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Optimal multicommodity flows in dynamic networks

and algorithms for their finding

M. Fonoberova, D. Lozovanu

Abstract. In this paper we study two basic problems related to dynamic flows:
maximum multicommodity flow and the minimum cost multicommodity flow prob-
lems. We consider these problems on dynamic networks with time-varying capaci-
ties of edges. For minimum cost multicommodity flow problem we assume that cost
functions, defined on edges, are nonlinear and depending on time and flow, and the
demand function also depends on time. We propose algorithms for solving these dy-
namic problems, which are based on their reducing to static ones on a time-expanded
network.
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1 Introduction

In this paper we study dynamic versions of the maximum multicommodity flow
and the nonlinear minimum-cost multicommodity flow problems on networks. These
problems generalize the classical static flow problems and extend some dynamic
[10, 11] and control models on networks [12]. We propose algorithms for solving
these dynamic problems, which are based on their reducing to static ones on a
time-expanded network [7]. We also note some different methods for constructing
time-expanded networks in the case of acyclic graphs.

For our problems the time is an essential component, either because the flows
of some commodity take time to pass from one location to another, or because
the structure of network changes over time. Classical static network flow models
are known as valuable tools for different applications but they fail to capture the
property of many real-life problems. To tackle this problem, we use dynamic network
flow models instead of the static ones.

Dynamic flows are widely used to model network-structured, decision-making
problems over time: problems in electronic communication, production and distri-
bution, economic planning, cash flow, job scheduling, and transportation [1]) In
considered dynamic models the flow passes an arc with time, it can be delayed at
nodes, flow values on arcs and the network parameters can change with time. While
very efficient solution methods exist for static flow problems, dynamic flow problems
have proved to be more difficult to solve.
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Dynamic multicommodity flows are among the most important and challenging
problems in network optimization, due to the large size of these models in real world
applications. Many product distribution, scheduling planning, telecommunication,
transportation, communication, and management problems can be formulated and
solved as multicommodity flow problems [2]. The multicommodity flow problem
consists of shipping several different commodities from their respective sources to
their sinks through a given network so that the total flow going through each edge
does not exceed its capacity. No commodity ever transforms into another commodity,
so that each one has its own flow conservation constraints, but they compete for
the resources of the common network. Despite being closer to reality, dynamic
multicommodity flow models, because of their complexity, have not been investigated
as well as classical ones.

In this paper we study two basic problems related to dynamic flows: maximum
multicommodity flow and the minimum cost multicommodity flow problems. We
consider these problems on dynamic networks with time-varying capacities of edges.
For minimum cost multicommodity flow problem we assume that cost functions,
defined on edges, are nonlinear and depending on time and flow. Moreover, we
assume that the demand function also depends on time. It is important to notice
that if the edge costs do not depend on flow, then the dynamic multicommodity
minimum-cost flow problem can be regarded as the network discrete optimal control
problem or, equivalently, the problem of finding the shortest paths ([7]) in dynamic
networks.

2 Static multicommodity flow problems

In order to study dynamic versions of multicommodity flow problems we will use
the following static flow problems.

2.1 The maximum multicommodity flow problem

For the maximum multicommodity flow problem we consider the following static
network N = (V, V−, V+, E,K,w, u). A flow x on this network assigns every arc
e ∈ E for each commodity k ∈ K a non-negative flow value xk

e such that the
following flow conservation constraints are obeyed:

∑

e∈E+(v)

xk
e −

∑

e∈E−(v)

xk
e =







−yk
v , v ∈ V k

−
,

0, v ∈ V k
0 ,

yk
v , v ∈ V k

+ ,

(1)

yk
v ≥ 0, ∀ v ∈ V, ∀ k ∈ K, (2)

where E+(v) = {(u, v) | (u, v) ∈ E}, E−(v) = {(v, u) | (v, u) ∈ E}, V k
−

, V k
+ and V k

0

are sets of sources, sinks and intermediate nodes for commodity k of network N ,
V− = ∪k∈KV k

−
, V+ = ∪k∈KV k

+ , V0 = ∪k∈KV k
0 , V = V− ∪ V0 ∪ V+.
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The multicommodity flow x is called feasible if it obeys the mutual capacity
constraints:

∑

k∈K

xk
e ≤ ue, ∀ e ∈ E (3)

and individual capacities of every arc for each commodity:

0 ≤ xk
e ≤ wk

e , ∀ e ∈ E, ∀k ∈ K. (4)

These constraints are called weak and strong forcing constraints, respectively.

The maximum multicommodity flow problem consists in maximizing the follow-
ing objective function:

|x| =
∑

k∈K

∑

v∈V k
+

yk
v

subject to (1)-(4).

2.2 The minimum cost multicommodity flow problem

For the minimum cost multicommodity flow problem we consider the following
static network N = (V,E,K,w, u, d, ϕ). A flow x on this network assigns every arc
e ∈ E for each commodity k ∈ K = {1, 2, . . . , k} a non-negative flow value xk

e such
that the following flow conservation constraints are obeyed:

∑

e∈E+(v)

xk
e −

∑

e∈E−(v)

xk
e = dk

v , ∀ v ∈ V, ∀ k ∈ K, (5)

where d: V × K → R is a demand function and
∑

v∈V

dk
v = 0, ∀k ∈ K.

The minimum cost multicommodity flow problem consists in minimizing the
following objective function:

c(x) =
∑

e∈E

ϕe(x
1
e, x

2
e, . . . , x

k
e),

subject to (5),(3),(4),

where ϕ: E × R+ → R+ is a cost function.

The mathematical tool we are going to use for studying and solving dynamical
versions of maximum and minimum cost multicommodity flow problems is based on
special procedures of their reducing to static problems on auxiliary networks.
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3 The dynamic maximum multicommodity flow problem

3.1 The problem formulation

The object of the maximum dynamic flow problem is to send a maximum amount
of flow from sources to sinks within a given time bound without violating capacity
constraints of any edge. The maximum multicommodity flow problem requires to
find the maximum flow of a set of commodities through a network, where the arcs
have an individual capacity for each commodity, and a mutual capacity for all the
commodities.

We consider the discrete time model, in which all times are integral and bounded
by horizon T . The time horizon (finite or infinite) is the time until which the flow can
travel in the network and defines the makespan T = {0, 1, . . . , T} of time moments
we consider. Time is measured in discrete steps, so that if one unit of flow leaves
node u at time t on arc e = (u, v), one unit of flow arrives at node v at time t + τe,
where τe is the transit time of arc e.

Without loosing generality, we assume that no edges enter sources or exit sinks.
We consider that all of the flow is dumped into the network at time 0. Accordingly
the sources are nodes through which flow enters the network and the sinks are nodes
through which flow leaves the network. The sources and sinks are sometimes called
terminal nodes, while the intermediate nodes are called non-terminals. In the case of
many sources and sinks the maximum flow problem can be reduced to the standard
one by introducing one additional artificial source and one additional artificial sink
and edges leading from the new source to true sources and from true sinks to the
new sink. The transit times of these new edges are zero and the capacities of edges
connecting the artificial source with all other sources are bounded by the capacities
of these sources; the capacities of edges connecting all other sinks with the artificial
sink are bounded by the capacities of these sinks.

We consider a network N = (V, V−, V+, E,K,w, u, τ) that contains a directed
graph G = (V,E) and a set of commodities K that must be routed through the
same network. The graph G consists of set of vertices V = V− ∪ V+ ∪ V0, where
V−, V+ and V0 are sets of sources, sinks and intermediate nodes, respectively, and set
of edges E. Each edge e ∈ E has a nonnegative time-varying capacity wk

e (t) which
bounds the amount of flow of each commodity k ∈ K allowed on arc e in every
moment of time t ∈ T. We also consider that every arc e ∈ E has a nonnegative
time-varying capacity for all commodities, which is known as the mutual capacity
ue(t). Moreover, each edge e ∈ E has an associated positive transit time τe which
determines the amount of time it takes for flow to travel from the tail to the head
of that edge.
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A feasible dynamic flow on N is a function x: E × K × T → R+ that satisfies
the following conditions:

∑

e∈E+(v)
t−τe≥0

xk
e(t − τe) −

∑

e∈E−(v)

xk
e(t) =







−yk
v (t), v ∈ V k

−
,

0, v ∈ V k
0 ,

yk
v (t), v ∈ V k

+ ,

∀ t ∈ T, ∀ v ∈ V, ∀k ∈ K;

(6)

yk
v (t) ≥ 0, ∀ v ∈ V, ∀t ∈ T, ∀k ∈ K;

∑

k∈K

xk
e(t) ≤ ue(t), ∀ t ∈ T, ∀e ∈ E; (7)

0 ≤ xk
e(t) ≤ wk

e (t), ∀ t ∈ T, ∀ e ∈ E, ∀k ∈ K; (8)

xk
e(t) = 0, ∀ e ∈ E, t = T − τe + 1, T , ∀k ∈ K. (9)

Here the function x defines the value xk
e(t) of flow of commodity k entering edge

e at time t. It is easy to observe that the flow of commodity k does not enter edge
e at time t if it will have to leave the edge after time T ; this is ensured by condition
(9). Capacity constraints (8) mean that in a feasible dynamic flow, at most wk

e (t)
units of flow of commodity k can enter arc e at time t. Mutual capacity constraints
(7) mean that in a feasible dynamic flow, at most ue(t) units of flow can enter arc
e at time t. Conditions (6) represent flow conservation constraints.

The value of the dynamic flow x is defined as follows:

|x| =
∑

k∈K

∑

t∈T

∑

v∈V k
+

yk
v (t).

The object of the maximum multicommodity flow problem is to find a feasible flow
that maximizes this objective function.

It is easy to observe that if τe = 0, ∀ e ∈ E and T = 0 then the formulated
problem becomes the static multicommodity flow problem.

3.2 The main results

In this paper we propose an approach for solving the formulated problem, which
is based on reduction of this problem to a static well studied one. We show that the
maximum multicommodity flow problem on network N can be reduced to a static
problem on an auxiliary network NT ; we name this network as a time-expanded
network. The advantage of this approach is that it turns the problem of determining
a maximum dynamic flow into a classical static maximum flow problem on the time-
expanded network.
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The time-expanded network is a static representation of the dynamic network.
The essence of the time-expanded network is that it contains a copy of the ver-
tices of the dynamic network for each moment of time, and the transit times and
flows are implicit in the edges linking those copies. In such a way, a dynamic flow
problem in a given network with transit times on the arcs can be transformed into
an equivalent static flow problem in the corresponding time-expanded network. A
discrete dynamic flow in the given network can be interpreted as a static flow in the
corresponding time-expanded network.

We define the time-expanded network as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T};

2. ET : = {e(t) = (v(t), w(t + τe)) | e = (v,w) ∈ E, 0 ≤ t ≤ T − τe};

3. uT
e(t): = ue(t) for e(t) ∈ ET ;

4. wk
e(t)

T
: = wk

e (t) for e(t) ∈ ET , k ∈ K.

Let e(t) = (v(t), w(t + τe)) ∈ ET and let xk
e(t) be a flow of commodity k ∈ K on

the dynamic network N . The corresponding function on the time-expanded network
NT is defined as follows:

xk
e(t)

T
= xk

e(t), ∀k ∈ K. (10)

Lemma 1. The correspondence (10) is a bijection from the set of feasible flows
on the dynamic network N onto the set of feasible flows on the time-expanded
network NT .

Proof. It is obvious that the correspondence above is a bijection from the set
of T -horizon functions on the dynamic network N onto the set of functions on
the time-expanded network NT . It is easy to observe that a feasible flow on the
dynamic network N is a feasible flow on the time-expanded network NT and vice-
versa. Indeed, individual capacity constraints are obeyed:

0 ≤ xk
e(t)

T
= xk

e(t) ≤ wk
e (t) = wk

e(t)

T
, ∀ e ∈ E, ∀ t ∈ T, ∀ k ∈ K

and mutual capacity constraints are also obeyed:

∑

k∈K

xk
e(t)

T
=

∑

k∈K

xk
e(t) ≤ ue(t) = uT

e(t), ∀ t ∈ T, ∀ e ∈ E.

Therefore it is enough to show that each dynamic flow on the dynamic network N

is put into the correspondence with a static flow on the time-expanded network NT

and vice-versa.
Henceforward we define

dk
v(t) =







−yk
v (t), v ∈ V k

−
,

0, v ∈ V k
0 ,

yk
v (t), v ∈ V k

+ ,

yk
v (t) ≥ 0, ∀v ∈ V, ∀t ∈ T, ∀k ∈ K.
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Let xk
e(t) be a dynamic flow of commodity k on N and let xk

e(t)

T
be a correspond-

ing function on NT . Let’s prove that xk
e(t)

T
satisfies the conservation constraints on

its static network. Let v ∈ V be an arbitrary node in N and t ∈ T an arbitrary
moment of time:

dk
v(t)

(i)
=

∑

e∈E+(v)
t−τe≥0

xk
e(t − τe) −

∑

e∈E−(v)

xk
e(t) =

=
∑

e(t−τe)∈E+(v(t))

xk
e(t−τe)

T
−

∑

e(t)∈E−(v(t))

xk
e(t)

T (ii)
= dk

v(t)

T
. (11)

Note that according to the definition of the time-expanded network the set of
edges {e(t − τe)|e(t − τe) ∈ E+(v(t))} consists of all edges that enter v(t), while
the set of edges {e(t)|e(t) ∈ E−(v(t))} consists of all edges that originate from v(t).
Therefore, all necessary conditions are satisfied for each node v(t) ∈ V T . Hence,

xk
e(t)

T
is a flow on the time-expanded network NT .

Let xk
e(t)

T
be a static flow of commodity k on the time-expanded network NT

and let xk
e(t) be a corresponding function on the dynamic network N . Let v(t) ∈ V T

be an arbitrary node in NT . The conservation constraints for this node in the static
network are expressed by equality (ii) from (11), which holds for all v(t) ∈ V T at all
times t ∈ T. Therefore, equality (i) holds for all v ∈ V at all times t ∈ T and xk

e(t)
is a flow on the dynamic network N . 2

In the following lemma we prove that values of any dynamic multicommodity
flow and corresponding static multicommodity flow in the time-expanded network
are equal.

Lemma 2. If x is a flow on the dynamic network N and xT is a corresponding flow
on the time-expanded network NT , then

|x| = |xT |.

Proof. The proof is straightforward:

|x| =
∑

k∈K

∑

t∈T

∑

v∈V k
+

yk
v (t) =

∑

k∈K

∑

t∈T

∑

v(t)∈V k
+

T

yk
v(t)

T
= |xT |. 2

The above lemmas imply the validity of the following theorem:

Theorem 3. For each maximum multicommodity flow in the dynamic network there
is a corresponding maximum multicommodity flow in the static time-expanded net-
work.
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In such a way, we can solve the considered problem by reducing it to the max-
imum static multicommodity flow problem, solving the obtained problem in the
corresponding time-expanded network and then reconstructing the solution to the
solution of the initial problem. Therefore, the maximum multicommodity flow prob-
lem on dynamic networks can be solved by applying network flow optimization tech-
niques for static flows directly to the expanded network.

3.3 The algorithm

Let the dynamic network N be given. Our object is to solve the maximum
multicommodity flow problem on N . Proceedings are following:

1. Building the time-expanded network NT for the given dynamic network N .

2. Solving the classical maximum multicommodity flow problem on the static
network NT , using one of the known algorithms [6,8, 9, 13].

3. Reconstructing the solution of the static problem on NT to the dynamic prob-
lem on N . 2

3.4 Some special cases

3.4.1 The case of limited time

In the above items we have discussed the problem of determining the maximum
dynamic multicommodity flow from the zero time moment to the fixed time horizon
T . In such problems we find the maximum amount of flow until the time T . In
many practical cases it is necessary to know the maximum flow in the time period
from t1 to t2, where t1 < t2. To obtain the solution of of this problem we have to
construct a time-expanded network, the discrete time moments of which form the
following makespan T = {t1, t1 +1, . . . , t2 −1, t2}. In that way, by constructing such
a time-expanding network and finding the maximum flow in this network we can
obtain the maximum flow in the dynamic network for the time period from t1 to t2.

3.4.2 The case of two-sided restrictions

The same argumentation as in the above items can be held to solve the maximum
multicommodity flow problem on the dynamic networks in the case when, instead
of the condition (8) in the definition of the feasible dynamic flow, the following
condition takes place:

rk
e (t) ≤ xk

e(t) ≤ rk
e(t), ∀ t ∈ T, ∀ e ∈ E, ∀ k ∈ K

where rk
e (t) and rk

e(t) are lower and upper boundaries of the capacity of the edge e

correspondingly. In this case we introduce one additional artificial source b1 and one
additional artificial sink b2. For every arc e = (u, v), where rk

e (t) 6= 0 we introduce
arcs (b1, v) and (u, b2) with rk(t) and 0 as the upper and lower boundaries of the



OPTIMAL MULTICOMMODITY FLOWS IN DYNAMIC NETWORKS 27

capacity of the edges. We reduce rk(t) to rk(t) − rk(t), but rk(t) to 0. We also
introduce the arc (b2, b1) with rk

(b2,b1)
= ∞ and rk

(b2,b1)
= 0. The transit times of all

introduced arcs are zero. In such a mode we obtain a new network, on which we can
solve the standard maximum flow problem.

4 The dynamic minimum cost multicommodity flow problem

4.1 The problem formulation

The minimum cost flow problem is the problem of sending flows in a network
from supply nodes to demand nodes at minimum total cost such that link capacities
are not exceeded. The minimum cost multicommodity dynamic flow problem asks
to find the flow of a set of commodities through a network with given time horizon,
satisfying all supplies and demands with minimum cost.

As in the chapter 3 we consider the discrete time model, in which all times are
integral and bounded by horizon T . Time is measured in discrete steps, the set of
time moments we consider is T = {0, 1, . . . , T}.

We consider a directed network N = (V,E,K,w, u, τ, d, ϕ) with set of vertices
V , set of edges E and set of commodities K that must be routed through the same
network. A dynamic network N consists of capacity function w: E ×K × T → R+,
mutual capacity function u: E×T → R+, transit time function τ : E → R+, demand
function d: V × K × T → R and cost function ϕ: E × R+ × T → R+. The demand
function dk

v(t) satisfies the following conditions:

a) there exists v ∈ V for every k ∈ K with dk
v(0) < 0;

b) if dk
v(t) < 0 for a node v ∈ V for commodity k ∈ K then dk

v(t) = 0,

t = 1, 2, . . . , T ;

c)
∑

t∈T

∑

v∈V

dk
v(t) = 0,∀k ∈ K.

A feasible dynamic flow on N is a function x: E × K × T → R+ that satisfies
conditions (7)-(9) and the following conditions:

∑

e∈E+(v)
t−τe≥0

xk
e(t − τe) −

∑

e∈E−(v)

xk
e(t) = dk

v(t), ∀ t ∈ T, ∀ v ∈ V, ∀k ∈ K.

To model transit costs, which may change over time, we define the cost function
ϕe(x

1
e(t), x

2
e(t), . . . , x

k
e(t), t) which indicates the cost of shipping flows over edge e

entering the edge e at time t.
The total cost of the dynamic multicommodity flow x is defined as follows:

c(x) =
∑

t∈T

∑

e∈E

ϕe(x
1
e(t), x

2
e(t), . . . , x

k
e(t), t).
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The object of the minimum cost multicommodity flow problem is to find a feasible
flow that minimizes this objective function.

It is important to notice that in many practical cases cost functions are presented
in the following form:

ϕe(x
1
e(t), x

2
e(t), . . . , x

k
e(t), t) =

∑

k∈K

ϕk
e(x

k
e(t), t).

The separable case of cost functions represents the most important one from the
practical standpoint. In the case when ϕk

e (xk
e(t), t) are linear functions the dynamic

version of the considered problem is reduced to static linear programming problem
on an auxiliary static network.

It is easy to observe that if τe = 0, ∀ e ∈ E and T = 0 then the formulated
problem becomes the static minimum cost multicommodity flow problem.

4.2 The main results

To solve the minimum cost multicommodity flow problem by its reduction to a
static one we define the time-expanded network NT as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T};

2. ET : = {e(t) = (v(t), w(t + τe)) | e = (v,w) ∈ E, 0 ≤ t ≤ T − τe};

3. uT
e(t): = ue(t) for e(t) ∈ ET ;

4. wk
e(t)

T
: = wk

e (t) for e(t) ∈ ET , k ∈ K.

5. ϕT
e(t)(x

1
e(t)

T
, x2

e(t)
T
, . . . , xk

e(t)

T
): = ϕe(x

1
e(t), x

2
e(t), . . . , x

k
e(t), t) for e(t) ∈ ET ,

k ∈ K;

6. dk
v(t)

T
: = dk

v(t) for v(t) ∈ V T , k ∈ K.

If we define a flow correspondence by relation (10), it can be proved, using the
same method as in Lemma 1, that the set of feasible flows on the dynamic network
N corresponds to the set of feasible flows on the time-expanded network NT .

In the following lemma we prove that costs of any dynamic multicommodity
flow and corresponding static multicommodity flow in the time-expanded network
are equal.

Lemma 4. If x is a flow on the dynamic network N and xT is a corresponding flow
on the time-expanded network NT , then

c(x) = cT (xT ).
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Proof. The proof is straightforward:

c(x) =
∑

t∈T

∑

e∈E

ϕe(x
1
e(t), x

2
e(t), . . . , x

k
e(t), t) =

=
∑

t∈T

∑

e(t)∈ET

ϕT
e(t)(x

1
e(t)

T
, x2

e(t)
T
, . . . , xk

e(t)

T
) = cT (xT ). 2

Using the above results we obtain the following theorem:

Theorem 5. For each minimum-cost multicommodity flow in the dynamic net-
work there is a corresponding minimum-cost multicommodity flow in the static time-
expanded network.

In such a way, the minimum cost multicommodity flow problem on the dy-
namic network can be solved by static flow computations in the corresponding time-
expanded network. The solution of the considered problem can be obtained by
using the solution of the static minimum cost multicommodity flow problem on the
time-expanded network.

4.3 The algorithm

Let the dynamic network N be given. The minimum-cost multicommodity flow
problem is to be solved on N . Proceedings are following:

1. Building the time-expanded network NT for the given dynamic network N .

2. Solving the classical minimum-cost multicommodity flow problem on the static
network NT ([3–6]).

3. Reconstructing the solution of the static problem on NT to the dynamic prob-
lem on N . 2

4.4 Generalization

Now let us study some general cases of the minimum cost dynamic multicom-
modity flow problems. First of all, we assume that only a part of the flow is dumped
into the considered network at the time 0, i.e. the condition b) in the definition
of the demand function dk

v(t) doesn’t hold. Using the following, this case can be
reduced to the one considered above.

Let the flow is dumped into the network from the node v ∈ V at an arbitrary
moment of time t, different from the ordinary moment. We can reduce this problem
to the problem, in which all of the flow is dumped into the network at the initial
time by introducing loops in all nodes from V , except the node v, from which the
flow is dumped into the network at the time t. For such loops we attribute transit
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times which are equal to the time t. So, we can consider that all the flow is dumped
in the network at the time t, which we define as the initial time.

The argumentation is the same, when the flow is dumped in the network from
different nodes at different moments of time. Let t be the maximum of those mo-
ments. In this case we take t as the initial time and construct loops from all the
nodes, except those that dump the flow in the network at time t. The transit times
of these loops are equal to the difference between time t and the time when the
flow from those nodes that generate loops is dumped in the network. So, we reduce
this problem to the one, considered above, where the whole flow is dumped into the
network at the initial moment of time.

Further we consider the variation of the dynamic network when the condition c)
in the definition of the demand function dk

v(t) doesn’t hold. We assume that after
time t = T there still is flow in the network, i.e. the following condition is true:

∑

t∈T

∑

v∈V

dk
v(t) ≤ 0.

We can reduce this problem to the problem without flow in the network after an
upper bound of time by introduction of the additional node v and additional edges.
The rest of the flow in the network is sent to the node v through the arcs, which we
just introduced. In such a way we obtain the initial model of the dynamic network.

The next model of the dynamic network is the one when we allow flow storage
at the nodes. In this case we can reduce this dynamic network to the initial one by
introducing the loops in those nodes in which there is flow storage. The flow which
was stored at the nodes passes through these loops. Accordingly, we reduce this
problem to the initial one.

The other variation of the dynamic network is the one when the cost functions
also depend on the flow at the nodes. In this case we can reduce this model of the
dynamic network to the initial one by introducing loops and attributing the cost
functions, which were defined in the nodes, to these loops. Consequently, we obtain
the initial model of the dynamic network.

The same reasoning to solve the minimum cost flow problem on the dynamic
networks and its generalization can be held in the case when, instead of the condition
(8) in the definition of the feasible dynamic flow, the following condition takes place:

rk
e (t) ≤ xk

e(t) ≤ rk
e(t), ∀ t ∈ T, ∀ e ∈ E, ∀ k ∈ k

where rk
e (t) and rk

e(t) are lower and upper boundaries of the capacity of the edge e

correspondingly.

5 The time-expanded network in the case of acyclic graphs

We will consider the dynamic network N , where the graph G = (V,E) does not
contain directed cycles. Let T ∗ = max{|L|} = max{

∑

e∈L τe}, where L is a directed
path in the graph G. In [10] it is shown that xk

e(t) = 0 for e ∈ E, k ∈ K, t ≥ T ∗.
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Using this result we can construct the time expanded-network that consists of
n(T ∗+1) nodes and m(T ∗+1) edges, where n and m are numbers of nodes and edges
in the initial network. Since the maximum number of edges a directed path can have
in an acyclic network is n−1, it immediately results that the time-expanded network
has not more than n2 nodes and mn edges. In such a way, we have established a
polynomial upper bound for the size of the time-expanded network.

It is easy to note that in many cases the large majority of intermediate nodes
are not connected with a directed path both to a sink and a source. Removing such
nodes from the considered network does not influence the set of flows on this network.
We will call these nodes irrelevant to the flow problem. Intermediate nodes that are
not irrelevant will be denoted relevant. The static network obtained by eliminating
the irrelevant nodes and all edges adjacent to them from the time-expanded network
will be called the reduced time-expanded network.

We propose the following algorithm for constructing the reduced network based
on the process of elimination of irrelevant nodes from the time-expanded network.

Algorithm

1. Building the time-expanded network NT ∗
for the given dynamic network N .

2. Performing a breadth-first parse of the nodes for each source from the time
expanded-network. The result of this step is the set V−(V T ∗

−
) of the nodes that

can be reached from at least a source in V T ∗
.

3. Performing a breadth-first parse of the nodes beginning with the sink for each
sink and parsing the edges in the direction opposite to their normal orientation.
The result of this step is the set V+(V T ∗

+ ) of nodes from which at least a sink
in V T ∗

can be reached.

4. The reduced network will consist of a subset of nodes V T ∗
and edges from ET ∗

determined in the following way

V
′T ∗

= V T ∗

∩ V−(V T ∗

−
) ∩ V+(V T ∗

+ ), E
′T ∗

= ET ∗

∩ (V
′T ∗

× V
′T ∗

).

5. d
′k
v(t)

T ∗

: = dk
v(t) for v(t) ∈ V

′T ∗

, k ∈ K.

6. u
′

e(t)

T ∗

: = ue(t) for e(t) ∈ E
′T ∗

.

7. w
′k
e(t)

T ∗

: = wk
e (t) for e(t) ∈ E

′T ∗
, k ∈ K.

8. ϕT
e(t)(x

1
e(t)

T
, x2

e(t)
T
, . . . , xk

e(t)

T
): = ϕe(x

1
e(t), x

2
e(t), . . . , x

k
e(t), t) for e(t) ∈ ET ,

k ∈ K. 2
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The complexity of this algorithm can be estimated to be the same as the com-
plexity of constructing the time-expanded network. In [10] it is proved that the
reduced network can be used in place of the time-expanded network. This algo-
rithm begins with the dynamic network containing a small number of nodes, builds
the time-expanded network with the largest number of nodes and then selects from
it the reduced network with a smaller number of nodes.

Now we propose an algorithm for constructing the reduced network N
′T ∗

directly
from the dynamic network N .

Algorithm

1. Building the dynamic network N ′, which contains all the nodes in N except
those that are not connected with a direct path with at least a sink and at
least a source, employing the same method as used in the above algorithm for
static networks.

2. Creating queue C = {v1(0), v2(0), . . . , vl(0)}, where {v1, v2, . . . , vl} = V−. We
consider only vi(0), vi ∈ V−, because all of the flow is dumped into the network
at time 0.

3. Initializing sets:

V
′T ∗

−
= ⊘, V

′T ∗

+ = {vi(t)|vi ∈ V+, t ∈ T}, V
′T ∗

= V
′T ∗

−
∪ V

′T ∗

+ .

4. While queue C is not empty execute for each node v1(t1) at the head of the
queue:

a) If node v1(t1) is already in V
′T ∗

, then jump to step (4d).

b) For each (v1, vi) ∈ E−(v1) in the dynamic network execute:

i) If node vi ∈ V0 and node vi(t1+τ(v1,vi)) is not already in V
′T ∗

then add

node vi(t1 + τ(v1,vi)) to queue C and add edge (v1(t1), vi(t1 + τ(v1,vi)))

to E
′T ∗

.

ii) If node vi ∈ V+ and edge (v1(t1), vi(t1 + τ(v1,vi))) is not already in

E
′T ∗

, then add edge (v1(t1), vi(t1 + τ(v1,vi))) to E
′T ∗

.

c) Add node v1(t1) to V
′T ∗

.

d) Remove node v1(t1) from queue C, all nodes moving one step closer to the
head of the queue.

5. d
′k
v(t)

T ∗

: = dk
v(t) for v(t) ∈ V

′T ∗

, k ∈ K.

6. u
′

e(t)

T ∗

: = ue(t) for e(t) ∈ E
′T ∗

.

7. w
′k
e(t)

T ∗

: = wk
e (t) for e(t) ∈ E

′T ∗
, k ∈ K.



OPTIMAL MULTICOMMODITY FLOWS IN DYNAMIC NETWORKS 33

8. ϕT
e(t)(x

1
e(t)

T
, x2

e(t)
T
, . . . , xk

e(t)

T
): = ϕe(x

1
e(t), x

2
e(t), . . . , x

k
e(t), t) for e(t) ∈ ET ,

k ∈ K. 2

The network N
′T ∗

built by this algorithm contains only intermediate nodes from
the time-expanded network NT ∗

that are relevant. Furthermore it contains all inter-
mediate nodes with this property from NT ∗

. The functions d, u,w, ϕ are the same
as those on the reduced network and the built network is the reduced network.

6 Conclusions

In this paper we formulated and studied the maximum and minimum cost mul-
ticommodity dynamic flow problems on dynamic networks with time-varying capac-
ities of edges. For minimum cost multicommodity flow problem we assumed that
cost functions, defined on edges, are nonlinear and depending on time and flow,
and the demand function also depends on time. To solve the proposed problems we
reduced them to the static ones on auxiliary networks and proposed corresponding
algorithms.

At the end we would like to note that the same argumentation and algorithms
as were described for the multicommodity flow problems are evidently hold for one-
commodity flow problems, one-commodity flow being a particular case of multicom-
modity flows. The difference consists in the fact that for one-commodity flow instead
of individual and mutual capacity constraints only individual capacity constraints
are considered. One-commodity flow can be regarded as multicommodity flow in
the case of only one commodity.
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