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Modeling and optimization of melting

and solidification process

A.F. Albou, V.I. Zubov

Abstract. An optimal control problem is considered for two-phase Stefan problem
describing the process of melting and solidification. The problem is solved numerically
by variation and finite-difference methods. The results are described and analyzed in
detail. Some of them are presented as tables and plots.
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1 Introduction

Heat transfer in various media has a great effect on many practically important
processes. For this reason, many studies in both physics and mathematics have been
devoted to this subject. Mathematically, heat transfer is described by boundary
value problems for a heat equation. These boundary value problems have been
thoroughly described and investigated in both handbooks and specialized literature.

Since few boundary value problems for the heat equation have analytical solu-
tions, much effort has been focused on the development of numerical methods for
problems of this kind.

Practically interesting problems concern not only the description and analysis
of heat transfer processes but also the optimal control of them. As a result, the
theory of optimal control of thermal processes has been created, which includes
the existence and uniqueness of optimal solution, finite-difference approximation
and regularization of optimal control problems, and solutions to specific practically
important problems. Relevant results in this direction can be found, for example,
in [1, 4].

An important class of heat transfer problems is that describing processes in which
the substance under study undergoes phase changes accompanied by heat release or
absorption. Problems of this kind (known as Stefan problems) arise in many situ-
ations, of which the most important and widespread are melting and solidification
processes. An important feature of these problems is that they involve a moving
interface between two phases (liquid and solid). The law of motion of the interface is
unknown in advance and is to be determined. It is on this interface that heat release
or absorption associated with phase changes occurs. The thermal properties of the
substance on the different sides of the moving interface can be different. Problems of
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this class are noticeably more complicated than those not involving phase changes.
An analysis of direct Stefan problems and methods for their solution are broadly
presented in scientific literature.

Studies concerning optimal control of processes with phase changes are relatively
few. Interesting and important (in our view) studies in this area can be found in [5,6].

In this paper, we consider the following optimal control problem for the process
of melting and solidification. Given a heat source with a time-varying strength
(which is treated as a control function), the problem is to find a source strength
temporal distribution such that no less than a prescribed portion of the sample is
melted, solidification proceeds at a rate not exceeding a prescribed magnitude, and
the total heat supplied by the source is minimal.

This problem is analyzed here in a one-dimensional (radially symmetric) time-
dependent setting. The heat source is located along the axis of symmetry. We
analyze the case of a distributed and a point source. The control function is subject
to inequality constrains, which simulate requirements imposed on the process of
melting and solidification.

2 The mathematical formulation of the problem

In the plane of independent variables (r, t) we consider a rectangular domain
Q = {(r, t) : 0 < r < R, 0 < t ≤ Θ} (see Fig. 1). a smooth curve AB with the
equation r = ξ(t) divides Q into two subdomains: L (liquid domain) and S (solid
domain). The curve AB is the trajectory of the front of melting and solidification.
Let t0 ≥ 0 be the time at which AB originates. Then L and S are defined by

L = {(r, t) : 0 < r < ξ(t), t0 < t ≤ Θ},

S = {(r, t) : ξ(t) < r < R, 0 < t ≤ Θ}.

In Q we consider the two-phase Stefan problem

ML ≡ ρLCL
∂TL

∂t
−

1

r

∂

∂r
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rkL
∂TL

∂r
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Fig. 1

∂TS

∂r
(0, t) = 0, 0 < t < t0. (8)

Here, T (r, t) is the substance temperature at the point with coordinates (r, t); ρ,
C, and k are the substance density, specific heat capacity, and thermal conductivity,
respectively; λ is the heat of fusion of the substance; the subscripts L and S denote
the liquid and solid phases, respectively; Tpl is the temperature of fusion; Tin(r)
is the initial temperature of the substance, Tin(r) ≤ Tpl; α is the heat exchange
coefficient with the surrounding medium; and Tex is the ambient temperature.

The source F (r, t) of input heat can be represented as F (r, t) = ϕ(r)f(t), where
ϕ(r) is a given function describing the spatial distribution of supplied heat. Along
with ϕ(r) and f(t), the source of input heat will also be characterized by the function

fw(t) =

∞
∫

0

2πrF (r, t)dr = f(t)

∞
∫

0

2πrϕ(r)dr.

Especially worth noting is the particular case where ϕ(r) = δ(r) is the delta
function (a point source). Overall, the statement of direct problem (1)—(8) then
remains the same, except that we set F (r, t) ≡ 0 and t0 = 0 in Eqs. (1), (2) and
conditions (7) and (8) are replaced by

lim
r→0

(

−2πkLr
∂TL

∂r

)

= f(t), 0 < t ≤ Θ. (9)

Note that f(t) coincides with fw(t) for a point source.
Problem (1)—(8) (or (1)—(6), (9)) with a given f(t) is referred to as the direct

problem.
Let ξ(t) be the interface corresponding to the source f(t), t ∈ [0,Θ], and let ξf

be the maximum of ξ(t) over t0 ≤ t ≤ Θ. The function f(t) is said to belong to
K(Θ) if it satisfies the following conditions:

(i) it is defined and piecewise continuous on [0,Θ];
(ii) it has a piecewise continuous derivative;
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(iii) it satisfies 0 ≤ f(t) ≤ fmax for all t ∈ [0,Θ];
(iv) the corresponding ξf ≥ Rpl, where Rpl is given and satisfies Rpl < R;
(v) it holds that for all t ∈ [0,Θ − β2]

ξ
′

(t) ≥ –d2. (10)

Note that the value of fmax can be infinitely large, i.e., unbounded from above.
Note also that, for a given finite fmax, Θ cannot be less than a certain value, because
otherwise the class K(Θ) will be empty.

The variation problem to be solved is stated as follows: among the functions
f(t) in K(Θ), find fopt(t) that minimizes the functional

J =

Θ
∫

0

f(t)dt. (11)

The objective functional J is proportional to the total heat Jw supplied by the
source over the observation time and equal to

Jw =

Θ
∫

0

fw(t)dt. (12)

For mathematical modeling of the direct problem (determination of temperature
distribution and interface separating the phases when control function – supplied
heat – is given) the numerical algorithm was worked out and realized.

3 The algorithm of solving the direct problem

The algorithm that solves the direct problem is designed to deal with a dis-
tributed source, when ϕ(r) 6= δ(r). Essentially, it is a non front-capturing algorithm.
The main idea of the algorithm was proposed by M. Rose in [7] and was developed
by R.E. White in [8,9]. Here the path of the interface is not regarded as an explicitly
imposed interior boundary condition. M.E.Rose suggested a generalized formulation
of the problem and shows that genuine solution of the problem is its weak solution.
On the other hand two genuine solutions whose domains of definition are separated
by a smooth curve will constitute a weak solution if and only if the Stefan conditions
(4), (5) connecting solid and liquid phases on the line take place.

In accordance with [7] we change from the unknown temperature T (r, t) to the
enthalpy function E(r, t) defined in terms of temperature as

E(T ) =

{

ρSCST, T < Tpl,
ρLCL(T − Tpl) + ρSCSTpl + ρSλ, T ≥ Tpl.

Note that the function E(T ) has a jump at the melting point Tpl. Treating the
enthalpy E(r, t) as a basic variable and the temperature T (E) as defined by the
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relation

T (E) =







Eρ−1
S C−1

S , E < E− = ρSCSTpl,
Tpl, E− ≤ E ≤ E+ =E−+ρSλ,

[E+(ρLCL−ρSCS)Tpl−ρSλ] ρ−1
L C−1

L , E+ < E

one can consider temperature as a continuous function of enthalpy.

In the general case, the heat conductivity depends on temperature and has a
jump at the melting point, which corresponds to a transition from solid to liquid
phase. In the proposed algorithm, the heat conductivity is a function of enthalpy
defined as

Ω(E) = k(T (E)) =







kS , E < E−,
kS + (E−E−)(kL−kS)(E+−E−)−1, E− ≤ E ≤ E+,
kL, E > E+.

Problem (1)–(8) is reformulated in terms of the enthalpy function E(r, t) as

∂E

∂t
=

1

r

∂

∂r

(

rΩ(E)
∂T (E)

∂r

)

+ F (r, t), (r, t) ∈ Q,

E(r, 0) = E(Tin(r)), 0 < r < R, (13)

∂E

∂r

∣

∣

∣

∣

∣

r=0

= 0, 0 ≤ t ≤ Θ,

Ω(E)
∂T (E)

∂r

∣

∣

∣

∣

∣

r=R

= α [Tex − T (E(R, t))] , 0 ≤ t ≤ Θ.

To approximate the boundary value problem (13) in the domain Q, we introduce a
nonuniform grid ω = {ri, t

j}, where

r0 = t0 = 0, ri = ri−1 + hi−1, tj = tj−1 + τ j , (i = 1, . . . ,K; j = 1, . . . ,M).

Using an implicit approximation with respect to time and an integro-interpolation
method, we obtain the following system of finite-difference equations:

Ej
0 + a0Ω̂(Ej

0)T (Ej
0) − a0Ω̂(Ej

0)T (Ej
1) = Ej−1

0 + τ jF j
0 ,

Ej
i + [aiΩ̂(Ej

i ) + biΩ̂(Ej
i−1)]T (Ej

i ) − biΩ̂(Ej
i−1)T (Ej

i−1)−

−aiΩ̂(Ej
i )T (Ej

i+1) = Ej−1
i + τ jF j

i , (1 ≤ i ≤ K − 1), (14)

Ej
K + [aKα + bKΩ̂(Ej

K−1)]T (Ej
K) − bKΩ̂(Ej

K−1)T (Ej
K−1) =

= aKαTex + Ej−1
K + τ jF j

K ,

j = 1, . . . ,M.
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Here, we introduce the following notation:

a0 =
4τ j

h2
0

, aK =
8τ jrK

4rKhK−1(1 − hK−1)
, bK =

4τ j(2rk − hK−1)

h2
K−1(4rk − hK−1)

,

ai =
4τ j(2ri + hi)

4rihi(hi + hi−1) + h3
i − h2

i−1hi

, bi =
4τ j(2ri − hi−1)

4rihi−1(hi + hi−1) − h3
i−1 + h2

i hi−1
,

(i = 1, . . . ,K − 1),

Ej
i = E(ri, t

j), F j
i = F (ri, t

j), Ω̂(Ej
i ) = Ω[(Ej

i + Ej
i+1)/2].

The system of finite-difference equations (14) is an implicit approximation of the
boundary value problem (13) restricted to O(τ, h2) terms, where τ = max

j
τ j ,

h = max
i

hi.

The system of algebraic equations (14) can be split into M subsystems relating
the enthalpy dependent quantities calculated on the j-th time layer with those cal-
culated on the (j − 1)-th time layer, j = 1, . . . ,M . To facilitate further analysis,
we represent the dependence of temperature T on E as T (E) = µE + ν, where the
functions µ and ν are defined as follows:

µ(E) =







ρ−1
S C−1

S , E < E−,
0, E− ≤ E ≤ E+,

ρ−1
L C−1

L , E+ < E,

ν(E) =







0, E < E−,
Tpl, E− ≤ E ≤ E+,

((ρLCL − ρSCS)Tpl − ρSλ) ρ−1
L C−1

L , E+ < E.

We also introduce (K+1)-dimensional vectors D(Ej), L(Ej), U(Ej) and ηηηηj , defined
in terms of the components of the (K +1)-dimensional vector E

j = ‖Ej
0 Ej

1 . . . Ej
K‖T

by the relations

D0(E
j) = a0Ω̂(Ej

0), DK(Ej) = αaK + bKΩ̂(Ej
K−1),

Di(E
j) = aiΩ̂(Ej

i ) + biΩ̂(Ej
i−1), (i = 1, . . . ,K − 1),

L0(E
j) = 0, Li(E

j) = biΩ̂(Ej
i−1), (i = 1, . . . ,K),

UK(Ej) = 0, Ui(E
j) = aiΩ̂(Ej

i ), (i = 0, . . . ,K − 1),

ηj
K = aKαTex + Ej−1

K + τ jF j
K , ηj

i = Ej−1
i + τ jF j

i , (i = 0, . . . ,K − 1).

Now, the j-th subsystem of (14) (j = 1, . . . ,M) can be written as

Ej
i + Di(E

j)T (Ej
i ) − Li(E

j)T (Ej
i−1) − Ui(E

j)T (Ej
i+1) = ηj

i , (15)

(i = 0, . . . ,K).

In [8], two iterative algorithms were proposed for solving the nonlinear system of
equations (15). One of them is based on a modified Jacobi method. Defining the
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(K+1)-dimensional vector V
n = ‖V n

0 V n
1 . . . V n

K‖T obtained as the approximation of
E

j at the n-th iteration step (the initial approximation V
0 is the vector E calculated

on the preceding time layer, i.e., E
j−1), we formulate the modified Jacobi method

as the iterative calculation of the vector V
n+1 given by the relation

V n+1
i =(1−ω)V n

i +ω
Li(V

n)T (V n
i−1)+Ui(V

n)T (V n
i+1)−Di(V

n)ν(V n
i )+ηj

i

1 + Di(Vn)µ(V n
i )

, (16)

(i = 0, . . . ,K).

The iteration is continued until the relative difference in the values of the desired
function between consecutive iteration steps,

ε = max
i=0,...,K

V n+1
i − V n

i

V n
i

(i.e., the iteration error), becomes less than a required value.

The other algorithm proposed in [8] is based on a modified Gauss-Seidel method.
In this algorithm, the vector V

n+1 is calculated as

V n+1
i =(1−ω)V n

i +ω
Li(V

n)T (V n+1
i−1 )+Ui(V

n)T (V n
i+1)−Di(V

n)ν(V n
i )+ηj

i

1 + Di(Vn)µ(V n
i )

, (17)

(i = 0, . . . ,K).
In both algorithms, the parameter ω is introduced to improve convergence. We
recommend to define this parameter as follows:

ω(E) =







ω0, E < E−,

(1 − ω0)(E − ρSCSTpl)ρ
−1
S λ−1 + ω0, E− ≤ E ≤ E+,

1, E+ < E,

where ω0 is an arbitrary parameter (referred to as the accelerating parameter);
1 ≤ ω0 < 2. In both (16) and (17), ω is calculated by using the values found
at the preceding iteration step. In [8, 9] it was proved that the proposed iterative
processes are convergent under certain conditions, and various examples of Stefan-
type problems solved by applying algorithms (16) and (17) to the corresponding
systems of algebraic equations were presented.

Previously, we used both the modified Jacobi algorithm and the modified Gauss-
Seidel algorithm to solve problem (13). In the course of our computations, we found
that the rate of convergence of the iterative processes (16) and (17) executed to
solve the actual systems of algebraic equations was low. It was also found that the
iterative processes could be substantially accelerated by using a new procedure [10].
Let us define the vector V

n+1 at each iteration step as a solution to the following
system of equations:

−Li(V
n)µ(V n

i−1)V
n+1
i−1 + [1 + Di(V

n)µ(V n
i )]V n+1

i − Ui(V
n)µ(V n

i+1)V
n+1
i+1 =
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= Li(V
n)ν(V n

i−1) − Di(V
n)ν(V n

i ) + Ui(V
n)ν(V n

i+1) + ηj
i , (18)

(i = 0, . . . ,K).
System (18) has a tridiagonal matrix. If the time step τ j is not too large, then this
matrix has a diagonal dominance, and system (18) can be solved by means of the
efficient tridiagonal algorithm. The new iterative process (18), combined with the
tridiagonal algorithm for determining a solution at the (n + 1)-th iteration step, is
the essence of the proposed modification of the approaches developed in [8, 9].

The process of solving (13) is terminated by determination of the melting front.
Define Epl = (E− + E+)/2. If the conditions Ej

z ≥ Epl and Ej
z+1 < Epl are satisfied

for some 0 ≤ z ≤ K at t = tj, then the melting radius is calculated as

ξj =
(Epl − Ej

z+1)(rz − rz+1)

Ej
z − Ej

z+1

+ rz+1. (19)

4 The solution of the variation problem

The variation problem formulated in Chapter 1 was solved numerically by gra-
dient methods . For calculation the gradient of function the Fast Automatic Differ-
entiation methodology was used [11]. To pick comparison functions from the set of
class K(Θ) piecewise continuous functions, we used the method of external penalty
functions. In this approach, the set of admissible comparison functions is much
broader than K(Θ), but the cost functional is minimized by an element of the class
K(Θ). This reduces the constraint minimization of the cost functional J in (11) to
the unconstraint minimization of the generalized functional I = J + g(ξf ) + Ξ, were
g(r) = A0(r − Rpl)

2 (with a constant A0 ) is the penalty functional responsible for
the fulfillment of the condition ξf = Rpl, and

Ξ =

Θ
∫

0

A(t)

(

dξ

dt
+ d2

)

dt, A(t) =







0,
(

dξ
dt

+ d2
)

≥ 0,

A0(t),
(

dξ
dt

+ d2
)

< 0,

is the penalty functional ensuring an admissible cooling rate. Here ξf = max
1≤j≤M

ξj ,

were ξj is given by (19). If this maximum is reached at j = n (1 ≤ n ≤ M), then

ξf =
(Epl − En

z+1)(rz − rz+1)

En
z − En

z+1

+ rz+1.

Using the rectangles method to approximate the functional J in (11), we obtain the
following approximate expression for the generalized functional I:

I ≈ Ĩ =

M
∑

j=1

τ jf j+Ĩ1+Ĩ2, Ĩ1=A0

[

(Epl − En
z+1)(rz − rz+1)

En
z − En

z+1

+ rz+1 − Rpl

]2

,

Ĩ2 =

M
∑

j=1

τ jAj(σj + d2), Aj = A(tj), σj =

(

dξ

dt

)j

.
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The Fast Automatic Differentiation methodology allows us to deduce next for-
mula for calculation the components of the gradient of the generalized functional
I:

dĨ

df j
= τ j +

w
∑

i=0

τ jpj
iϕi, (1 ≤ j ≤ M),

were w is the vertex number defined by the condition

ϕ(r) =

{

ϕw(r) 6= 0, 0 ≤ r ≤ rw,
0, r > rw.

In this expression pj
i denote the values of conjugate variables (impulses). The

impulses are determined by the next linear system of algebraic equations:

pM+1
i = 0, (i = 0, . . . ,K),

pj
0 = −a0Y

j
1 pj

0 + b1Y
j
1 pj

1 + pj+1
0 + Ĩ1

E
j
0

+ Ĩ2
E

j
0

,

pj
1 = a0X

j
1pj

0 − a1Y
j
2 pj

1 − b1X
j
1pj

1 + b2Y
j
2 pj

2 + pj+1
1 + Ĩ1

E
j
1

+ Ĩ2
E

j
1

,

pj
i = ai−1X

j
i pj

i−1 − aiY
j
i+1p

j
i − biX

j
i pj

i + bi+1Y
j
i+1p

j
i+1 + pj+1

i + Ĩ1
E

j
i

+ Ĩ2
E

j
i

,

(2 ≤ i ≤ K − 2),

pj
K−1 = aK−2X

j
K−1p

j
K−2 − bK−1X

j
K−1p

j
K−1 − aK−1Y

j
Kpj

K−1 + bKY j
Kpj

K+

+pj+1
K−1 + Ĩ1

E
j

K−1

+ Ĩ2
E

j

K−1

,

pj
K = aK−1X

j
Kpj

K−1 − bKXj
Kpj

K − aKαT
′

E
j
K

(Ej
K)pj

K + pj+1
K + Ĩ1

E
j
K

+ Ĩ2
E

j
K

,

(j = M,M − 1, . . . , 1).

Here Xj
i and Y j

i denote the following derivatives:

Xj
i =

∂

∂Ej
i

(

Ω̂(Ej
i−1)T (Ej

i )
)

−
∂

∂Ej
i

(

Ω̂(Ej
i−1)T (Ej

i−1)
)

,

Y j
i =

∂

∂Ej
i−1

(

Ω̂(Ej
i−1)T (Ej

i−1)
)

−
∂

∂Ej
i−1

(

Ω̂(Ej
i−1)T (Ej

i )
)

,

and Ĩ1
E

j
i

, Ĩ2
E

j
i

represent the partial derivatives of the functions Ĩ1, Ĩ2 with respect to

Ej
i :

Ĩ1
E

j
i

=







Λ(Epl − En
z+1), i = z, j = n,

Λ(En
z − Epl), i = z + 1, j = n,

0, in other case,

Ĩ2
E

j
i

=

M
∑

j=1

(

Ajτ j ∂σj

Ej
i

)

,
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Λ = 2A
(rz+1 − rz)

(En
z − En

z+1)
2

[

(Epl − En
z+1)(rz − rz+1)

En
z − En

z+1

+ rz+1 − Rpl

]

.

To find Ĩ2
E

j
i

, we have to evaluate ∂σj/∂Ej
i . So first we describe an algorithm for

determining {σj} (see Fig.2).

Fig. 2a Fig. 2b

Suppose that r = ξ(t), describing interface motion has its maximum value ξf at
t = t∗∗, where ξf is defined as

ξf =
(Epl − Eñ

z+1)(rz − rz+1)

Eñ
z − Eñ

z+1

+ rz+1.

Here the index z indicates a spatial interval containing the maximum of r = ξ(t), i.
e. rz < ξf ≤ rz+1 (see Fig. 2a), and the index ñ separates the time intervals before
and after t = t∗∗, i. e. tñ−1 < t∗∗ ≤ tñ. The index m̃ can be used to determine
a time interval containing the intersection point (rz, y) of the curve r = ξ(t) of the
coordinate line r = rz, i. e. tm̃ ≤ y ≤ tm̃+1. Now all components of {σj} can be
divided into two groups: regular and singular. The coordinates of {σj} and their
partial derivatives for each group are calculated by somewhat different formulas.
While deriving these formulas, we assumed in both cases that the slope of r = ξ(t)
(i. e., the component σj) within a single spatial cell is a constant and the energy Ej

i

is a linear function on [tj , tj+1].

1. Let us consider the singular group first. It consists of those components of
{σj} for which the corresponding ξj = ξ(tj) belong to the interval rz < ξj ≤ ξf or,
equivalently, for which ñ ≤ j ≤ m̃ (see Fig. 2a). The component σj of {σj} can
be calculated by the formula σj = (rz − ξf )/(y − t∗∗). Introducting the notation
b∗1 = Em̃+1

z −Em̃
z , b∗2 = Eñ

z+1−Eñ
z , ν∗ = (Epl −Em̃

z )τ m̃+1 + b∗1(t
m̃− tñ) and taking

into account that the time t = y can be found by linear interpolation as

y =
(Epl − Em̃+1

z )τ m̃+1

Em̃+1
z − Em̃

z

+ tm̃+1,

we can represent the component σj of {σj} as σj = hzb
∗
1(E

ñ
z − Epl)/b

∗
2ν

∗. Each σj

depends on the point energy values Em̃
z , Em̃+1

z , Eñ
z , and Eñ

z+1. Consequently, the ex-
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pression for Ĩ2
E

j
i

contains the derivatives of σjonly with respect to these components

of the energy vector. These derivatives are calculated by the formulas:

∂σj

∂Eñ
z

=
c∗1(E

ñ
z+1 − Epl)

(b∗2)
2

,
∂σj

∂Eñ
z+1

=
c∗1(Epl − Eñ

z )

(b∗2)
2

,

∂σj

∂Em̃
z

=
c∗2τ

m̃+1(Em̃+1
z − Epl)

(ν∗)2
,

∂σj

∂Em̃+1
z

=
c∗2τ

m̃+1(Epl − Em̃
z )

(ν∗)2
,

where c∗1 = hzb
∗
1/ν

∗, c∗2 = hz(E
ñ
z − Epl)/b

∗
2.

2. Now consider the regular group of components. It consists of all components
of {σj} not included in the singular group. A characteristic feature of this group
is that ξj ≤ rz. Suppose that the interface r = ξ(t) intersects the coordinate line
r = rs+1 at the point t = y1 lying on the time interval (tn, tn+1] and intersects the
coordinate line r = rs (rs < rs+1) at the point t = y2, y2 ∈ (tm, tm+1] (see Fig.2b).
Then all σj whose index j satisfies n < j ≤ m can be calculated by the formula
σj = (rs − rs+1)/(y2 − y1) = hs/(y1 − y2). The times t = y1 and t = y2 can be found
by linear interpolation:

y1 =
(Epl − En+1

s+1 )τn+1

En+1
s+1 − En

s+1

+ tn+1, y2 =
(Epl − Em+1

s )τm+1

Em+1
s − Em

s

+ tm+1.

As a result, σj is expressed as σj = a∗1a
∗
2hs/z

∗, where

a∗1 = Em+1
s − Em

s , a∗2 = En+1
s+1 − En

s+1,

z∗ = a∗1(Epl − En
s+1)τ

n+1 − a∗2(Epl − Em
s )τm+1 + a∗1a

∗
2(t

n − tm).

Each σj depends on the point energy values Em
s , Em+1

s , En+1
s+1 , and En

s+1. Con-

sequently, the expression for Ĩ2
E

j
i

contains the derivatives of σj only with respect

to these components of the energy vector. These derivatives are calculated by the
formulas:

∂σj

∂Em
s

= hs(a
∗
2)

2τm+1(Epl − Em
s − a∗1)/(z

∗)2,

∂σj

∂Em+1
s

= hs(a
∗
2)

2τm+1(Em
s − Epl)/(z

∗)2,

∂σj

∂En
s+1

= hs(a
∗
1)

2τn+1(En
s+1 − Epl + a∗2)/(z

∗)2,

∂σj

∂En+1
s+1

= hs(a
∗
1)

2τn+1(Epl − En
s+1)/(z

∗)2.

In the other cases, ∂σj/∂Ej
i was set equal to zero.
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5 The results of solution of variation problem

The variation problem, with the input parameters varying in wide ranges, was
solved numerically in numerous runs. The qualitative behavior of the optimal control
of melting and solidification and its structure were found to depend weakly on the
input parameters of the problem.

All results presented below were obtained for the following thermophysical pa-
rameters given in SI units:

ρS = 7700, kS = 22, CS = 730, ρL = 7700, kL = 22,

CL = 730, Tpl = 1773.15, Tex = 293.15, Tin(r) ≡ 293.15,

α = 1, λ = 1291666.615.

Previously, the equations and the boundary conditions were nondimensionalized.
Changing to dimensionless variables, we divided all the lengths by Rpl; all the tem-
peratures by Tpl; the density, heat conductivity, and specific heat capacity by their
respective means ρ∗, k∗, and C∗; the time by R2

plρ∗C∗/k∗; and the source strength

F by k∗Tpl/R
2
pl. In what follows, all the quantities are dimensionless.

The computations were performed on a nonuniform spatial grid containing 400
nodes. The grid was finer toward the axis r = 0 and the line r = Rpl. The time
step was constant and was chosen so as to ensure the required accuracy of numerical
results. The source was nearly a point (rw = 0.003).

An analysis of the numerical results obtained suggests the following conclusions
about the structure of the optimal control:

(i) The optimal control consists of two basic components.

(ii) The first optimal-control component (responsible primarily for melting) co-
incides with the upper bound f(t) ≡ fmax.

(iii) The second optimal-control component (responsible for solidification) is
smaller than the first (if we compare their averages) and is separated from the
latter by a short interval with f(t) ≡ 0 .

(iv) The time ton for which the source is turned on at the phase of solidification
depends on both fmax and the limit cooling rate d2. Depending on these parameters,
ton either precedes the time t∗∗ at which the extent of the melted domain reaches
its maximum possible value ξ(t∗∗) = Rpl (for small values of d2), succeeds t∗∗ (for
large values of d2), or coincides with it.

To illustrate the general structure of the optimal control, Fig.3 shows its temporal
dependencies obtained by solving the variation problem. The plots correspond to
fmax = 10.0 and d2 = 0.3 (Fig.3a), fmax = 10.0 and d2 = 0.4 (Fig.3b), and fmax =
5.0 and d2 = 0.5 (Fig.3c).

In the article the influence of different parameters of the problem on to optimal
control was investigated.

a) Influence of d2 on the First Optimal-Control Component
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Fig. 3a Fig. 3b

In all the regimes, the first optimal-control component is given by

fopt(t) =

{

fmax, 0 ≤ t ≤ t∗,
0, t∗ < t.

(20)

Here, t∗ (the time for which the source is turned on at the melting stage) depends
on the regime.

If d2 is such that ton ≥ t∗∗, then t∗ is determined by the condition that the
maximum radius of the melted domain is Rpl for the source defined by (20); i.e.
ξf = Rpl. In this case, the first optimal-control component is not affected by the
second one.

If d2 is such that ton < t∗∗, then the first optimal-control component is affected
by the second. The value of t∗ somewhat decreases in this case. However, our
numerical computations have shown that this effect is small and can be neglected
within the accuracy of the numerical results.

Hence, the first optimal-control component can be determined regardless of the
second component by applying the algorithm described in [12].

b) Influence of d2 on the Second Optimal-Control Component
We examined how the second optimal-control component depends on d2 for a

fixed fmax. Both the first and the second optimal-control components were deter-
mined by solving the variation problem. Figure 4 shows the optimal distributions of
the source strength fw vs. time for various values of d2. The number near a curve
indicates the value of d2 used for obtaining this optimal control. An analysis of the
numerical results presented in Fig. 4a,b,c shows that the optimal controls corre-
sponding to different values of d2 behave likewise, and all characteristic parameters
(the length of the interval t ∈ [t∗∗,Θ∗ − β2], the maximum and minimum values of
fw(t), etc.) decrease with increasing d2 (for details see [13]).

c) Influence of fmax on the Second Optimal-Control Component
We also examined how the second optimal-control component depends on fmax

for a fixed d2. The numerical computations revealed that fmax has a large effect on
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the second optimal-control component. Figure 5 displays the location of the liquid
— solid interface vs. time. The source was defined by (20) at the stage of melting
and was not turned on at the stage of solidification (which corresponds to d2 = ∞).
The digits near the curves indicate the value of fmax used in the determination of the
corresponding front. The value of Rpl is reached more rapidly when fmax is higher.
The segments of the curves corresponding to the motion of the solidification front
seem parallel, but this is not the case. For smaller values of fmax, the trajectory is
steeper and the solidification rate is lower. Inspection of the plots suggests that small
values of fmax are preferable. However, numerous computations have shown that it
is preferable to increase fmax, thus increasing the violation of (10) and, accordingly,

Fig. 3c Fig. 4a

Fig. 4b Fig. 4c
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increasing the source strength at the solidification stage.

Fig. 5 Fig. 6a

To confirm this conclusion, the full variation problem was solved numerically
with fmax = 9.98 and fmax = 10.0. The resulting values of the cost functional
were found to be Jw = 15.160 and Jw = 15.152, respectively. Figure 6 shows the
optimal control at the stage of solidification (the second optimal-control component)
for various values of fmax. Figures 6a and 6b correspond to d2 = 0.3, and Figs.6c
and 6d, to d2 = 0.4. The digits near the curves indicate the corresponding values
of fmax. The zero time corresponds to the beginning of the process. It should be
noted that the second optimal-control components qualitatively resemble each other
for various parameter values. The larger the value of fmax, the earlier is the turn-
on time at the stage of solidification. The smaller the value of d2, the higher the
source strength at the respective instants and the longer the turn-on time. It should
be noted that the second optimal-control components approach each other as fmax

increases. The curves for which fmax > 80.0 are virtually indistinguishable. The
functional values virtually do not differ from those corresponding to fmax = 500 (see
Table 1).

d) Influence of fmax and d2 on the Functional

To determine the effect of these parameters on the optimal control, we carried
out a large amount of computations. Some of the results are presented in the Table

1, which lists the values of Jw, J
(1)
w , and J

(2)
w . As mentioned above, the heat source

was turned on twice: at the stage of melting and at the stage of solidification.
The regimes under study were chosen so that the time intervals with the source
turned on were not overlapped. In this case, Jw in (12) can be represented as

the sum Jw = J
(1)
w + J

(2)
w , where J

(1)
w is the heat supplied during the first turn-on

(melting) and J
(2)
w is the heat supplied during the second turn-on (solidification).

Based on numerous numerical results, the following conclusions can be made about
the influence of fmax and d2 on the cost functional value corresponding to the optimal
control (see Table 1).
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Fig. 6b Fig. 6c

(i) The larger fmax, the smaller the values of Jw and J
(1)
w .

(ii) The larger d2, the smaller the values of Jw and J
(2)
w .

(iii) The larger fmax, the larger the value of J
(2)
w .

(iv) The contribution of J
(2)
w to Jw (the ratio J

(2)
w /J

(1)
w ) increases with fmax.

These conclusions are supported by the plots of Jw, J
(1)
w , and J

(2)
w vs. fmax for

d2 = 0.4 displayed in Fig. 7. Note that the qualitative behavior of Jw and J
(1)
w is

similar.

Importantly, the smaller d2, the greater the number of iterations and CPU time
required for obtaining the optimal control, although qualitative changes in the op-
timal control vs. time were not observed. For small values of d2, small variations in
this parameter lead to substantial quantitative changes in the optimal control. For
example, for fmax = 10 , we have max fw(t) ≈ 1 for d2 = 0.4, max fw(t) ≈ 2 for
d2 = 0.3, and max fw(t) ≈ 4 for d2 = 0.2. a similar dependence is observed for the
duration ∆T of the source operation: ∆T ≈ 2.3 for d2 = 0.4, ∆T ≈ 3.0 for d2 = 0.3,
and ∆T ≈ 4.5 for d2 = 0.2.

Note that the contribution of J
(2)
w to Jw is not small and increases noticeably with

decreasing d2 for a fixed fmax. For example, at fmax = 10, we have J
(2)
w /Jw ≈ 0.03

for d2 = 0.5, J
(2)
w /Jw ≈ 0.09 for d2 = 0.4, J

(2)
w /Jw ≈ 0.18 for d2 = 0.3, and

J
(2)
w /Jw ≈ 0.32 for d2 = 0.2 (see Table 1).

e) Alongside with the problem posed above two supplementary subproblems
were studied: the problem of melting at absence of limitations (10) on speed of
crystallization [12] and task of crystallization at given control at a stage of melting
[13].

The first part of optimal control (responsible for melting process) has next struc-
ture [12] . If there were no restrictions on source power from top then the optimal
control represents the injection all necessary heat at initial time moment; if there
are restrictions from the top then the optimal control consists of two parts coincide
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Table 1

fmax 5 10 20 42 500

d2

Jw 23.4906 14.2022 12.0533 11.3994 11.1772

0.5 J
(1)
w 23.2843 13.7659 11.3264 10.5337 10.2544

J
(2)
w 0.2063 0.4363 0.7269 0.8657 0.9228

Jw 24.2699 15.1520 13.0855 12.4537 12.2483

0.4 J
(1)
w 23.2841 13.7630 11.3264 10.5337 10.2507

J
(2)
w 0.9858 1.3890 1.7591 1.9200 1.9976

Jw 25.8284 16.8314 14.8389 14.2136 14.0131

0.3 J
(1)
w 23.2850 13.7659 11.3260 10.5336 10.2540

J
(2)
w 2.5434 3.0655 3.5129 3.6800 3.7591

Jw 20.2064

0.2 J
(1)
w 13.7640

J
(2)
w 6.4424

Fig. 6d Fig. 7a

with the boundary. If the heat source is distributed in space the structure of optimal
control is the same.

As the optimal control at a stage of melting coincides the upper boundary re-
striction, for its determination it is necessary to find only moment of switchover of
a source from the upper limitation on lower.

The optimal control on the stage of substance crystallization consists also of two
parts [13] . First, it coincides with lower boundary of the source power constraint
and then changes over (continuously or stepwise) to the second part. This second
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Fig. 7b Fig. 7c

part is determined by requirements that the rate of the crystallization front should
be not more than given amount and that emerged energy of the source should be
minimal.

The numerous results of the solution of the supplementary problems have coin-
cided with large accuracy with the applicable results, which one were obtained at
the solution of the problem in full posing. It is no wonder: as is marked in post
a), with accuracy of spent calculations the first part of optimal control is instituted
irrespective of the second part.

The investigations of the problem permit to make following conclusions. In the
parameter range that was used while investigations took part, the optimal control
could be determined from the solution of two successive problems. First, we solve
the melting problem and then, using its results as the initial data for the second
one, we examine the crystallization problem. Usage of such splitting at the solution
of the full variation problem essentially economizes expenditures on deriving of the
optimal solution.
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