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On the structure of finite medial quasigroups

V.A. Shcherbacov

Abstract. Some variants of Toyoda, Murdoch and Jez̆ek-Kepka theorems on medial
quasigroups are given. The structure of finite medial quasigroups is described.
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We shall use basic terms and concepts from books [1–3]. To economize time of
readers we recall some known facts.

A quasigroup (Q, ·) with the identity

xy · uv = xu · yv (1)

is called medial. Crucial Toyoda theorem ([1, 2, 4–6]) says that every medial quasi-
group (Q, ·) can be presented in the form:

x · y = ϕx+ ψy + a, (2)

where (Q,+) is an abelian group, ϕ,ψ are automorphisms of (Q,+) such that ϕψ =
ψϕ, x, y ∈ Q, a is some fixed element from the set Q.

In view of Toyoda theorem the theory of medial quasigroups is very close to the
theory of abelian groups but it is not exactly the theory of abelian groups. For
example, a very simple for abelian groups fact, that every simple abelian group is
finite, was proved for medial quasigroups only in 1977 [7].

Medial quasigroups as well as other classes of quasigroups isotopic to groups give
us a possibility to construct quasigroups with preassigned properties. Often these
properties can be expressed on the language of properties of groups and components
of isotopy.

As usual, La : Lax = a ·x, Ra : Rax = x ·a are respectively left and right transla-
tion of a quasigroup (Q, ·). An element d such that d · d = d is called an idempotent
element of a binary quasigroup (Q, ·). By ε we mean the identity permutation.

A quasigroup (Q, ◦) is called an isotope of a quasigroup (Q, ·) if there exist
permutations α, β, γ of the set Q such that x ◦ y = γ−1(αx · βy) for all x, y ∈ Q. If
(Q, ◦) = (Q, ·), then the triple (α, β, γ) is an autotopy of the quasigroup (Q, ·), the
permutation γ is a quasiautomorphism of the quasigroup (Q, ·). An isotopy of the
form (ε, ε, γ) is called a principal isotopy [1–3].

A quasigroup (Q, ·) with the identity x·x = x is called an idempotent quasigroup.

A quasigroup (Q, ·) with the identity x · x = e, where e is a fixed element of the set
Q, is called an unipotent quasigroup.
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Any quasiautomorphism γ of a group (Q,+) has the form R+
a β, where a ∈ Q,

β ∈ Aut(Q,+) ([1]; [2], p.24). Obviously β0 = 0, where, as usual, 0 denotes the
identity element of (Q,+).

Medial quasigroups (as well as any other quasigroup class) can be divided into 2
classes: 1) quasigroups that have one or more idempotent elements; 2) quasigroups
that have not any idempotent.

Theorem 1. Conditions (i) and (ii) are equivalent:

(i) (Q, ·) is a medial quasigroup that has idempotent element 0;

(ii) there exist an abelian group (Q,+) with the identity element 0, two its com-
muting automorphisms α, β such that x · y = αx + βy + a for all x, y ∈ Q, where
−a ∈ (α+ β − ε)Q.

Proof. (i) =⇒ (ii). LP-isotope (R−1
0 , L−1

0 , ε) of quasigroup (Q, ·) is a loop (Q,+)
with the identity element 0 · 0 = 0, i.e. x + y = R−1

0 x · L−1
0 y [1]. Then x · y =

R0x+L0y,R00 = 0, L00 = 0. Let R0 = α,L0 = β. Therefore x · y = αx+ βy. So we
can rewrite medial identity in terms of the operation + in the following way.

α(αx + βy) + β(αu+ βv) = α(αx + βu) + β(αy + βv). (3)

If we take x = y = v = 0 in (3), then we obtain αβy = βαy, i.e.

αβ = βα. (4)

By u = v = 0 in (3) we have α(αx + βy) = α2x + βαy =(4) α2x + αβy. Therefore
α ∈ Aut(Q,+).

If we substitute in (3) x = y = 0, then β(αu+βv) = αβu+β2v =(4) βαu+ β2v,
β ∈ Aut(Q,+).

By x = v = 0 equality (3) takes the form αβy + βαu = αβu + βαy. Since
αβ = βα, we have αβy + αβu = αβu + αβy. Therefore (Q,+) is a commutative
loop.

Let v = 0 in relation (3). Since α, β ∈ Aut(Q,+), αβ = βα, further we obtain
(α2x + αβy) + αβu = (α2x + αβu) + αβy. Then (αβy + α2x) + αβu = αβy +
(α2x + αβu), since (Q,+) is a commutative loop. From the last equality we have
that (Q,+) is associative. Therefore (Q,+) is an abelian group. It is easy to see
that 0 ∈ (α+ β − ε)Q.

(ii) =⇒ (i).

If conditions (ii) are fulfilled, then it is easy to check that the identity (1) holds.
Indeed, α(αx+βy+a)+β(αu+βv+a)+a = α(αx+βu+a)+β(αy+βv+a)+a,
α2x + αβy + αa + βαu + β2v + βa + a = α2x + αβu + αa + βαy + β2v + βa + a,
αβy + αβu = αβu+ αβy, 0 = 0.

A quasigroup of such kind has at least one idempotent element. Indeed, let
−a = αd+ βd− d, i.e. αd+ βd = d− a. Then d · d = αd+ βd+ a = d− a+ a = d.

The theorem is proved.

From the proof of Theorem 1 follows the following
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Corollary 1. Any medial quasigroup (Q, ·) with an idempotent element 0 can be
presented in the form: x · y = αx + βy, where (Q,+) is an abelian group with the
identity element 0 and α, β are commuting automorphisms of the group (Q,+).

Remark. Equivalence of conditions (i) and (ii) of Theorem 1 it is possible to deduce
from results of book [8] (3.1.4. Proposition).

Theorem 2. Conditions (i) and (ii) are equivalent:
(i) (Q, ·) is a medial quasigroup that has not any idempotent element;
(ii) there exist an abelian group (Q,+), its automorphisms α, ϕ, αϕ = ϕα, an

element a ∈ Q, −a /∈ (α+ ϕ− ε)Q such that x · y = αx+ ϕy + a for all x, y ∈ Q.

(i) =⇒ (ii). By proving this implication in the main we follow the book [2]. Let
us consider a LP-isotope (Q,+) of a medial quasigroup (Q, ·) of the form: x+ y =
R−1

r(0) ·L
−1
0 where 0 ·r(0) = 0, i.e. r(0) is a right local identity element of the element

0. This LP-isotope (Q,+) is a loop with the identity element 0 · r(0) = 0. Denote
Rr(0) by α and L0 by β. We remark that Rr(0)0 = 0, then α0 = 0.

Using our notations we can write medial identity in the following form:

α(αx + βy) + β(αu+ βv) = α(αx + βu) + β(αy + βv). (5)

By x = 0, y = β−10 from (5) we have

β(αu+ βv) = αβu+ β(αβ−10 + βv). (6)

Therefore the permutation β is a quasiautomorphism of the loop (Q,+).
By u = 0, v = β−20 in (5) we have

α(αx + βy) = α(αx + β0) + β(αy + β−10) (7)

and we obtain that the permutation α is a quasiautomorphism of the loop (Q,+).
If we use equalities (6) and (7) in (5), then we have

(αRβ0αx+ βRβ−10αy) + (αβu+ βLαβ−10βv) =

(αRβ0αx+ βRβ−10αu) + (αβy + βLαβ−10βv). (8)

If we change in equality (8) the element x by the element α−1R−1
β0α

−1x, the

element y by α−1R−1
β−10

β−1y, the element u by the element β−1α−1u, the element v

by the element β−1L−1
αβ−10

β−1v, then we have

(x+ y) + (u+ v) = (x+ βRβ−10αβ
−1α−1u) + (αβα−1R−1

β−10
β−1y + v).

If we take u = 0 in the last equality, then we have

(x+ y) + v = (x+ βRβ−10αβ
−10) + (αβα−1R−1

β−10
β−1y + v). (9)

If we take in (9) v = 0, then we obtain x+y = (x+r)+αβα−1R−1
β−10

β−1y where

r = βRβ−10αβ
−10 is a fixed element of the set Q.
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If we change in equality (9) x+ y by the right side of the last equality, then we
have

((x+ r) + αβα−1R−1
β−10

β−1y) + v = (x+ r) + (αβα−1R−1
β−10

β−1y + v).

From the last equality it follows that the loop (Q,+) is associative, i.e. is a group.
Since α is quasiautomorphism of the group and α0 = 0, we have that the per-

mutation α is an automorphism of the group (Q,+). The permutation β has the
form β = Raϕ where ϕ ∈ Aut(Q,+).

Then we can rewrite the medial identity in the form α2x + αϕy + αa + ϕαu +
ϕ2v + ϕa + a = α2x+ αϕu+ αa+ ϕαy + ϕ2v + ϕa + a and, after the reduction in
the last equality, we obtain

αϕy + αa+ ϕαu = αϕu+ αa+ ϕαy. (10)

From the last equality by u = 0 we have αϕy+αa = αa+ϕαy and by y = 0 we
have αa+ϕαu = αϕu+αa. Using these last equalities we can rewrite equality (10)
in the form αa + ϕαy + ϕαu = αa+ ϕαu+ ϕαy. Hence ϕαy + ϕαu = ϕαu+ ϕαy,
(Q,+) is an abelian group.

Then from equality αϕy+αa = αa+ϕαy it follows that αϕy = ϕαy. Therefore
x · y = αx + ϕy + a, where (Q,+) is an abelian group, α,ϕ are automorphisms of
(Q,+) such that αϕ = ϕα.

Now we must only demonstrate that the element −a /∈ (α + ϕ − ε)Q. Let us
suppose the inverse. Let medial quasigroup (Q, ·) have an idempotent element, for
example, let u·u = u. Then αu+ϕu+a = u, therefore −a = αu+ϕu−u = (α+ϕ−ε)u
hence −a ∈ (α + ϕ − ε)Q. We received a contradiction. Our assumption is not
true. Hence, if medial quasigroup (Q, ·) has not any idempotent element, then
−a /∈ (α+ ϕ− ε)Q.

(ii) =⇒ (i). This implication can be checked easy and we omit the proof of this
implication. The theorem is proved.

The following theorem on the structure of finite medial quasigroups has been
proved by D.C. Murdoch. We give Murdoch theorem in a slightly modernized form
[9].

For a quasigroup (Q, ·) we define the map s: s(x) = x · x for all x ∈ Q. As
usual, s2(x) = s(s(x)) and so on. For any medial quasigroup (Q, ·) the map s is an
endomorphism of this quasigroup, indeed, s(xy) = xy · xy = xx · yy = s(x) · (y).

Definition 1. A quasigroup (Q, ·) is called an unipotently-solvable quasigroup of
degree m if there exists the following finite chain of unipotent quasigroups:

Q/s(Q), s(Q)/s2(Q), . . . , sm(Q)/sm+1(Q),

where the number m is the minimal number with the property |sm(Q)/sm+1(Q)| = 1
[9].

Theorem 3. Any finite medial quasigroup (Q, ·) is isomorphic to the direct product
of a medial unipotently-solvable quasigroup (Q1, ◦) and a principal isotope of the
form (ε, ε, γ) of a medial idempotent quasigroup (Q2, ∗), where γ ∈ Aut(Q2, ∗).
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It is clear that Theorem 3 reduces the study of the structure of finite medial
quasigroups to the study of the structure of finite medial unipotent and idempotent
quasigroups.

We notice, for any unipotent quasigroup (Q, ·) with idempotent element e we
have s(Q) = e, for any idempotent quasigroup (Q, ·) we have s = ε. Therefore, in
these cases we cannot say anything on the structure of medial unipotent and medial
idempotent quasigroup using the endomorphism s.

As it has been mentioned above, simple medial quasigroups were described by
J. Jez̆ek and T. Kepka in [7]. We recall some definitions. As usual, a binary relation
θ is an equivalence relation on Q if and only if θ is a reflexive, symmetric and
transitive subset of Q2. An equivalence θ is a congruence of a quasigroup (Q, ·) if
and only if the following implications are true: aθb =⇒ acθbc and aθb =⇒ caθcb for
all a, b, c ∈ Q.

A congruence θ of a quasigroup (Q, ·) is called normal if the following implications
are true: acθbc =⇒ aθb, caθcb =⇒ aθb for all a, b, c ∈ Q [1, 3].

A quasigroup (Q, ·) is simple if its only normal congruences are the diagonal
Q̂ = {(q, q) |q ∈ Q} and Q×Q [1, 3].

We give Jez̆ek-Kepka Theorem in the following form [10].

Theorem 4. If a medial quasigroup (Q, ·) of the form x · y = αx+ βy + a over an
abelian group (Q,+) is simple, then

1. the group (Q,+) is the additive group of a finite Galois field GF (pk);

2. the group < α, β > is the multiplicative group of the field GF (pk) in the case

k > 1, the group < α, β > is any subgroup of the group Aut(Zp,+) in the case

k = 1;

3. the quasigroup (Q, ·) in the case |Q| > 1 can be quasigroup from one of the
following disjoint quasigroup classes:

(a) α + β = ε, a = 0; in this case the quasigroup (Q, ·) is an idempotent
quasigroup;

(b) α+β = ε and a 6= 0; in this case the quasigroup (Q, ·) does not have any
idempotent element, the quasigroup (Q, ·) is isomorphic to the quasigroup
(Q, ∗) with the form x ∗ y = αx + βy + 1 over the same abelian group
(Q,+);

(c) α+ β 6= ε; in this case the quasigroup (Q, ·) has exactly one idempotent
element, the quasigroup (Q, ·) is isomorphic to the quasigroup (Q, ◦) of
the form x ◦ y = αx+ βy over the group (Q,+).

Proposition 1. Any medial quasigroup (Q, ◦) of the form x ◦ y = αx + βy over
an abelian group (Q,+), where α + β 6= ε, is either an unipotent quasigroup, or it
is a principal isotope of the medial idempotent quasigroup (Q, ·) of the form x · y =
(α+ β)−1(αx+ βy).
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Proof. If we suppose, that (α+β)x = 0 for all x ∈ Q, where 0 denotes zero element
of the group (Q,+), then x ◦ x = αx+ βx = (α+ β)x = 0 for all x ∈ Q.

If α + β 6= 0, then there exists an element µ of the group Aut(Q,+) such that
µ(α + β) = ε, i.e. µ = (α + β)−1. Therefore, x · x = (α + β)−1(αx + βx) =
(α+ β)−1(α+ β)x = x for all x ∈ Q.

The quasigroup (Q, ·) is medial ([12], Theorem 25). We repeat the proof of
Theorem 25: since µα + µβ = ε, we have µαµβ = µα(ε − µα) = µα − (µα)2 =
(ε− µα)µα = µβµα. The proposition is proved.

It is well known that the direct product of medial idempotent quasigroups is an
idempotent quasigroup, a similar situation takes place for unipotent quasigroups.

Proposition 2. If (Q, ·) is a medial quasigroup such that (Q, ·) = (Q1, ·1)× (Q2, ·2)
and the forms of quasigroups (Q, ·), (Q1, ·1) and (Q2, ·2) are defined over groups
(Q,+), (Q1,+1) and (Q2,+2) respectively, then (Q,+) ∼= (Q1,+1) × (Q2,+2) [9].

Example 1. There exist directly irreducible finite idempotent medial quasigroups,
finite unipotent medial quasigroups.

Proof. We denote by (Z9,+) the additive group of residues modulo 9. The quasi-
group (Z9, ◦) of the form x ◦ y = 2 · x + 8 · y is a medial idempotent quasigroup,
quasigroup (Z9, ∗) of the form x ∗ y = 1 · x+ 8 · y is a medial unipotent quasigroup.

These quasigroups are not simple. Indeed, if Q = {0, 3, 6}, then (Q, ◦) ⊳ (Z9, ◦)
and (Q, ∗) ⊳ (Z9, ∗).

These quasigroups are directly irreducible. Indeed, if we suppose, that these
quasigroups are directly reducible, then by Proposition 2 the group (Z9,+) is re-
ducible into the direct product of subgroups of order 3. As it is well known [11], it
is not true.

Proposition 3. Any subquasigroup (H, ·) of a medial quasigroup (Q, ·) is normal,
i.e. the set H coincides with an equivalence class of a normal congruence θ of the
quasigroup (Q, ·) ([12], Theorem 43).

Taking into consideration Proposition 3 we can say that in a simple medial
quasigroup (Q, ·) its only subquasigroups are one-element subquasigroups and the
quasigroup (Q, ·).

Remark. We notice, in general there exist non-simple medial quasigroups with
only trivial subquasigroups. For example, the quasigroup (Z9, ⋄) with the form
x ⋄ y = 2 · x+ 8 · y + 1, where (Z9,+) is the additive group of residues modulo 9, is
a non-simple quasigroup without proper subquasigroups.

But situation is better for medial idempotent and medial unipotent quasigroups,
since these quasigroups contain idempotent elements.

It is known ([1], p. 57; [2], p. 41), if θ is a normal congruence of a quasigroup
(Q, ·) and there exists an idempotent element e of the quasigroup (Q, ·), then the
equivalence class θ(e) forms a normal subquasigroup (θ(e), ·) of the quasigroup (Q, ·).

We can summarize our remarks in the following
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Proposition 4. In an idempotent medial quasigroup or in an unipotent medial
quasigroup (Q, ·) any normal congruence θ contains at least one equivalence class
θ(e) such that (θ(e), ·) is a normal subquasigroup of the quasigroup (Q, ·).

Proof. Any subquasigroup of an idempotent quasigroup is an idempotent subquasi-
group, any subquasigroup of an unipotent quasigroup is an unipotent subquasigroup.

To reformulate Theorem 3 in more details we give the following

Definition 2. We shall say that a quasigroup (Q, ·) is solvable if there exists the
following finite chain of quasigroups

Q/Q1, Q1/Q2, . . . , Qm/Qm+1,

where the quasigroup Qi+1 is a maximal normal subquasigroup of the quasigroup Qi

and m is the minimal number such that |Qm/Qm+1| = 1.

Remark. Definition 2 differs from definition of solvability of groups [11].

Proposition 5. Any finite medial idempotent quasigroup (Q, ·) is solvable and any
quasigroup Qi/Qi+1 is a finite simple medial idempotent quasigroup.

Proof. The proof it follows from Proposition 4 and the fact that the quasigroup
(Q, ·) is finite. The proposition is proved.

Proposition 6. Any finite medial unipotent quasigroup (Q, ·) is solvable and any
quasigroup Qi/Qi+1 is a finite simple medial unipotent quasigroup.

Proof. The proof is similar to the proof of Proposition 5.

Taking into consideration Propositions 5 and 6 we can concretize Theorem 3.

Theorem 5. Any finite medial quasigroup (Q, ·) is isomorphic to the direct product
of a medial unipotently-solvable quasigroup (Q1, ◦) and a principal isotope of a medial
idempotent quasigroup (Q2, ∗), where the quasigroups (Qi, ◦)/(Qi+1, ◦) and (Q2, ∗)
are solvable for all admissible values of index i, γ ∈ Aut(Q2, ∗).

Theorem 6. A quasigroup (Q, ·) of the form x · y = αx + βy is isomorphic to a
quasigroup (Q, ∗) of the form x ∗ y = γx+ δy, where α, β, γ, δ are automorphisms of
an abelian group (Q,+), if and only if there exists an automorphism ψ of the group
(Q,+) such that ψα = γψ, ψβ = δψ.

Proof. The proof of this theorem, in fact, repeats the proof of the similar theorem
from [14] and we omit it.

It is easy to see that Theorem 6 is true for medial idempotent quasigroups and
for medial unipotent quasigroups.

Example 2. We denote by (Z16,+) the additive group of residues modulo 16. The
quasigroup (Z16, ◦) of the form x◦y = 3 ·x+15 ·y+1 is isomorphic to the quasigroup
(Q, ∗) of the form x ∗ y = 3 · x+ 15 · y.

This follows from Theorem 1. Furthermore, the quasigroup (Q, ∗) is a quasigroup
with the unique idempotent element 0, the quasigroup (Q, ∗) is an unipotently-
solvable quasigroup of degree 4, since s4(Q) = s5(Q).
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Example 3. Let (Z16,+) be the additive group of residues modulo 16. The quasi-
group (Z16, ∗) of the form x ∗ y = 1 · x+ 15 · y is a solvable unipotent quasigroup of
degree 3.

Some results of this note were announced in [15].

Acknowledgement. The author thanks Prof. E.A. Zamorzaeva for her helpful
comments.
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[12] Kepka T., Němec P. T -quasigroups, II. Acta Universitatis Carolinae, Math. et Physica,
1971, 12, N 2, p. 31–49.
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