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Stability and fold bifurcation in a system

of two coupled demand-supply models

Mihaela Sterpu, Carmen Rocşoreanu

Abstract. A model of two coupled demand-supply systems, depending on 4 param-
eters is considered. We found that the dynamical system associated with this model
may have at most two symmetric and at most two nonsymmetric equilibria as the
parameters vary.

The topological type of equilibria is established and the locus in the parameter
space of the values corresponding to nonhyperbolic equilibria is determined.

We found that the nonhyperbolic singularities can be of fold, Hopf, double-zero
(Bogdanov-Takens) or fold-Hopf type.

In addition, the fold bifurcation is studied using the normal form method and the
center manifold theory.

Mathematics subject classification: 37G10, 37L10.
Keywords and phrases: Coupled dynamical systems, normal form, fold bifurcation,
center manifold.

1 The mathematical model

The demand-supply model describes the way in which the price p and the quan-
tity q reacts one to another. This model was proposed by Beckmann and Ryder [1]
(1969) and Collel (1986). It is based on the economic principles of Walras and Mar-
shall [2]. According to their hypothesis, the variation of the price is function of
the difference between the demanded quantity of the product D(p) and the offered
quantity S(p) at the price p, while the variation of the quantity is function of the
difference between the price pd(q) demanded for the quantity q and the price ps(q)
offered for this quantity. In addition, these two functions keep constant the sign of
their argument. Thus, the mathematical model has the form [4]:

{

ṗ = f(D(p) − S(p)),
q̇ = g(pd(q) − ps(q)).

(1)

with f(0) = g(0) = 0, f/(0) > 0, g/(0) > 0.
If f(x) = x, g(x) = x, S(p) = q, pd(q) = p, D(p) = ap + β, ps(q) = cq2 + δ,

system (1) becomes:
{

ṗ = ap + β − q,

q̇ = p − cq2 − δ.
(2)

In economy, the laws of demand and offer are available. According to them [3], as the
price of the product increases, the demanded quantity decreases, so the function D(p)
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is decreasing and we must have a < 0. Similarly, the function ps(q) is increasing, so
we have c > 0.

The economic interest is to reach an equilibrium between the price and the
quantity.

With the transformation u = p−δ and denoting b = aδ+β, system (2) is written
as:

{

u̇ = au − q + b,

q̇ = u − cq2.
(3)

A study of dynamics and bifurcation of this system is developed in [5]. The
coordinates of equilibria of system (3) satisfy

{

au − q + b = 0,
u − cq2 = 0.

Denote ∆ = 1−4abc. Since ac 6= 0 there are two equilibria
(

cα2, α
)

, with α = 1±
√

∆
2ac ,

as ∆ > 0, a single equilibrium
(

1
4a2c

, 1
2ac

)

as ∆ = 0 and no equilibria as ∆ < 0.
The equilibrium

(

1
4a2c ,

1
2ac

)

is always nonhyperbolic, namely of saddle-node type
as a 6= −1 and of double zero type as a = −1. The equilibrium

(

cα2, α
)

, with

α = 1−
√

∆
2ac , is nonhyperbolic of Hopf type iff

√
∆ = 1 − a2, a ∈ (−1, 0) . Otherwise,

it is a repulsor as a2 − 1 +
√

∆ > 0 and an attractor as a2 − 1 +
√

∆ < 0. In [5] it is
shown that crossing the parameter stratum

√
∆ = 1 − a2, a ∈ (−1, 0) , a subcritical

Hopf bifurcation takes place. Finally, the equilibrium
(

cα2, α
)

, with α = 1+
√

∆
2ac , is

always hyperbolic of saddle type.

In our study, a model of two identical demand-supply dynamical systems (3),
symmetrically coupled via the quantity flow is considered. It reads















ẋ1 = ax1 − x2 + b,

ẋ2 = x1 − cx2
2 + d (x2 − x4) ,

ẋ3 = ax3 − x4 + b,

ẋ4 = x3 − cx2
4 + d (x4 − x2) .

(4)

This system models the interaction between two identical demand-supply models.
Thus we shall focus on parameter values such that the system (4) display either
a steady stable state or periodic behavior. Systems coupled in the form (5) are
often used in the literature. As a result of the couplage, some characteristics of the
behavior around the equilibria are preserved, but new kind of dynamics arise [6–9].

A consequence of this form of coupling and of the assumption that the models
are identical is the invariance of (4) under the transformation (x1, x2, x3, x4) →
(x3, x4, x1, x2) . The same symmetry leads to the existence of an invariant subspace

I =
{

(x1, x2, x3, x4) ∈ R4, x1 = x3, x2 = x4

}

.

A solution of (4) lying in I will be referred to as symmetric solution, while one
which does not lie in I as nonsymmetric solution. By economic reasons, we shall
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investigate only the case a < 0, c > 0. We also assume d > 0. Thus we consider the
set of parameters of interest from application point of view as

D =
{

(a, b, c, d) ∈ R4, a < 0, c > 0, d > 0
}

.

2 Equilibria and nonhyperbolic singularities

System (4) possesses at most two symmetric equilibria of the form

es =
(

cα2, α, cα2, α
)

, (5)

where α ∈ R satisfies the equation

acα2 − α + b = 0, (6)

whose discriminant is ∆ already introduced. As ac 6= 0, for ∆ = 0, there exists a
unique equilibrium e0s, with α = 1

2ac ; and for ∆ > 0, system (4) has two symmetric

equilibria e1s, e2s, corresponding to α1 = 1+
√

∆
2ac and α2 = 1−

√
∆

2ac , respectively; while
for ∆ < 0 there are no symmetric equilibria.

As ac 6= 0, system (4) may also possess at most two nonsymmetric equilibrium
points, of the form

ea =

(

α′ − b

a
, α′,

1 + 2ad

a2c
− α′ + b

a
,
1 + 2ad

ac
− α′

)

, (7)

where α′ satisfies the equation

cα2 − 1 + 2ad

a
α +

d + 2ad2 + bc

ac
= 0. (8)

Denote by ∆′ = 1 − 4abc − 4a2d2 the discriminant of (8). Note that if ∆′ = 0, we
have α′ = 1+2ad

2ac and the corresponding equilibrium ea coincides with e2s. Thus we
obtain the following result:

Lemma 1. Assume a < 0, c > 0.

(i) If ∆ < 0, system (4) has no equilibria;

(ii) if ∆ = 0, system (4) has a unique equilibrium point e0s, given by (5) with
α = 1

2ac ;

(iii) if ∆ > 0 and ∆′ ≤ 0 system (4) has two equilibria e1s, e2s;

(iv) if ∆′ > 0, system (4) has four equilibrium points e1s, e2s, e1a, e2a.

As a consequence, the static bifurcation diagram of the dynamical system (4) in
D is the set

S =
{

(a, b, c, d) ∈ D, (1 − 4abc)
(

1 − 4abc − 4a2d2
)

= 0
}

.

Sections in the static bifurcation set S with a plane b = b0, c = c0, are plotted in Fig.
1, for different values of b0, c0, and the number of equilibrium points corresponding
to each stratum is shown.
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Figure 1. Section with a plane b = b0, c = c0 in the static bifurcation diagram:
i) b = −0.5, c = 0.25; ii) b = 0.5, c = 0.25. The number of equilibria corresponding
to each stratum is shown

3 The topological type of equilibria

In this section we determine the topological type of the four equilibrium points
of system (4), analyzing the variation of the eigenvalues of the Jacobi matrix of the
linearized system associated with (4) around each of the four equilibria.

Let e = (e1, e2, e3, e4) ∈ R4 be an equilibrium point of system (4). The Jacobi
matrix of (4) around e reads

J (e) =









a −1 0 0
1 d − 2ce2 0 −d

0 0 a −1
0 −d 1 d − 2ce4









.

Denote by T s, T u, T c the stable, unstable and critical eigenspaces of J (e), re-
spectively, and by s, u, c the dimension of these subspaces of R4.

As the characteristic equation for the equilibrium e0s is

λ

(

λ − a2 − 1

a

)[

λ2 − λ

(

a + 2d − 1

a

)

+ 2ad

]

= 0,

we obtain the following result:

Lemma 2. If ∆ = 0, for parameters in D, the unique equilibrium point of system
(4) is nonhyperbolic, with one zero eigenvalue as a 6= −1 or two zero eigenvalues as
a = −1.

If ∆ > 0, the characteristic equation for the symmetric equilibria e1s, e2s reads
[11]:
[

λ2 −
(

a − 1 ±
√

∆

a

)

λ ∓
√

∆

][

λ2 −
(

a + 2d − 1 ±
√

∆

a

)

λ + 2ad ∓
√

∆

]

= 0.

(9)
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Denote by λ1, λ2 the roots of the first bracket in (9) and by λ3, λ4 the roots of the
second one.

As for e1s we have λ1λ2 = −
√

∆ < 0, λ3λ4 = 2ad−
√

∆ < 0, we may conclude:

Lemma 3. If ∆ > 0, for parameters in D, the symmetric equilibrium e1s of system
(4) is hyperbolic, namely it is a saddle of type (s, u) = (2, 2).

In order to establish the topological type of e2s, let us introduce the following
notations:

SN1 = {(a, b, c, d) ∈ D, ∆ = 0} ,

SN2 =
{

(a, b, c, d) ∈ D, ∆ > 0, 2ad +
√

∆ = 0
}

,

H1 =
{

(a, b, c, d) ∈ D, ∆ > 0, a2 − 1 +
√

∆ = 0
}

,

H2 =
{

(a, b, c, d) ∈ D, ∆ > 0, 2ad +
√

∆ ≥ 0, a2 − 1 + 2ad +
√

∆ = 0
}

.

Lemma 4. For ∆ > 0 and (a, b, c, d) ∈ D − (SN2 ∪ H1 ∪ H2) the symmetric equi-
librium e2s of system (4) is hyperbolic, namely:

(i) if 2ad +
√

∆ < 0 and a2 − 1 +
√

∆ < 0, then e2s is a saddle of type (3, 1);

(ii) if 2ad +
√

∆ < 0 and a2 − 1 +
√

∆ > 0, then e2s is a saddle of type (1, 3);

(iii) if 2ad +
√

∆ > 0 and a2 − 1 +
√

∆ > 0, then e2s is a repulsor;

(iv) if 2ad +
√

∆ > 0, a2 − 1 +
√

∆ < 0 and a2 − 1 + 2ad +
√

∆ > 0, then e2s is a
saddle of type (2, 2);

(v) if 2ad +
√

∆ > 0, a2 − 1 +
√

∆ < 0 and a2 − 1 + 2ad +
√

∆ < 0, then e2s is an
attractor.

In addition, if (a, b, c, d) ∈ SN2 ∪ H1 ∪ H2, then e2s is a nonhyperbolic equilibrium,
namely of Hopf type as (a, b, c, d) ∈ (H1 ∪ H2) − SN2, of fold type as (a, b, c, d) ∈
SN2 − (H1 ∪ H2) , of double zero type as (a, b, c, d) ∈ SN2 ∩H2 or of fold-Hopf type
as (a, b, c, d) ∈ SN2 ∩ H1.

In Fig. 2 is represented a section with a plane b = b0, c = c0 in the bifurcation
diagram of system (4) around the equilibrium e2s. Inside each region (s, u) is given.

As ∆′ > 0, for the nonsymmetric equilibria e1a, e2a, the corresponding charac-
teristic equation is written as

λ4 − ∆1λ
3 + ∆2λ

2 − ∆3λ + ∆4 = 0, (10)

where:

∆1 = 2

(

a − d − 1

a

)

; ∆2 =
1 + 2ad − ∆′

a2
+ a2 − 4ad − 2;
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Figure 2. Section with a plane b = b0, c = c0 in the local parameter portrait around
e2s: i) b = −0.5, c = 0.25; ii) b = −0.5, c = 0.5; iii) b = 0.5, c = 0.5

∆3 = 2

[

d − a2d − ∆′

a

]

; ∆4 = −∆′.

Since ∆4 < 0, it follows λi 6= 0, i = 1, 4. Therefore, the equilibrium e1,2a may be
nonhyperbolic only if (10) has a pair of purely imaginary solutions. This situation
arises if the following conditions are fulfilled [8]

∆1 6= 0,
∆3

∆1
> 0,

∆3

∆1
+ ∆4

∆1

∆3
= ∆2 (11)

or

∆1 = 0,∆3 = 0,∆4 < 0. (12)

Consequently, we obtained:

Lemma 5. If ∆′ > 0, then the nonsymmetric equilibria e1,2a of system (4) are

(i) hyperbolic saddles, of type (1,3) or (3,1), as the conditions (11), (12) do not
hold;

(ii) nonhyperbolic of Hopf type, as (11) or (12) holds.

In Fig. 3 is represented a section with a plane b = b0, c = c0 in the bifurcation
diagram of system (4) around the equilibria e1,2a. The parameter strata for which
(11) or (12) holds are denoted by H.

4 Fold bifurcation

Let e = (e1, e2, e3, e4) be an equilibrium of system (4). Performing the translation
y = x − e, system (4) reads

ẏ = J (e) y + F (y), y ∈ R4, (13)
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Figure 3. Section with a plane b = b0, c = c0 in the local parameter portrait around
e1,2a: i) b = −0.5, c = 0.25; ii) b = −0.5, c = 0.5

with F (y) =
(

0,−cy2
2 , 0,−cy2

4

)t
, and the corresponding equilibrium is the origin

0 ∈ R4.

Using the normal form and the center manifold theory [10], we establish the
topological type of the nonhyperbolic equilibria of saddle-node type determined in
Section 3 and the local bifurcation generated by them.

Case 1. For parameters situated in the set SN1 we have ∆ = 0 and
the Jacobi matrix associated with the unique equilibrium point of (4) e0s =
(

1
4a2c

, 1
2ac ,

1
4a2c

, 1
2ac

)

, has the eigenvalues λ1 = 0, λ2 = a − 1
a , λ3λ4 = 2ad < 0.

Assume a2 − 1 6= 0. Thus J (e0s) has a simple zero eigenvalue and the correspond-
ing critical eigenspace is spanned by the eigenvector q = (1, a, 1, a) ∈ R4. Let
p = 1

2(1−a2)
(1,−a, 1,−a) ∈ R4 be the normalized adjoint vector, i.e. J (e0s)

t
p = 0

and 〈p, q〉 = 1. We discompose any vector y ∈ R4 as y = uq + z, where uq ∈ T c,

z ∈ T su. Here T su is the 3-dimensional eigenspace of J (e0s) corresponding to all
eigenvalues, other than 0. The explicit expressions for u and z are:

{

u = 〈p, y〉 ,

z = y − 〈p, y〉 q.
(14)

The scalar u and the vector z can be considered as new coordinates on R4. By
the Fredholm alternative [10], the components of z always satisfy the orthogonality
condition 〈p, z〉 = 0.

In these new coordinates, system (13) with e = e0s can be written as [10]

{

u̇ = 〈p, F (uq + z)〉 ,

z = J (e0s) z + F (uq + z) − 〈p, F (uq + z)〉 q,
(15)
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that is


























u̇ = a3c
1−a2 u3 + a2c

1−a2 u (z2 + z4) + ac
1−a2

(

z2
2 + z2

4

)

,

z = J (e0s) z +









0

−c (au + z2)
2

0

−c (au + z4)
2









− ac
2(1−a2)

(

2a2u2 + 2au (z2 + z4) +
(

z2
2 + z2

4

))

q.

(16)
The center manifold has the representation

z = V (u) =
1

2
w2u

2 + O
(

u3
)

, (17)

where w2 ∈ T su, that is 〈p,w2〉 = 0. The vector w2 also satisfies the equation

J (e0s)w2 + A = 0, where A = − 2a2c
1−a2 (a, 1, a, 1) ∈ R4. From the above conditions

we obtain

w2 = − a3c

(1 − a2)2
(

a, 2 − a2, a, 2 − a2
)

.

Substituting in (16) and (17) the expression of w2 we obtain:

Proposition 1. The restriction of (16) to the center manifold has the form

u̇ =
a3c

1 − a2
u2 + O

(

u3
)

.

In addition, since a3c
1−a2 6= 0, the equilibrium e0s is a nondegenerated saddle-node and

around it a nondegenerated fold bifurcation takes place.

Returning to the y coordinates, we get the following result.

Proposition 2. For ∆ = 0, a2 − 1 6= 0, the center manifold corresponding to e0s

can be written as

y1 = y3, y2 = y4, y1 −
1

1 − a2
(y1 − ay2) +

a4c

2 (1 − a2)3
(y1 − ay2)

2 = 0. (18)

Case 2. For parameters situated in the set SN2 we have ∆ > 0 and 2ad+
√

∆ =
0. The Jacobi matrix J (e2s) of the equilibrium point e2s =

(

cα2, α, cα2, α
)

of (4),

with α = 1+2ad
2ac , has the eigenvalues λ3 = 0, λ4 = a − 1

a , λ1λ2 = −2ad > 0,

λ1 + λ2 = a − 1+2ad
a .

Consider that a2 − 1 6= 0 and a2 − 1 − 2ad 6= 0. This means that λ4 6= 0,
and the parameters are not situated in H1 or H2. Thus J (e2s) has a simple zero
eigenvalue and the corresponding critical eigenspace T c is spanned by the eigenvector
q = (1, a,−1,−a) ∈ R4. Let p = 1

2(1−a2) (1,−a,−1, a) ∈ R4 be the normalized

adjoint vector.
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Performing the change (14), system (13) with e = e2s reads



























u̇ = a2c
1−a2 u (z2 + z4) + ac

2(1−a2)

(

z2
2 − z2

4

)

,

z = J (e2s) z +









0

−c (au + z2)
2

0

−c (au + z4)
2









− ac
2(1−a2)

(

2au (z2 + z4) + z2
2 − z2

4

)

q.
(19)

As for the previous case, we obtain the following result.

Proposition 3. If ∆ > 0, a2 − 1 6= 0, a2 − 1 − 2ad 6= 0, the center manifold
corresponding to e2s can be written as

y2 = ay1, y4 = ay2, y1 + y3 +
ac

4d
(y1 − y3)

2 = 0. (20)

Taking into account (20), from (19) we obtain.

Proposition 4. The restriction of (19) to the center manifold (20) is

u̇ =
a4c2

d (1 − a2)
u3. (21)

In addition, since in D we have a4c2

d(1−a2)
6= 0, the equilibrium e2s is a degenerated

saddle-node of order two. On the center manifold a degenerated fold bifurcation takes
place around e2s.

Remark also that as a ∈ (−1, 0) the coefficient of u3 is positive, therefore the
solution u = 0 of (21) is weakly repulsive and so is e2s on the center manifold.
Similarly, as a < −1, e2s is weakly attractive on the center manifold.

The bifurcation corresponding to the other nonhyperbolic singularities, namely
of Hopf, double-zero of fold-Hopf type, will be treated elsewhere.
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