see also [10] or [13]) the trivial
section Θ := {θy | θy ∈ Xy := h−1(y), |θy| = 0} of the vectorial fiber (X,h, Y ) is
a maximal compact invariant set of dynamical system (X, T, π)). Thus this system
doesn’t admit non-trivial bounded trajectories on S. To finish the proof of Theorem
it is sufficient to apply Theorem 4.11. �
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Lemma 4.14. Let A′, A′′ ∈ [E], A := A′ + A′′ and the following conditions hold:

(i) operator A′ is contractive, i.e. ‖A′‖ < 1;

(ii) operator A′′ is compact.

Then the operator A is α-contraction and α(A(B)) ≤ kα(B) for all bounded
subset B ⊆ E, where k := ‖A′‖.

Proof. Since A(B) ⊆ A′(B)+A′′(B), then according to Lemma 2.2 [35] α(A(B)) ≤
α(A′(B)) + α(A′′(B)) ≤ ‖A′‖α(B) + α(A′′(B)). To finish the proof of Lemma it is
sufficient to note that under the conditions of Lemma α(A′′(B)) = 0. �

Lemma 4.15. Let M be a compact subset of [E]. Suppose that each operator A
of M may be presented as a sum A′ + A′′, where A′ is a contraction and A′′ is a
compact operator, then α(U(t,Ω)B) ≤ kα(B) for any bounded subset B ⊆ E and
n ∈ N, where U(t, ω) := ϕ(t, ·, ω) = A(t)A(t − 1)...A(1)A(0) (ω(t) := A ∈ M for all
t ∈ Z+) and k :=

∏t
j=1 ‖A(j)′‖ < 1.

Proof. Since the set Ω is compact and U(t, ω) =
∏t

k=1 ω(k) (ω ∈ Ω), then for each
t the mapping U(t, ·) : Ω → [E] is continuous. Note that A(t) = A(t)′ + A(t)′′ and,
consequently, we have

U(t, ω) :=

t∏

j=1

A(j) =

t∏

j=1

(A(j)′ + A(j)′′) =

t∏

j=1

A(j)′ + C,

where C ∈ [E] is some compact operator. By Lemma 4.14 we have

α(U(t, ω)B) ≤ k0α(B)

for all bounded subset B ⊆ E, where k0 := ‖
∏t

j=1 A(j)′‖ ≤
∏t

j=1 ‖A(j)′‖ := k < 1.
The lemma is proved. �

Theorem 4.16. Let M be a compact subset of [E]. Suppose that each operator A of
M may be presented as a sum A′ +A′′, here A′is a contraction and A′′ is a compact
operator. Then the following assertions are equivalent:

(i) The discrete linear inclusion DLI(M) is absolute asymptotic stable and
DLI(M) doesn’t admit non-trivial bounded trajectories on Z;

(ii) The discrete linear inclusion DLI(M) is uniformly exponentially stable.

Proof. Consider the cocycle 〈E,ϕ, (Ω, Z+, σ) generated by DLI(M). By Lemma
4.15, under the conditions of the theorem, this cocycle is α-contraction. Now to
finish the proof it is sufficient to apply Theorem 4.11, because every α-contraction
cocycle ϕ is α-condensing. �
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Theorem 4.17. Let M be a compact subset of [E]. Suppose that the following
conditions hold:

(i) each operator A of M may be presented as a sum A′ + A′′, here A′is a con-
traction and A′′ is a compact operator;

(ii) the discrete linear inclusion DLI(M) doesn’t admit non-trivial bounded tra-
jectories on Z;

(iii) the set M ⊆ [E] of operators is product bounded.

Then the discrete linear inclusion DLI(M) is uniformly exponentially stable.

Proof. Consider the cocycle 〈E,ϕ, (Ω, Z+, σ) generated by DLI(M) and cor-
responding skew-product dynamical system (X, Z+, π), where X := E × Y and
π := (ϕ, σ). By Lemma 4.15, under the conditions of the theorem, this cocy-
cle is α-contraction and, consequently, the dynamical system (X, Z+, π) too. It
is easy to verify that under the conditions of Theorem this non-autonomous dynam-
ical system is uniformly stable, i.e. |π(t, x)| ≤ M |x| for all x := (u, y) ∈ X and
t ∈ Z+ because |π(t, x)| = |U(t, ω)u| ≤ M |u| = M |x|, where U(t, ω) := ϕ(t, ·, ω) =
A(t)A(t−1) . . . A(1)A(0) (ω(j) := A(j) ∈ M for all j ∈ Z+) and M ⊂ [E] is product
bounded.

Now we will show that non-autonomous dynamical system 〈(X, Z+, π), (Ω, Z+,
σ), h〉 is convergent. In our case this means that lim

t→+∞
|π(t, x)| = 0 for all x ∈ X.

Indeed, the system (X, Z+, π) is α-contraction and, consequently, it is asymptotically
compact. The trajectory {π(t, x) | t ∈ Z+} is bounded and consequently it is
relatively compact. Denote by ωx the ω-limit set of point x. This set is nonempty,
compact and invariant. In particular ωx consists of the full trajectories of DLI(M)
bounded on Z. Under the conditions of our Theorem ωx ⊆ Θ := {(0, y) | y ∈ Y }
and, consequently, lim

t→+∞
|π(t, x)| = 0. Now to finish the proof it is sufficient to apply

Lemma 4.15 and Theorem 4.13. �

Theorem 4.18. Let M be a compact subset of [E]and each operator A of M may
be presented as a sum A′+A′′, here A′is a contraction and A′′ is a compact operator.

Then the following affirmations are equivalent:

(i) the discrete linear inclusion DLI(M) is product bounded and absolutely asymp-
totically stable;

(ii) the set M is generalized contractive, i.e. there exist positive numbers N and
ν such that ‖A(t)A(t − 1) . . . A(1)‖ ≤ N e−νt for all t ∈ N and A(j) ∈ M
(1 ≤ j ≤ t).

Proof. Consider the cocycle ϕ generated by DLI(M). By Lemma 4.15 , under the
conditions of theorem, this cocycle is α-condensing. Now to finish the proof it is
sufficient to refer Theorem 4.13. �
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Definition 4.19. A dynamical system (X, T, π) is called locally compact (locally
completely continuous) if for any x ∈ X there are δx > 0 and lx > 0 such that
πtB(x, δx) (t ≥ lx) is relatively compact.

Remark 4.20. Note that the dynamical system (X, T, π) is locally compact (com-
pletely continuous), if one of the following two conditions holds:

(i) the phase space X of dynamical system (X, T, π) is locally compact;

(ii) there exists a number t0 ∈ T such that the operator πt is completely continuous,
where πt := π(t, ·).

Theorem 4.21. [8] Let (X, T, π) be locally compact and Y be compact. Then the
following conditions are equivalent:

1. lim
t→+∞

|xt| = 0 for all x ∈ X;

2. all the motions in (X, T, π) are relatively compact and (X, T, π) does not admit
nontrivial compact motions defined on S;

3. there are positive numbers N and ν such that |xt| ≤ N e−νt|x| for all x ∈ X
and t ≥ 0.

Theorem 4.22. Let M be a compact subset of [E]. Suppose that each operator A
of M is compact. Then the following assertions are equivalent:

1. the discrete linear inclusion DLI(M) is absolute asymptotic stable;

2. every solution of DLI(M) is relatively compact and DLI(M) doesn’t admit
non-trivial bounded trajectories on Z;

3. the discrete linear inclusion DLI(M) is uniformly exponentially stable.

Proof. Consider the cocycle 〈E,ϕ, (Ω, Z+, σ) generated by DLI(M). By Lemma
4.15, under the conditions of Theorem, the cocycle ϕ is α-contraction and, conse-
quently, the skew-product dynamical system (X, T, π) ( X := E × Ω, π := (ϕ,
σ)), generated by cocycle ϕ, is completely continuous. Now to finish the proof it is
sufficient to apply Theorem 4.21 to non-autonomous dynamical system 〈(X, T, π),
(Ω, Z+, σ), h〉 (h := pr2 : X → Ω). �

Remark 4.23. Note that for finite-dimensional Banach space E the equivalence of
the statements 1. and 2. it was proved by Kozyakin [27].
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5 Absolute Asymptotic Stability of Finite-Dimensional Discrete

Linear Inclusions

Let (X, T, π) be a dynamical system.

Definition 5.1. Let T
′ be a subset of group S and 0 ∈ T

′. The continuous mapping
γ : T

′ → X is called a trajectory of the point x ∈ X on T
′ if πtγ(s) = γ(t + s) for

all t ∈ T and s ∈ T
′ such that t + s ∈ T

′.

Lemma 5.2. [39] Let {Tn} be a family of subsets of S and the following conditions
are fulfilled:

(i) Tn ⊆ Tn+1 for all n ∈ N;

(ii) γn is the trajectory on Tn of the point xn ∈ X;

(iii) the sequence {xn} ⊆ X converges to x ∈ X.

Then there exists a trajectory on T
′ :=

⋃
{Tn : n ∈ N} of the point x ∈ X such

that {γn} converges to γ uniformly on the compacts from T
′, i.e. for every compact

K ⊆ T
′ and positive number ε there exists a number n0 = n0(ε,K) ∈ N such that

K ⊆ Tn and ρ(γn(s), γ(s)) < ε for all n ≥ n0 and s ∈ K, where ρ is the distance
on X.

Remark 5.3. If (X, T, π) is a skew-product dynamical system generated by cocycle
ϕ and x := (u, y) ∈ X := E × Y , then γ ∈ Φx(π) ⊆ Φ(π) if and only if there exist
a continuous function ν : S → E and γ̃ ∈ Φh(x)(σ)such that ϕ(t, ν(s), y) = ν(t + s)
and γ(s) = (ν(s), γ̃(s)) for all t ∈ T and s ∈ S.

Definition 5.4. Let (X,h, Y ) be a Banach fiber bundle with norm | · |. The non-
autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 is said to be non-critical [25]
(satisfying Favard’s condition) if B(π) = Θ, where Θ := {θy | θy ∈ Xy, |θy| = 0, y ∈
Y }.

Remark 5.5. Throughout the rest of this section we assume that the Banach fiber
bundle (X,h, Y ) is finite-dimensional, Y is compact and invariant (i.e. σtY = Y
for all t ∈ T, where σt := σ(t, ·)) and the non-autonomous linear dynamical system
〈(X, T, π), (Y, T, σ), h〉 is non-critical.

Denote by ωx :=
⋂
t≥0

⋃
{π(s, x) : s ≥ t} and αγ :=

⋂
t≤0

⋃
{γ(s) : s ≤ t}

if γ ∈ Φ(π).

Lemma 5.6. Let 〈(X, T, π), (Y, T, σ), h〉 be a linear non-critical non-autonomous
dynamical system and x ∈ X. Then the following statements hold:

(i) if sup{|π(t, x)| : t ∈ T, t ≥ 0} < +∞, then

lim
t→+∞

|π(t, x)| = 0; (12)
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(ii) if γ ∈ Φx(π) and sup{|γ(s)| : s ∈ S, s ≤ 0} < +∞, then

lim
s→−∞

|γ(s)| = 0. (13)

Proof. Let π(T+, x) (T+ := {t ∈ T : t ≥ 0}) be bounded. Since (X,h, Y ) is a
locally trivial finite-dimensional fiber bundle and Y is compact, then the set π(T, x)
is relatively compact and, consequently, ωx 6= ∅. Suppose that the equality (12) is
not true. Then there exists a positive number ε0 and strictly increasing sequence
tn → +∞ such that

|π(tn, x)| ≥ ε0. (14)

Without loss of generality we may suppose that the sequence {π(tn, x)} is convergent.
Let x0 := lim

n→+∞
π(tn, x). Denote by Tn := {s ∈ S : s ≥ −tn} and γn : Tn → X the

continuous mapping defined by equality γn(s) := π(s + tn, x). It is easy to verify
that γn is a trajectory of the point xn := π(tn, x) on Tn. By Lemma 5.2 the sequence
{γn} is convergent and its limit γ ∈ Φx0(π). Note that γ(s) ∈ ωx for all s ∈ S and
γ(0) = x0. According to (14) x0 6= 0. The obtained contradiction proves the first
statement.

The second statement may be proved similarly. �

Denote by Xs := {x ∈ X : lim
t→+∞

|π(t, x)| = 0} and Xu := {x ∈ X : ∃γ ∈ Φx(π)

such that lim
t→−∞

|γ(t)| = 0}.

Lemma 5.7. The following statement hold:

(i) the set Xs is vectorial, i.e. every fiber Xs
y := Xs

⋂
Xy is a subspace of the

linear space Xy;

(ii) Xs is a positively invariant subset of dynamical system (X, T, π), i.e. πtXs ⊆
Xs for all t ∈ T;

(iii) the set Xs is closed.

Proof. The first and second statements are evident.

Let a ∈ Xs \ Xs, then there exists x̃n ∈ Es such that {x̃n} → a. Let ln :=
sup{|π(t, x̃n)| : t ∈ T} and τn ∈ T such that ln = |π(τn, x̃n)|. Note that {ln} → +∞
and {τn} → +∞. We may suppose that the sequence {τn} is increasing. Assume
that xn := l−1

n π(τn, x̃n), then |xn| = 1. Now we define the continuous mapping
γn : Tn → X by equality γn(τ) := l−1

n π(τ + τn, x̃n), where Tn := {t ∈ S : s ≥ −τn}.
Then

(i) γn(0) = xn;

(ii) γn is the trajectory on Tn of the point xn;
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(iii)

|γn(t)| ≤ 1 (15)

for all t ∈ Tn.

Without loss of generality we may suppose that the sequence {xn} is convergent.
Let x := lim

n→+∞
xn, then |x| = 1. By Lemma 5.2 the sequence {γn} is convergent

uniformly on the compacts from S and if γ := lim
n→+∞

γn, then γ ∈ Φx(π). From the

inequality (15) follows that |γ(t)| ≤ 1 for all t ∈ S, i.e. γ ∈ B(π), and γ(0) = x 6= 0.
Under the conditions of the lemma we have B(π) = Θ. The obtained contradiction
proves our statement. �

Lemma 5.8. There exist positives numbers N and ν such that

|π(t, x)| ≤ N e−νt (16)

for all x ∈ Xs and t ≥ 0.

Proof. According to Lemma 5.7 the subset Xs is a positively invariant and closed
subset of dynamical system (X, T, π) and, consequently, on Xs is induced a dynam-
ical system (Xs, T, π). Now to finish the proof of Lemma it is sufficient to refer to
Theorem 3.9. �

Lemma 5.9. The following statement hold:

1. for any x ∈ Eu the set Φx(π) contains a unique trajectory γ with condition
lim

t→−∞
|γ(t)| = 0;

2. the set Xu is vectorial;

3. Xu is a positively invariant subset of dynamical system (X, T, π);

4. Es
y

⋂
Eu

y = {θy} for all y ∈ Y, where Ei
y := Ei

⋂
Xy (i = s, u);

5. the set Xu is closed.

Proof. Suppose that the first statement of Lemma is not true, then there exist x0 ∈
Xu and γ1, γ2 ∈ Φx0 such that γ1 6= γ2 and lim

t→−∞
|γi(t)| = 0 (i = 1, 2). Let γ := γ1−

γ2, then by linearity of non-autonomous dynamical system 〈(X, T, π), (Y, T, σ), h〉 we
have γ ∈ Φθy0

, where θy0 is the zero in the space Xy0 and y0 := h(x0). In addition
we have

(i) lim
t→−∞

|γ(t)| = 0;

(ii) |γ(t)| = 0 for all t ≥ 0 since γ1(t) = γ2(t) = π(t, x0) for all t ≥ 0.
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Thus we found γ ∈ B(π) \ Θ. The obtained contradiction proves our affirmation.
The statements 2–4 are evident.
Let b ∈ Xu \ Xu, then there exists x̃n ∈ Eu such that {x̃n} → b. Let ln :=

sup{|π(t, x̃n)| : t ≤ 0} and τn ≤ 0 such that ln = |π(τn, x̃n)|. Note that {ln} → +∞
and {τn} → −∞. We may suppose that the sequence {τn} is decreasing. Assume
that xn := l−1

n π(τn, x̃n), then |xn| = 1. Now we define the continuous mapping
γn : S → X by equality γn(τ) := l−1

n π(τ + τn, x̃n). Then

(i) γn(0) = xn;

(ii) γn is the full trajectory of the point xn, i.e. γn ∈ Φxn(π);

(iii)
|γn(t)| ≤ 1 (17)

for all t ∈ Tn := {t ∈ S : t ≤ −τn}.

Without loss of generality we may suppose that the sequence {xn} is convergent.
Let x := lim

n→+∞
xn, then |x| = 1. By Lemma 5.2 the sequence {γn} is convergent

uniformly on the compacts from S and if γ := lim
n→+∞

γn, then γ ∈ Φx(π). From the

inequality (17) follows that |γ(t)| ≤ 1 for all t ∈ S, i.e. γ ∈ B(π), and γ(0) = x 6= 0.
The obtained contradiction prove our statement. �

Lemma 5.10. On the set Xu is defined a group dynamical system (Xu, S, π̃), where
the mapping π̃ : S×X → X is defined by equality π̃(t, x) := γx(t) and γx is a unique
trajectory from Φx(π) with condition lim

t→−∞
|γx(t)| = 0.

Proof. This statement directly follows from Lemmas 5.2 and 5.9 . �

Corollary 5.11. The following statements hold:

(i) there exist positive constants N and ν such that |π̃(t, x)| ≤ Neνt|x| for all
x ∈ Xu and t ≤ 0 (t ∈ S);

(ii) πtXu
y = Xu

σ(t,y) for all y ∈ Y and t ≥ 0.

Proof. First statement of Corollary follows from Lemma 5.8 if we will change t by
−t in group dynamical system (Xu, S, π).

The second statement is evident. �

Lemma 5.12. The following statements hold:

(i)
lim sup
t→+∞

|π(t, x)| = lim inf
t→+∞

|π(t, x)| (18)

for all x ∈ X and also lim
t→+∞

|π(t, x)| = +∞ for all x /∈ Xs;
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(ii)
lim sup
t→−∞

|γ(t)| = lim inf
t→−∞

|γ(t)| (19)

for all x ∈ X and γ ∈ Φx(π) moreover lim
t→−∞

|γ(t)| = +∞ for all x /∈ Xu.

Proof. Denote by

L := lim sup
t→+∞

|π(t, x)|; l := lim inf
t→+∞

|π(t, x)|. (20)

Then 0 ≤ l ≤ L. It is sufficient to consider the case L 6= 0. If L < +∞, then
x ∈ B

+(π) := {x ∈ X | sup{|π(t, x)| : t ≥ 0} < +∞} and by Lemma 5.6 L = l = 0.
Thus, if L 6= 0, then L = +∞.

If L = l = +∞, then Lemma is proved. If l < +∞, then there exist sequences
{τn} and {tn} ({tn} ⊆ T) such that tn ≤ τn ≤ tn+1 ({tn} → +∞, tn+1 − tn ≥ n+1)
and |π(τn, x)| = νn, where νn := max{|pi(t, x)| : t ∈ [tn, tn+1]}. Since L = +∞,
then {νn} → +∞. Assume xn := ν−1

n π(τn, x) and yn := σ(τn, y). Then |xn| = 1

|π(xn, t)| = ν−1
n |π(t + τn, x)| ≤ 1 (21)

for all t ∈ [tn, tn+1]. Let Tn := {t ∈ S : s ≥ −τn} and γn : Tn → X be a continuous
function defined by equality

γn(t) := ν−1
n π(t + τn, x). (22)

Note that
|γn(t)| := ν−1

n |π(t + τn, x)| ≤ 1 (23)

for all t ∈ [tn − τn, tn+1 − τn]. In addition

|γn(t)| ≤ ν−1
n (l + 1) (24)

when t = tn − τn and tn+1 − τn. From the inequality (24) it follows that {tn − τn} →
−∞ and {tn+1−τn} → +∞. In fact, without loss of generality we may suppose that
the sequence {xn} converges. Denote by x∗ := lim

n→+∞
xn. If we suppose, for example,

that the sequence {sn} := {tn+1 − τn} converges to s0 then according to Lemma 5.2
the sequence {γn} converges and its limit γ ∈ Φx∗(π). From the inequality (24) we
have |γ(s0)| = 0 and, consequently, |γ(t + s0)| = |πtγ(s0)| = 0 for all t ≥ 0. On the
other hand from (23) we have |γ(t)| ≤ 1 for all t ≤ s0, since tn+1 − tn ≥ n + 1 for
all n ∈ N. Thus we found γ ∈ B(π) with γ(0) = x∗. Analogously we will obtain the
contradiction if we suppose that the sequence {tn − τn} does not converge to −∞.
The obtained contradiction proves required statement.

Thus {tn−τn} → −∞ and {tn+1−τn} → +∞, then according to inequality (23)
we have |γ(t)| ≤ 1 for all t ∈ S and γ(0) = x ∗ . This contradiction proves the first
affirmation of Lemma.

Now we will prove the second statement. Note that 0 ≤ l ≤ L and L 6= 0. If
L < +∞, then x := γ(0) ∈ Xu

y (y := h(x)) and, consequently, 0 = l = L and the
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required statement is proved. Let L = +∞. We will show that l = +∞. If we suppose
that l < +∞, then there exist sequences {τn} and {tn} (tn ≤ 0, tn − tn+1 > n + 1)
such that

(i) τn ∈ [tn+1, tn];

(ii) |γ(tn)| ≤ l + 1;

(iii) |γ(τn)| = νn := max
tn+1≤t≤tn

|γ(t)|.

Since L = +∞, then {νn} → +∞. Let xn := ν−1
n γ(τn), then |xn| = 1. We define

γn ∈ Φxn(π) by equality

γn(t) := ν−1
n γ(t + τn) (t ∈ S). (25)

It is easy to see that

|γn(t)| = ν−1
n |γ(t + τn)| ≤ 1 (∀t ∈ [tn+1 − τn, tn − τn]) (26)

and
|γn(t)| ≤ ν−1

n (l + 1) (27)

for t = tn+1− τn and tn− τn. We may suppose that the sequence {xn} is convergent.
Let x∗ := lim

n→+∞
xn, then |x ∗ | = 1. Reasoning analogously as in the proof of the

first statement we may prove that {tn+1 − τn} → −∞ and {tn − τn} → +∞. By
Lemma 5.2 the sequence {γn} converges uniformly on the compacts from S and its
limit γ ∈ Φx∗(π). Therefore from (26) it follows that |γ(t)| ≤ 1 for all t ∈ S. The
obtained contradiction completes the proof of Lemma. �

Denote by ks
y := dim(Xs

y) (respectively, ku
y := dim(Xu

y )) the dimension of the
space Xs

y (respectively, Xu
y ).

Lemma 5.13. [6] Let (X,h, y) be a finite-dimensional fiber bundle with compact
base Y, {yn} → y and En be a subspace of the fiber Xyn with dim(En) ≥ l. If

L = lim sup En :=
∞⋂

m=1

⋃
{En : n ≥ m},

then the linear subspace span(L) generated by L (i.e. the minimal space, containing
L) is a subspace of the fiber Xy and dim( span(L)) ≥ l.

Lemma 5.14. ku
y ≤ ku

p for all p ∈ ωy.

Proof. Let p ∈ ωy, then there exists a sequence {tn} → +∞ such that p =
lim

n→+∞
σ(tn, y). Let yn := σ(tn, y), En := Xu

yn
, U := lim supEn and l := ku

y . Now

to finish the proof of Lemma, according to Lemma 5.13, it sufficient to show that
U ⊆ Xu

p . Assume that it is not true, i.e. there exists x ∈ U \Xu
p . From the definition
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of U it follows that tx ∈ E for all t ∈ R and, consequently, we may suppose that
|x| = 1. Then there exist xn ∈ Xu

yn
such that |xn| = 1 and {xn} → x. By Lemma 5.12

lim
t→−∞

|π̃(t, x)| = +∞ and, consequently, for every L > 0 there exist n = n(L) ∈ N

and t0 = t0(L) < 0 such that |π̃(t0, xn)| ≤ L for all n ≥ n0. Since x ∈ Xu
yn

, then
there exists a unique γn ∈ Φxn(π) with condition lim

t→−∞
|γn(t)| = 0, therefore there is

t1 < t0 such that ||γn(t1) ≤ 1. Let νn := max{|γn(t)| : t ∈ [t1, 0]}, then νn > L. We
will choose a number sn ∈ [t1, 0] such that νn = |γn(sn)|. Denote by zn := ν−1

n γn(sn)
and consider the sequence {γ̃n} defined by equality

γ̃n(t) := ν−1
n γn(t + sn) (t ∈ S).

It is clear that γ̃n ∈ Φzn(π) and lim
t→−∞

|γ̃n(t)| = 0. Note that

|γ̃n(t)| = ν−1
n |γn(t + sn)| ≤ 1 (28)

for t ∈ [t1 − sn,−sn]. If now L → +∞, then sn → −∞ and t1 − sn → −∞. In fact,
from the equality νn = |γn(sn)| and inequality νn > L it follows that sn → −∞.

Without loss of generality we may suppose that the sequence {zn} is convergent.
Let z := lim

n→+∞
zn, then by Lemma 5.2 the sequence {γ̃n} is convergent too and its

limit γ̃ ∈ Φz(π). On the other hand by inequality (28) we have |γ̃(t)| ≤ 1 for all t ∈ S

and |γ̃(0)| = |z| = 1. The obtained contradiction completes the proof of Lemma. �

Lemma 5.15. Let Uy be certain complementary subspace for subspace Xs
y , i.e. Xy =

Xs
y+̇Uy. Then there exists a positive number δ such that

|π(s, x)| ≥ δ|π(t, x)| (29)

for all x ∈ Uy and s ≥ t ≥ 0.

Proof. Suppose that it is not true. Then there exist sequences {tk}, {sk} and {xk}
such that

sk ≥ tk ≥ 0, xk ∈ Uy (|xk| = 1) (30)

and
|π(tk, xk)| ≥ k|π(sk, xk)|. (31)

Without loss of generality we may assume that the sequence {xk} is convergent and
denote by x its limit, then |x| = 1.

Let τk be chosen so that 0 ≤ τk ≤ sk and |π(τk, xk)| = max{|π(t, xk)| : t ∈
[0, sk]}. It is easy to see that {τk} → +∞ as k → +∞. If we suppose that it is not so,
then we will have |π(s, xk)| ≤ M for all s ∈ [0, sk] (M is a certain positive constant)
and, consequently, x ∈ Es

y. The obtained contradiction proves our statement.
Denote by ξk := |π(τk, xk)|

−1π(τk, xk), then |ξk| = 1 and ξk ∈ πτkUy. Let Tk :=
{t ∈ S : s ≥ −τk} and define the mapping γk : Tk → X by equality

γk(t) := |π(τk, xk)|
−1π(t + τk, xk), (32)
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then
|γk(t)| ≤ 1 (33)

for all t ∈ [−τk, sk − τk]. Logically there are two possibilities:

a) the sequence {sk − τk} → s ≥ 0 (or it contains a convergent subsequence),
then

|π(τk, xk)| = max
0≤s≤sk

|π(s, xk)| ≥ |π(tk, xk)| ≥ k|π(sk, xk)|

and, consequently,
|π(sk, xk)|

|π(τk, xk)|
≤

1

k
. (34)

From (32) and (34) we obtain

|γk(sk − τk)| =
|π(sk, xk)|

|π(τk, xk)|
≤

1

k
. (35)

We may suppose that the sequence {ξk} → ξ, then by Lemma 5.2 the sequence {γk}
is convergent (uniformly on the compacts from S) too. Denote by γ := lim

k→+∞
γk,

then from (35) we have |γ(s)| = 0 and, consequently, |γ(t)| = 0 for all t ≥ s. On the
other hand from (33) we obtain |γ(t)| ≤ 1 for all t ≤ 0 and, consequently, γ ∈ B(π)
and |γ(0)| = |x| = 1.

b) {sk − τk} → +∞ and from (33) we have |γ(t)| ≤ 1 for all t ∈ S.
Thus, if we suppose that the statement of Lemma is not true we obtain the

contradiction. The lemma is proved. �

Lemma 5.16. Let y ∈ Y and H+(y) := {σ(t, y) : t ∈ T} = Y. Then ku
y ≥ ky − ks

p

for all p ∈ ωy, where ky := dim(Xy).

Proof. Let Uy be certain subspace of Xy which is complementary subspace for Xs
y

and p ∈ ωy. Then there exists a sequence {tn} → +∞ such that {σ(tn, y)} → p.
Denote by Un := π(tn, Uy). By Lemma 5.15 dim(Un) = dim(Uy). Let U := lim sup Un

and x ∈ U (|x| = 1). Then there is {xn} (xn ∈ Un, |xn| = 1) such that x = lim
n→+∞

xn.

We will prove that x ∈ Xu
p (i.e. U ⊆ Eu

p ). Let Tn := {t ∈ S : s ≥ −tn} and we
define the function γn : Tn → X by following equality:

γn(t) := π(t, xn) = π(t + tn, x̃n), (36)

where x̃n ∈ U and π(tn, x̃n) = xn. Since γn(0) = xn → x, then by Lemma 5.2 the
sequence {γn} is convergent too and its limit γ ∈ Φx(π). Note that

|x| = |πtγ(−t)| = |πt lim
n→+∞

π(−t + tn, x̃n)| = (37)

lim
n→+∞

|πtπ(−t + tn, x̃n)| ≥ δ| lim
n→+∞

π(−t + tn, x̃n)| = δ|γ(−t)|

for all t ≥ 0. From the inequality (37) follows |γ(t)| ≤ δ−1|x| for all t ≤ 0 and by
Lemma 5.6 x ∈ Xu

p (p = h(x)). Thus dim(Xu
p ) ≥ ky − dim(Xs

y). �
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Corollary 5.17. Under the conditions of Lemma 5.16, if additionally the point
y ∈ Y is stable in the sense of Poisson (i.e. y ∈ ωy), then ks

y + ku
y = ky.

Proof. In fact, by Lemma 5.16 we have ku
p ≥ ky − ks

y for all p ∈ ωy. In particular
ku

y ≥ ky − ks
y because y ∈ ωy. On the other hand ks

y + ku
y ≤ ky and, consequently,

ks
y + ku

y = ky. �

Corollary 5.18. Under the conditions of Corollary 5.17 ks
yτ + ku

yτ = ky for all
τ ∈ T, where yτ := σ(τ, y).

Proof. Note that the point yτ is stable in the sense of Poisson, ωyτ = ω and
H+(yτ) = ωyτ = ωy = H+(y) = Y. According to Corollary 5.17 we have ks

yτ +ku
yτ =

ky for all τ ∈ T. �

Remark 5.19. Note that the statements close to Lemmas 5.6 – 5.16 before were
established for bilateral (i.e. when T = S) non-autonomous linear dynamical systems
in the works [6, 25,33].

Lemma 5.20. Under the conditions of Lemma 5.16, if additionally the point y ∈ ωy,
then ks

p ≥ ks
y for all p ∈ ωy.

Proof. Let p ∈ ωy, then there exists {tn} → +∞ such that {ytn} → p. By Corol-
lary 5.11 ku

ytn
= kuy and according to Corollary 5.18 we have ks

ytn
= ky − ku

ytn
=

ky − ku
y = ks

y for all n ∈ N. Let V := lim supXs
ytn

, then by Lemma 5.7 V ⊆ Xs
p .

Since dim(V ) = lim
n→+∞

dim(Xs
ytn

) = ky − ku
y = ks

y and dim(Xs
p) ≥ dim(V ), then

ks
p ≥ ks

y. �

Corollary 5.21. Under the conditions of Lemma 5.20 ks
p + ku

p = ky for all p ∈ ωy.

Proof. According to Lemma 5.20 we have

ks
p ≥ ks

y (38)

for all p ∈ ωy. On the other hand by Lemma 5.16

ks
p ≥ ky − ks

y (p ∈ ωy). (39)

From (38) and (39) we obtain ks
p + ku

p ≥ ky and, consequently, ks
p + ku

p = ky for all
p ∈ ωy. �

Theorem 5.22. Let 〈(X, T, π), (Y, T, σ), h〉 be a linear non-autonomous dynamical
system and the following conditions be fulfilled:

(i) the fiber bundle (X,h, Y ) is finite-dimensional;

(ii) Y is compact and invariant (πtY = Y for all t ∈ T);
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(iii) there exists a point y ∈ Y such that ωy = H+(y) = Y ;

(iv) there exists at least one asymptotical stable fiber Xp0 (i.e. ks
p0

= kp0 or equiv-
alently ku

p0
= 0).

Then 〈(X, T, π), (Y, T, σ), h〉 is asymptotically stable, i.e. X = Xs.

Proof. According to Corollary 5.21 we have

ks
p + ku

p = ky (40)

for all p ∈ ωy. If ku
p0

= 0 for certain p0 ∈ ωy, then by Lemma 5.14 we obtain
ku

y ≤ ku
p0

= 0, i.e. ku
y = 0 and, consequently, ks

y = ky. From Lemma 5.20 we have
ks

p ≥ ks
y = ky for all p ∈ ωy and, consequently, ks

p = ky for all p ∈ Y = ωy. �

Definition 5.23. Let E be a finite-dimensional (k := dim(E)) Banach space. The
linear operator A ∈ [E] is called asymptotically stable if |λj(A)| < 1 (j = 1, 2, . . . , k),
where σ(A) := {λ1(A), λ2(A), . . . , λk(A)} is a spectrum of A.

Theorem 5.24. Let E be a finite-dimensional Banach space, Ai ∈ [E] (i =
1, 2, . . . ,m) and M := {A1, A2, . . . , Am}. Assume that the following conditions are
fulfilled:

(i) there exists j ∈ {1, 2, . . . ,m} such that the operator Aj is asymptotically stable;

(ii) the discrete linear inclusion DLI(M) has not any nontrivial bounded on Z

solutions.

Then the discrete linear inclusion DLI(M) is absolutely asymptotically stable.

Proof. Let Q := M, Y = Ω := C(Z+, Q) and (Y, Z+, σ) be a semi-group dynam-
ical system of shifts on Y (see Section 2). It is easy to see that Y = C(Z+, Q)
is topologically isomorphic to Σm := {0, 1, . . . ,m − 1}Z+ and (Y, Z+, σ) is dynam-
ically isomorphic to shift dynamical system on Σm (see, for example,[31, 41]) and,
consequently, it possesses the following properties:

(i) Y is compact;

(ii) Y = Per(σ), where Per(π) the set of all periodic points of dynamical system
(Y, Z+, σ);

(iii) there exists a Poisson stable point y ∈ Y such that Y = H+(y).

Let 〈E,ϕ, (Y, Z+, σ)〉 be a cocycle, generated by DLI(M) (i.e. ϕ(n, u, ω) :=
U(n, ω)u, where U(n, ω) =

∏n
k=1 ω(k) (ω ∈ Ω)), (X, Z+, π) be a skew-product sys-

tem associated with cocycle ϕ (i.e. X := E × Y and π := (ϕ, σ)) and 〈(X, Z+, π),
(Y, Z+, σ), h〉 (h := pr2 : X → Y ) be a linear non-autonomous dynamical system,
generated by cocycle ϕ. Denote by ω0 : Z+ → M the mapping defined by equality
ω0(i) = Ai

j for all i ∈ N, where Ai
j := Aj ◦ Ai−1

j (i = 2, . . .). Since the operator Aj

is asymptotically stable, then the fiber Xp0 (p0 := ω0 ∈ Y ) is asymptotically stable.
Now to finish the proof of Theorem it is sufficient to refer to Theorem 5.22. �
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[4] Bourbaki N. Variétés Différentielles et Analitiques (Fascicule de résultats). Herman, Paris,
1971.

[5] Bronsteyn I.U. Extensions of Minimal Transformation Group. Noordhoff, 1979.

[6] Bronstein I.U. Nonautonomous Dynamical Systems. Chişinău, Stiintsa, 1984.
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