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Abstract. In this work we study the orbits of the polynomial systems & = P(x1, x2),
Z = Q(z1,z2) by the action of the group of linear transformations GL(2, R). It is
shown that there are not polynomial systems with the dimension of G L-orbits equal
to one and there exist GL-orbits of the dimension zero only for linear systems. On
the basis of the dimension of G L-orbits the classification of polynomial systems with a
singular point O(0,0) with real and distinct eigenvalues is obtained. It is proved that
on G L-orbits of the dimension less than four these systems are Darboux integrable.
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1 Center-affine transformations

Consider the polynomial system

#1= P(r1,32), d2=» Qulw1,22), (1)
k=0

where Py, Q) are homogeneous polynomial of degree k:
_ i _ i
P, = E a;jriTy, Q) = Z bijx] 5. (2)
i+j=k it+j=k
Denote by E the space of coefficients
a = (ago, a10, 401, 420, A11, @02, 430, -+ @on; boo; b10, bot, b2o, b11, Doz, b30; -+, bon)

of system (1) and by GL(2,R) the group of center-affine transformations of the
phase space Oz, © = (x1,x2). Applying in (1) the transformation X = gz, where
X = (Xl,XQ), qc GL(2,R), i.e.
_ (> B, _ a_LY (o =B
o= (25 )iasnseradm ot =5 (0 )

we obtain the system

n n
X1 =) Pi(X1,Xa), Xo=) Qn(X1,Xa), (4)
k=0 k=0
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where o
Pf=a-Py(q'z)+ 8- Qrlg ) = Zkaijfng
itj=
L 5
Qr =7 Pulg'e) +0-Qulqg'z) = ZkbijfXg' ®
itj=

Remark 1. [t is easy to see from (5) that every transformation ¢ € GL(2, R) acts
separately on the homogeneities of the same order from (1).

The coefficients a* of system (4) can be expressed linearly by the coefficients of
system (1): a* = L(g)(a), detLy # 0. The set L = {L,)lq € GL(2,R)} forms a
4-parameter group with the operation of composition. L is called the representation
of the group GL(2, R) of center-affine transformations of the phase space Oz in the
space of coefficients E of system (1).

Let a € E. A set L(a) = {L(y(a)lg € GL(2,R)} is called the GL-orbit of the
point a or of the differential system (1) corresponding to this point.

2 Monoparametric transformations

Consider the function g : Rx E — E such that for every 7 € R the transformation
9" + E — E, where ¢"(a) = ¢g(1,a), a € E, is a diffeomorphism. We say that
(E,{g"}) is a differentiable flow if:

1) ¢° = id;

2) g™t =4g"g° V71,5 € R;

3)(¢7) =g VreR;

4) g : R x E — FE is a differentiable function.

By [1], [6] the 4-parameter transformation ¢ (see(3)) can be represented as a
product of four monoparametric transformations:

o o] 0O oy 1 as as 1 0 o 1 0
q1_<0 1>’q _<0 1 )9 ey 1 )7 "o ot )

where af, a € R\{0}; aa, a3 € R. Denote

e 0 1 0
qa1:< 0 1>’qa4:<0 ea4>,041,0é4€R;

J— — —o * J— * J—
Ll — L(qal), l - 1,47 Ll — L(qai‘>, L4 — L(qaz>'
To every group of monoparametric transformations ¢®, [ = 1,4; ¢®1 , ¢ of the
phase space Ox corresponds a system of the form (4) with a;;, bj;, respectively.
It is easy to verify that (E, {Le}),l = 1,4, are differential flows. They define
in E the following systems of linear equations

da _ (dLl(a)> =T, (6)

d—al dal

a;=0
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or in coordinates

da;; daj 4l
da; = da; = Aij(a)7
al:0
q* q dby (0 _ g _ (7)
dai o (da;) - Bij(a)’ b=14
al—O
1+ 7 =0,n;

In the cases | = 1 and | = 4 the matrix of coefficients of the system (7) is
diagonal. Indeed, in these cases we have

Aji(a) = (1 —i)ai;,  Bi(a) = —iby,

. ‘ (8)
Ajj(a) = —jaij,  Bjj(a) = (1—j)bi.
Note that (E, {L(an)}) and (E, {L(qafi)}) are not flows.
Consider the systems
« da dLj(a)
1 = =1,4.

Remark 2. The system ((9),1 = 1) (((9),l = 4)) coincides with the system
((6),1 =1) (((6),1 =4)).
The vector fields

- 0 0

— E L (a)—— L —
V}—' ‘ A”(a)aai-—i_Bm(a)(‘)bi-’ l=1,4,
i+7=0 J J

generate a Lie algebra. By [5], [7], [6] the dimension of orbit O(a) is equal with
the dimension of this algebra, i.e. with the rank of a matrix M composed from the
coordinates of vectors Vi, [ = 1,4.

3 The orbits of dimension zero

Consider the homogeneous system

@1 = Py(z1,22), @2 = Qr(z1,22), (10)
where 0 < k < n and Py, Q) are given in (2). For (10) we have the vector fields

0 0
— L i
Wi= > Aia)g- T
i+j=k J J

+ Blj(a) 1=1,4. (11)

Denote by M}, the matrix of dimension 4 x (2k + 2) composed from the coordinates
of vectors (11). For example,

app 0 0 ap1 —b1o 0
boo 0 bio  bo1 — a1 0 —b1o
My = M, = 12
0 0 apo ! —ao1 0 aip —bo1  ao1 (12)

0 boo 0 —ap] bio 0
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We have M = (Mg, My, ..., M,) and therefore

rankM > rankMy, k= 0,n. (13)

Hence, the dimension of orbits of system (10) does not exceed the dimension of
orbits of the corresponding system (1).

In the work [6], in each of the cases kK = 0,1,2,3 the systems (10) are classified
in dependence of the dimension of orbits O(a). So, it is shown that if £ =0, 2 or 3,
then dimO(a) = 0 if and only if P, = 0, Q = 0 and in the case k = 1 the dimension
of O(a) orbit is equal to zero if and only if the following conditions are satisfied

alg — bOl = agl = blO = O. (14)

Lemma 1. In the case k # 1 the dimension of O(a) orbit of the system (10) is
equal to zero if and only if P, =0, Qr = 0.

Proof. Assume k # 1. The orbit O(a) of system (10) has the dimension zero if
and only if a is at the same time a singular point for systems (7), | = 1,4, i.e.
Ali(a) = Blj(a) =0, Vi+j =k, | =14 From here, j = k —i and (8) we have
that

T

(1= i)aipi =ibiyi =0, i =0,k (15)

(k‘ — i)ai7k—i = (k‘ — 17— 1)bi,k—i = O,i = 0, k. (16)

From (15) and k # 1 it follows that a;,—; =0, Vi # 1 and b;,—; = 0, Vi # 0, but
from (16) we also obtain that aj y_; = bo, = 0. Therefore, P, =0, Q1 = 0. O

According to (13), Lemma 1 and (14) we have

Theorem 1. The polynomial system (1) has the dimension of GL-orbit equal to
zero if and only if it is of the form &1 = bxy, &9 = bxe, b= const.

4 The absence of orbits of the dimension one

We consider system (10). In [6], it is shown that in the cases k = 0,1,2,3,
the orbits of system (10) have the dimensions not equal to one. We bring here our
proof of this fact establishing simultaneously that every two-dimensional polynomial
system possesses this property. By Theorem 1, we shall assume that P, # 0 or
Qr # 0 and if & = 1, then ajg # bo1 or |ap1| + |b1g| # 0. From these conditions
immediately follows that rankMy = 2 and rankM; > 2 (see(12)).

Next we consider £ > 2 and P, # 0. Let, for example, a, r—, # 0, where v is
equal to one of the numbers 0,1,2,...,k. We will show that the matrix M has
at least one non—zero minor of the second order. Let us assume the contrary, i.e.
all the second order minors of M} are equal to zero. For the beginning, we will
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examine the following minors constructed from the coordinates of vectors Wp and
Wy (see(11),(8)):

T | A=v)ayg— (I —dajp—i | _
v | (v=k)ayg—y (G —Ek)aig—i |
= (k=1 —1iayr—0;k—i, @ # v;
(17)
A2 - (1 - V)au,k—u _ibi,k—i o
Vst (V — k)ay7k_y (1 —k+ i)bi,k—i

= (k — 1)(1/ — 17— 1)al/’k_ybi’k_i7 1= 0, k.

From All,’i = 0 it follows that a;,—; = 0, Vi # v and from A?,’Z- = 0 we have that
bix—i =0, Viif v =0, and that b; ;_; =0, Vi # v —1if v > 1. Hence, the system
(10) can have one of the forms

i1 = agral, d2=0, agy #0; (18)

. v k—v . v—1_k—v+1
T1 = Ouf—pT Ty , T2 = by—l,k—u—i—lxl Ty y  Ouk—v 7& 0. (19)

For (18) we have W, = ao,k% and determine W3. To this end we apply in (18)
the transformation of coordinates q*: X1 =21, Xo = agx1 + 29 :

' , k k k k-1
X1 = a1 = agpry = agr(Xo — a3X1)"” = appXs — kazagr X1X5 4 o(as),

Xo = a3d1 + 2 = azag Ty = azao k(X2 — a3 X1)” = azagrXs + o(as).

a07k 0
0 ao’k
inequality contradicts the assumption that all the second order minors of the matrix
M. are null.
We consider in (19) v = 1. We have Wy = (1 —k) (alvk—laalak,l +bo ab(z k) Let

us calculate Wiy:

# 0. The last

Hence, W3 = —kag i, 8a18k,1 + ag ab?) - and the minor ‘

X1 =41 =aypm12s P =aip1 X1 (Xe — a3 X)P T = a1 X X5
+(1— k)agal,k_lX%Xg_z + o(as),
Xo = agdy + @2 = azarp_12105 1+ bo s = azar k1 X1 (Xo — agXy)F
+bo k(X2 — a3 X1)® = bo p X5 + as(ay p—1 — kbo ) X1 X5 + o(a3).
Hence, W5 = (1 — k)al,k—lﬁak,z + (a1 k-1 — kbO,R)WL and

(1—Fk)ay 1 0

0. We obtain contradiction.
0 (1 — k)al,k—l 7&

Let us investigate now the case when in (19) v > 2. We have

0 0
W=k = Dbyt priri . (20)
aby—l,k—u—l—l

Wi =(1— [
1 ( V)az/,k V(‘)al,,k_,,
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Taking in (19) the transformation ¢®2: X7 = z1 + asz2, X9 = x2 we obtain:

Y s v, k—v v—1_k—v+1 _
X1 =21+ Qly = ay 01Ty =~ + a2by_1 p_pi17] X5 =

= (X1 — X)) " ' X5 [ay k0 X1 + aa(by—1 p—vi1 — Gy p—y) Xa] =
= v XT X5 + o (by—1h—vt1 — Vau ) X7 X5 + 0(0),
Xo =9 = by 1 p12? tah T = b, 11 (X — anXo) XV =
= by 1 1 XV XS (1 = 0)by 1 k1 XY T2XETV T2 4 o(ag).
From here it follows that

0 0
+ (1 - V)bu—l,k—u—l-l b

W2 = (bu—l,k—u—l—l - Vau,k—u) -
v—2,k—v+2

aau—l,k—u—l—l

Taking into account that v > 2 and that a,;—, # 0, the following two minors
consisting of the coordinates of the vectors (20) and Wa:

(1—=v)ay i 0
0 (1 - V)bu—l,k—u—i-l

‘ (1—-v)ay i 0
0 bu—l,k—u-‘,—l —Vayg—v

can not be equal to zero simultaneously.

Hence, we proved that when Py # 0 the dimension of every orbit of the system
(10) can not be equal to one. The case Q # 0 can be reduced to the case Py # 0 if
we change in (10) the variables x; and x2.

From Theorem 1, the inequality (13) and from what has been said above in this
section, the following conclusion may be drawn

Theorem 2. The dimension of GL-orbit of every polynomial system (1) is not equal
to one.

It is easy to check that the matrix M; from (12) can have the rank at most two.
This fact, Theorems 1 and 2 lead to

Theorem 3. The dimension of the GL-orbit of the linear system &1 = a10x1+ag1x2,
To = biox1 + borxo is equal to zero if and only if a19 — bo1 = ag1 = big = 0 and is
two in other cases.

Let us consider the system
. 2 2 o — b 2 b b 2
T1 = agpx] + a1121T2 + apaxs, X2 = 02077 + 0112172 + 002X

Its matrix consists of the coordinates of vectors Xj, 1,4, and is of the form

—an 0 ao2 —2byg —b11 0
bao  bi1 —2a20 bo2 — a1 0 —2bgo —b11
My = . 21
2 —an —2ap2 0 a2 —bi1 a1 —2bg2  ap2 (21)

0 —ai —2ap2 b2 0 —bo2
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It is easy to see that for the system &1 = 0, o = z1z9 the rank of the matrix
Ms> is equal to three, and for the system #7 = a:%, To = a:% + x129 we have that
rankMsy = 4.

From here, Theorems 1, 2, 3 and the inequality (13), follows

Lemma 2. If the right-hand sides of system (1) have at least one nonlinear term,
then the dimension of the GL-orbit is equal to two, three or four.

Next, this work is dedicated to the classification of systems (1) with a singular
point (0,0) with real and distinct eigenvalues A; and Ao, i.e.

Ala AQ € R7 >\1 ?é >\27 (22)

in dependence of the dimension of G L-orbits.
In this case Py = 0, Qo = 0 and according to [2] by transformation of coordinates
q € GL(2,R), the system (1) can be brought to the form

n n
B1 =Mz + Y Pelwn, @), d2= dowa + Y Qulw1, x2). (23)
k=2 k=2

In (23) the notations (2) of the homogeneities Py, Qk, k = 2,n, were preserved.
From (12) we have that for (23): rankM; = 2. From here and (13) it follows that
the dimension of every G L-orbits of system (23) with conditions (22) can be equal
to two, three or four.

5 The GL-orbits of system (23) of the dimension two
We consider the system
&1 =M@y + Py(w1,22), 42 = Aowz + Qp(21, 22), (24)
where Ai, Ao verify (22) and 2 < k < n. In (24) the polynomials P, Q) coincide

with the polynomials Py and Qy, respectively, from (23). Evidently holds

Remark 3. The dimension of every GL-orbit of system (23) is not smaller than
the corresponding dimension of GL-orbit of system (24).

From (12) and (8) we have that for (24) the matrix M = (M, M}) consisting of
coordinates of vectors Vj, | = 1,4, after some elementary transformations takes the
form

00 0O (1—]{7)(1]670 (Z_k)ak—l,l
01 0O 0 0
M~tg 001 0 0 0
0 00O 0 —ak_l,l
—b1 k-1 0
0 0
0 0 (25)

(2—=Fk)by g1 (1—Fk)bog
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Consider the minors of the third order of the matrix (25):

00 (L—d)ay | |0 0 —ib 10 0 10 0
10 0 10 o [,]o1 o [,]01 0 ,
01 0 01 0 0 0 —jag | |0 0 (1—4)by

i+ j = k, we observe that they are simultaneously equal to zero if and only if
a;; = b;j =0, Vi+j=k. From here, Remark 3 and Theorem 3, follows

Lemma 3. The dimension of the GL-orbit of system (23) with conditions (22) is
equal to two if and only if P, =0, Qi =0, Vk > 2.

Next, taking into account this lemma and Remark 1, we obtain

Theorem 4. Let the origin O(0,0) be a singular point of (1) with real and distinct
eigenvalues. Then the GL-orbit of system (1) has the dimension equal to two if and
only if Pb,=0, Qr=0, Vk>2.

6 The GL-orbits of system (23) of the dimension three

In this section we shall distinguish those systems of the form (23), (22) which
have the dimension of the GL-orbit equal to three. Reasoning as above, we shall
consider system (24). From (25) we have that rankM = 2 + rankMj,, where

~ (1 — k‘)ak 0 (2 — k)ak_l 1 .- —b1 k—1 0 >
My = ’ ’ : . 26
b ( 0 —ag-11 o (2=k)brg-1 (1 —Fk)bok (26)

The minors of the second order from (17) of the matrix M, are Al Aai and

v,
3 _ _Vbu,k—l/ _ibi,k—i

Bug '(Hv—k)by,k_y (Ui kb | = BT D= Dhiesbigs i v

(see (8)). If agr # 0 (box # 0), then from Aj, =0, i =1,k (A}, =0,i=0,k—1)
it follows that a;y—; = 0 (b x—; = 0), and from A(2),i =0 (Afk =0),i=0,k, we

have that (b; y—; = 0) (a;,—; = 0). In these cases the system (24) looks as

Sn(k : 1) . il = )\1%1 + a07kx§, Lig = )\2%2, CLOJC 75 0 (k 2 2); (27)

Sn(l : k‘) D1 = Mz, T2 = AoTg + bk70l‘]f, bk70 75 0 (k‘ > 2). (28)

We suppose now that a, ;—, # 0 (by—1 k—p+1 # 0) for a certain v € {1,2,..., k}.
From Aiﬂ- =0 (Al?jz =0), i # v, and Aii =0 (Aiu =0), i # v — 1, it results that
ajk—; =0, Vi#v,and b;;,_; =0, Vi # v — 1. These cases lead us to the systems

. v—1_k—v
T1 =21 A1+ app—px] Ty )7

To = wo( Ao + bu—l,k—u+1x’f_lxl2€_y>v v=1k. (29)
‘au,k—u‘ + ’bu—l,k—u—l—l’ 7é O;
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Hence, is proved

Lemma 4. The GL-orbit of system (24) has the dimension equal to three if and
only if it has one of the forms (27)-(29).

In passing, we will examine the system (23). As usual, by M we will denote the
matrix consisting of coordinates of the vectors Vj, j = 1,4, corresponding to system
(23), and by M the matrix (Mg, Ms, . .. ,Mn), where My, k = 2, n, are given in (26).
Evidently,

rankM = 2 + rankM > 2 4+ rankMj, k =2, n. (30)

If 7:ank:M = 3, then from (30) it follows that there exist k : 2 < k < n such that
rankM; = 1. Hence

| Pr(z1, 22)| + |Qk (71, 72)| Z 0. (31)

In the case if P} =0, Q; =0, Vj#k, 2<j <n,apply Lemma 4. Suppose
that together with homogeneities of order k, the right-hand sides of system (23)
contain also and homogeneities of other order, for example, of order [, where [ # k,
2 <[ < n. Hence

[P (w1, 22)| + |Qu(21, 22)| # 0. (32)

The condition rankM;, = rankM, = 1 implies that both P, Qi and P;, Q; have
the form like the right-hand sides of one of systems (27)—(29). In the case P, @; in
(27)—(29) we substitute [ for k.

Let P, = a07km§, apr 7 0 and @ = 0. The following minors of the matrix M:

‘ ao,k (1 —m)aui—py
—kaor (1 —1aui—p

=[1 =1+ 1= p)(k—1)]aoraui—pu

‘ ap.k — by i—p =[1—14 plk = 1)]aorbyi—u,

—k‘an (1+p— l)bu,l—u

< p < I, are simultaneously equal to zero if and only if a,;—, = b,;—, = 0,
= 0,[, that is when P, =0, Q; =0, contradicting to (32).
Similarly, through examination of the minors

0
7

‘ —kbro (1 —p)aui—p
bro  (m—1Daui—p

‘ —kby0 — by —p
bro (T+p—Dbui—p |’

it is shown that the case P, = 0, Q) = bhoxlf, bro # 0 is not realized in the
condition (32).

Taking into account Lemmas 3, 4 and the conditions (31), (32), it remains to
investigate the case when
-1 xl;—l/-i-l

v, k—v v 1—
Pk =0y k—vT1Ty Qk = bu—l,k—y—l—lxl ) Pl = a,u,l—,uxlfo Mj

Qu=by—1 gz b 1<y <k 1<p<l.
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We consider the minors:

= Wo,ulu k—vQpl—p;

L=v)ayg— (1= p)bu-11-pt1
02 = ( vk—v =1 l=p+ R N ,
Y ' (1/— k‘)a,,,k_,, (:u_l)b,u—l,l—u+1 vplyk—vYu—1,01—p+1
1—v)b,_1 4 1—p)b,_1,—
Qliu — ‘ ( ) v—1,k—v+1 ( :u) p—1ll-p+1 | _ wu,ubu—l,k—u—i-lbu—l,l—u—i-la

(v =FE)by—1p—vt1 (= Dbu11—pt1

where wy,, = (v —1)(I =1) = (p—1)(k—1),1 <v <k, and 1 < p < [. Evidently,
w11 = wgy = 0.

If v =1 (v = k), then from (31) and (32) it follows that the equalities Q%,u =
Qiu = Qiu = 0 hold if and only if p = 1 (1 = ). Hence, the dimension of the
G L-orbit of each of the systems

i1 =z (M + D050 al,ﬂ%)
Sn(A1:0) 1§ @y =ap( Ao+ Zj:l 507j+1332>= (33)
S0 laa gl + [boga] # 0;

T, =T )\1 + Z?_ll Qj41, iji),
Sn(O : )\2) : To = X9 )\2 + Zn ! bg,1$1), (34)
. Zj:l |aj+1,0| + |bj1] # 0,

is equal to three. ‘

Next, suppose that 2 <v <k—1,2<p <l—1. From (31), (3 ) and Q,, =0,
j = 1,3, it follows that w,,, = 0, Therefore, we have that % = 2= > 1. Hence,
there exist integer positive numbers p, q, %, j such that

pg)=1Lk=p+qi+l,v=qi+1,l=p+qji+1l,p=qj+1

Hence, for any natural reciprocal prim numbers p and ¢, the system

n A
S q.,.p
1 = 11 [Al + 2 Ggit1pi <$1$2) ] ;

i=1

Sulp:=a): | @y =1 [/\2 + 2 bgipit (xtf%)) Z} ; (35)
i=1

,n*
Zl |agit1,pil + |bgipiv1] #0,  (p,q) =1,
1=

where n* = {;‘T_;], has the dimension of the G L-orbit equal to three.
Hence, is proved
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Theorem 5. The dimension of the GL-orbit of system (23) with the conditions
(22) is equal to three if and only if it has one of the following forms (27), (28), (33),

(34) or (35).

Corollary 1. The cubic system (n = 3) of the form (22), (23) has the dimension
of the GL-orbit equal to three if and only if it has one of the forms S5(2: 1), S3(3:
1), 53(1 : 2), 53(1 : 3), 53()\1 : 0), 53(0 : )\2), 53(1 : —1), that is

i1 = M@y + apeal, @2 = dowa, apz # 0; (36)
i1 = Mi21 + aoszh, E2 = owa, ag3 # 0; (37)
i1 =M@y, @2 = Aawy + byori, bag # O; (38)
i1 =M1, dy = Aowy + boa}, bso # 0; (39)

. 2
T1 =x1( A1 +anwe + a12x2>,

. (40)
Ty = x| A2 + bogw2 + b03$§>7 |an1| + |a12] + [boz| + [bos| # 0;
.’,i'l =X )\1 + a20T1 + a30x%>7 (41)
To = x2( A2 + b1 + b21$%>, |ago| + |aso| + [br1] + [ba1| # O;

T1 =T <)\1 + a21$1:172>,i72 = T2 <>\2 + 512!1711172), |a21| + |bl2| # 0. (42)

The assertion of Corollary 1 can be obtained and by direct method, that is if
we equate to zero all the minors of the order four of the matrix M = (M, My, Ms3)
with condition that at least one of the minors of the order three is not equal to
zero. Here, M; coincides with the matrix M from (12) if in the last matrix we put
apr = big = 0, a190 = A1, bp1 = Ag; the matrix My is given in (21) and

—2azo —a91 0 ap3
M = bso  ba1 —3azo bi2 —2a21 bz — aio
—an —2a12 —3a03 0
0 —an1 —2(112 —3&03
0 —3b3o —2ba1 —b12

azp — ba1 a1 —2b12 a1z —3boz  ao3
b3o 0 —b12 —2bo3
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7 The resonance

By ¢(x1,z2) and ¥(x1,x2) we shall denote, respectively, the nonlinearities from
the right-hand side of each equation of system (23), i.e.

pe1,m9) =Y Prlr, @), d(w1,20) = Y Qrlwr,22), (43)
k=2

where the polynomials P, and Qy, k = 2,n, are shown in (2).
Let Ay and Ay be two real and distinct numbers. If there exist integer nonnegative
numbers my, ma; my +mg > 2 (n1,n92; N1 + ne > 2) such that

A1 = MiA1L + maodg (44)

or
A2 = n1A1 + N2, (45)

then the couple of numbers (A1, A2) is called resonant.

Taking into account (44) ((45)), we say that am, m,x] 252 (bn, o1 xh?) is @
resonant term of the polynomial ¢(x1,z2) (¢(x1,x2)) corresponding to the resonant
couple (A1, A2).

A couple of polynomials (¢, 1) is call resonant if they contain only resonant terms
corresponding to the same resonant couple of the numbers (A1, A2), considering ) = 0
(p=0) if Ay and Ag verify (44) ((45)) and do not verify (45) ((44)) for any integer
numbers ni,ng > 0, ny +ng > 2 (m1,me > 0,m1 +mgy > 2).

In passing, in this section, we will describe a couple of resonant polynomials.
Suppose that (A1, A2) is a resonant couple. We will distinguish the following four
possible cases: 1) A1 - Ay >0, A\ £ A5 2) Ay #0, Aa=0; 3) \y =0, Ay #0 and
4) A1 A9 < 0.

1) A1-A2 >0, Ay # A2. In this case the equalities (44) and (45) do not hold
simultaneously. If we consider the equality (44), then it looks as:

AM=0-X+Ek- A, (46)

where k is one of the numbers 2,3,... . To the couple (A1, A2) which verifies (46)
the resonant couple of polynomials

p(z1,22) = ag e, P(z1,22) =0

corresponds.
Similarly, if we have the equality (45), then it looks as: Ao = k- A1 + 0 A2 and
leads to the resonant couple of polynomials

p(r1,22) =0,  P(x1, ) = by 07}
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2) A1 # 0, Ay = 0. In these condition the relation (44) holds for m; = 1 and
any mg € {1,2,3,...} and the relation (45) holds for ny = 0 and ng € {2,3,...}. To
the resonant couple (A1, A2) the couple of resonant polynomials

n—1 n—1
p(r1,20) =21 Y _arad,  Y(r1,22) =29 Y boji12)
= =1

corresponds.

3) A1 =0, A2 # 0. The equality (44) holds for m; € {2,3,...} and mg = 0,
and (45) for ny € {1,2,3,...} and ny = 1. Hence, we come to the resonant couple
of polynomials

n—1 ) n—1 )
p(z1,72) =21 Y aj4107], Plx1,32) =22 Y bj1a].
Jj=1 J=1

4) A1 - A2 < 0. Every of the relations (44) and (45) can hold only in the case
when Aj/)g is a rational number. Let A1 : Ao = p: (—q), where p and ¢ are integer
positive reciprocal prime numbers, i.e. (p,q) = 1. Denote by n* the integer part of
the number (n — 1)/(p + ¢q). In this case, the equality (44) holds for m; = ¢i + 1,
mo = pi, and (45) for ny = qi, ng = pi + 1, i = 1,n*. The resonant couple of
polynomials (i, 1)) corresponding to (A1, A2) is

n* n*

p(r1,72) = 71 Z agit1pi (x]2h)",  (z1,22) = 22 Z bgipit1 (x]2h)".
i=1 i=1

From what have been said above and Theorem 5, follows

Theorem 6. The dimension of GL-orbit of system (23) with conditions (22) is equal
to three if and only if the polynomials @ and v from (43) are not simultaneously equal
to zero and the pair (p,1) is resonant.

Taking into account Theorems 1, 2, 4 and 6, we obtain the following characteristic
of systems (23) with the dimension of orbit equal to four:

Theorem 7.The dimension of GL-orbit of system (23) with the conditions (22) is
equal to four if and only if |p(x1,x2)| + [¥(x1,22)| Z 0 and the pair of polynomials
(p,7) is not resonant.

8 The integrability on the G L-orbits of the dimension three
of system (23)

We consider the polynomial system
il = P(ml,xg), Lig = Q(ml,xg). (47)

Let n = max{degP,degQ} and D = P9/0xy + Q0/0xs. A curve f(x1,x2) = 0,
f € C[x1,x2], (an expression f = exp[h(z1,22)/g(x1,x2)], where h, g € Clx1,x29]), is
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called an algebraic invariant curve (an exponential invariant curve) for (47) if there
exists a polynomial K € C[z1,x2] of the order at most n — 1 such that the following
identity D(f) = f - K holds. The polynomial K (x1,x2) is called the cofactor of the
invariant curve f. By [4], if f = exp(h/g) is an exponential invariant curve for a
system (47), then g(x1,x2) = 0 is an algebraic invariant curve for the same system.

Let f1,...,fs be a collection of algebraic invariant curves and exponential in-
variant curves of system (47) and, respectively, Kj,..., K, their cofactors. If
there exist such numbers f1,02,...,8, € C that F = f{'f5%... B = const
(p = U572 f5°) is a first integral (an integrating factor) for (47), that is
D(F) =0 (D(p) + p(P), + Q,,) = 0), then we say that the system of differential
equations (47) is Darboux integrable in the generalized sense. If among fi,..., fs
there are not an exponential invariant curve, then we shall speak on Darboux inte-
grability of (47).

It easy to show that F' (u) is a first integral (an integrating factor) of the Darboux
type for (47) if and only if the following identity

> BiKi(x1,w2) = 0 (Z BiKi(z1,2) = —(Py, + Q;J)
i=1 =1

is verified.

Next, we will examine on integrability the systems of the form (23), (22) which
have the dimension of GL-orbit equal to three, i.e. systems (27), (28), (33)—(35).
Because the system (28) ((34)) can be reduced to the system (27) ((33)) by a sub-
stitution x1 — 9, x2 — x1, we shall consider only the problem of integrability of
systems (27), (33) and (35).

By [3], the systems of normal form are integrable in quadratures. The aim of this
section is to show that the given systems are Darboux integrable in the generalized
sense.

The system (27). a) Let \; # kAo. It is easy to check that the curves f; = x5
and fo = (A — kXg)z1 + ag xah are algebraic invariant curves for (27) and have the
cofactors Ki(x1,x9) = Ay and Ky (x1,x2) = A1, respectively. Evidently, the identity
01 K1+ (2 Ko =0 holds for 81 = A1, B2 = —A2 and therefore F' = ff‘1f2_>‘2 is a
first integral of system (27).

b) A1 = kXg2. In this case besides the invariant curve f; = xo with K1 = Ay, we
have also an exponential invariant curve fo = exp(x1/ xé) with K9 = ag . The first
integral is F' = ffo'kfz_)‘z.

The system (33). Let

n—1 n—1
= J T J
©=A+ E a1,;Ty, Y =x2 | A+ § bo,j+173
= =1

If =0 (¢ =0), then F = x; (F = ) is a first integral of (33) and if ¢ # 0, this
integral looks

F = zjexp[— /(@/zﬁ)dajg]
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Let 3 £ 0,9 £ 0, r = degi), s = max{0, degih—degp+1}, ¢ = bor(xa—b1)™ ... (x2—
by,)"™, where by = 0, b; € C'\ {0}, j =2,m, r1 +... + 1, = r. For system (33)
fo=x1=0, f; =x9 — b; =0, i = 1, m, are invariant lines, and

/ ! / X
=erp——y..., i =erp———...,
m—+1 px2 — bl m—+r;—1 p(:Ez — bl)rl_l
1 S
fr= emp(:l?g by )L fre1 = exp(z2),. .., fris = exp(3)
m

are exponential invariant curves. Because

/%diﬂz:— [ﬁlln|$2—b1|+-..+ﬁmln|$2—bm|+M+

i
R Y S W
(x2 — bm)rm_l r+112 cee r+sLo| 5
r+s ]
the integral F' of (33) can be written in the Darboux form: F' = [] fiﬁl.
i=0

In the investigated case it is more easy to find an integrating factor which looks
i=1/(@10).

The system (35). Because p and ¢ are reciprocal prime numbers, for them such
integer positive numbers u and v can be found that pu—qgv = 1. The transformation
21 = 2ay, 2o = xiah [3] reduces (35) to a system similar with (33):

21221

n*
uA1 + v + Z(u‘lqi—i—l,pi + qui,m‘ﬂ)*%] )
i=1

22222

n*
g\ +pha+ > (qagivipi + pbqi,pi+1)'z§] :
i=1

Thus, we shall integrate directly system (35). If

A A2 = Qgit1pi t bgipiv1 = —P:1q, ©=1,n*, (48)

n* )

then the right—hand sides of (35) have a common factor A+ Y agit1,pi(z2h)". After
i=1

their cancelation by this factor, we obtain the system &1 = z1, &9 = i—?l‘g which has

a general integral xi‘z Ty M

an integrating factor

= const. In the case when (48) is not satisfied we have

*

-1

n

p= [$1w2 <q>\1 +pho+ Y (qagitip +pbqi,pi+1)($[f$§)l>] :
=1

From what has been said above, follows
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Theorem 8. On GL-orbits of dimension three the system (23) with the conditions
(22) has a generalized Darbouz first integral (a Darbouzx integrating factor).

In the case of cubic systems (36) and (37) we have the first integrals

. 2
)" [()\1 —jA2)z1 + ao,jiﬂé] if A # G,

and ‘
a:;o’jemp(—)\gazl/x%) if M =j), j=23.

The system (40) has a first integral xo = ¢ if Ag = by = bp3 = 0 and an integrating
factor = [xla:g()\g + booxo + boga:%)] i [A2| + [bo2| + |bos| # 0. At the same time,
the system (42) has a first integral xi‘zxg)‘l = const if A\ + Ay = as1 + b1z = 0 and
an integrating factor pu = [x122(A\1 + A2 + (a21 + blg)xlazg)]_l in other cases. The
cubic systems (38), (39) and (41) can be reduced to the systems investigated above
by substitution z1 — x9, T2 — 7.
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