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On check character systems over groups

G. Belyavskaya, A. Diordiev

Abstract. In this note we study check character systems (with one control symbol)
over groups (over abelian groups) and the check formula a1 ·δa2 ·δ

2
a3 · · · · ·δ

n

an+1 = e,
where e is the identity of a group, δ is an automorphism (a permutation) of a group.
For a group we consider strongly regular automorphisms (anti-automorphisms), their
connection with good automorphisms and establish necessary and sufficient conditions
in order that a system to be able to detect all single errors, transpositions, jump
transpositions, twin errors and jump twin errors simultaneously.
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1 Introduction

A check character (or digit) system with one check digit is an error detecting
code over alphabet Q which arises by appending a check digit an+1 to every word
a1a2 . . . an ∈ Qn:

a1a2 . . . an → a1a2 . . . anan+1

by some rule.

The aim of using such a system is to discover transmission errors of certain
patterns. The examples used in praxis among others are the following:

the Universal Product Code (UPC),

the European Article Number (EAN) Code,

the International Book Number (ISBN) Code,

the system of the serial numbers of German banknotes.

Among the first publications with respect to these systems are articles of
W. Friedman and C. J. Mendelsohn [5], based on code-tables, and by R. Schauf-
fler [10] using algebraic structures. In his book [14] J. Verhoeff presented basic
results which were in use up to 1970. Later the article of A. Ecker and G. Poch [4]
was published where the group-theoretical background of the known methods was
explained and new codes were presented that stem from the theory of quasigroups.
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Empirical investigations of J. Verhoeff [14] and Beckley [2] show that single errors
(. . . a · · · → . . . b . . . ), i.e. errors in only one component of a code word, (adjacent)
transpositions (. . . ab · · · → . . . ba . . . ), jump transpositions (. . . acb · · · → . . . bca . . . ),
twin errors (. . . aa · · · → . . . bb . . . ) and jump twin errors (. . . aca · · · → . . . bcb . . . ) are
the most important errors made by human operators (see Table 8 in [8] of frequency
of these error types).

The control digit an+1 in a check character system can be calculated by different
check formulas (check equations) in some algebraic structure (a group, a loop, a
quasigroup). In the case of a group the most general check formula is the following

a1 · δ1a2 · δ2a3 · · · · · δnan+1 = e, (1)

where e is the identity of a group G, δ1, δ2, . . . , δn are some fixed permutations of
G. Such a system is called a system over a group and always detects any single
error. A survey of the known results concerning check character systems based on
quasigroups (loops, groups) one can find in [1].

Often, one chooses a fixed permutation δ of G and puts δi = δi for i = 1, 2, . . . , n.
Equation (1) then becomes

a1 · δa2 · δ
2a3 · · · · · δ

nan+1 = e. (2)

There are many publications on check character systems over groups with check
equation (2), detecting some error types or all of the pointed above error types.

We study check character systems over a finite group which detect all single
errors, transpositions, jump transpositions, twin errors and jump twin errors si-
multaneously using such concepts as a complete mapping, an orthomorphism, a
regular automorphism and a new concept of a strongly regular automorphism (anti-
automorphism) of a group. For any group we consider the case when δ from (2) is
an automorphism ( δ ∈ AutG) and reduce conditions for a good automorphism [3].
For an abelian group δ may be a permutation.

2 Good automorphisms and check character systems

over groups

Denote by S(G, δ) a check character system over a group G with check for-
mula (2), n > 4, where δ is a permutation on G.

According to the known results (see, for example, [11], Table 2) a system S(G, δ)
detects all single errors and all

a) transpositions if and only if x · δy 6= y · δx for all x, y ∈ G, x 6= y;

b) jump transpositions if and only if xy · δ2z 6= zy · δ2x for all x, y, z ∈ G, x 6= z;

c) twin errors if and only if x · δx 6= y · δy for all x, y ∈ G, x 6= y;

d) jump twin errors if and only if xy · δ2x 6= zy · δ2z for all x, y, z ∈ G, x 6= z.
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In Table of [3] sufficient (and necessary for n > 4) conditions on an automorphism
δ of a group G with the identity e for error detection are given. These conditions
we give in Table 1.

Table 1. Error detection for automorphism δ

Error types Conditions on δ (for all x, y ∈ G, x 6= e)

single errors none
transpositions δx 6= y−1xy

jump transpositions δ2x 6= y−1xy

twin errors δx 6= y−1x−1y

jump twin errors δ2x 6= y−1x−1y

If G is an abelian group, these conditions are, respectively, the following: δx 6= x,
δ2x 6= x, δx 6= Ix, δ2x 6= Ix, if x 6= e, where Ix = x−1: x · Ix = Ix · x = e.

A permutation δ satisfying the inequality x · δy 6= y · δx for all x, y ∈ G, x 6= y

is called anti-symmetric mapping of a group G.
Groups with anti-symmetric mappings (check character systems over them detect

all single errors and all transpositions according to condition a)) were studied in
many articles (see, for example, [6–8] and [11–13]).

In [3] check character systems S(G, δ) over a finite group G with an automor-
phism δ, which detect all considered above error types simultaneously, were studied
and the following concept of a good automorphism was introduced.

Definition 1 [3]. Let G be a finite group. An automorphism δ of G is called good if
δx is not conjugate to x or x−1 and δ2x is not conjugate to x or x−1 for all x ∈ G,
x 6= e.

In [3] it was also shown that there are many groups possessing a good automor-
phism. In particular, the following results were noted.

If G is abelian, then a good automorphism δ satisfies the conditions for detecting
transpositions, jump transpositions and twin errors if δ2 is regular (that is fixed point
free on G, the same δx 6= x, if x 6= e) and δ is good if δ4 is regular.

For any group G and an automorphism δ of odd order the condition δx 6= y−1xy

(for all x, y ∈ G, x 6= e) implies that δ is good.
The following statement is also useful.

Lemma 1 [3]. Let G be a p-group and δ ∈ AutG. Suppose gcd(o(δ), p(p − 1)) = 1
(o(δ) is the order of δ). Then δ is good if and only if it is fixed point free.

The conditions of Table 1 (the same the conditions of a good automorphism)
are sufficient and necessary for detection of all single errors, transpositions, jump
transpositions, twin errors and jump twin errors if n > 4 [3].

Thus, we have the following statement.

Proposition 1. A system S(G, δ) over a group G where δ ∈ AutG, detects all
single errors, transpositions, jump transpositions, twin errors and jump twin errors
if and only if the automorphism δ is good.



20 G. BELYAVSKAYA, A. DIORDIEV

3 Strongly regular automorphisms and check character

systems over groups

Now we introduce the following useful concept.

Definition 2. An automorphism ( an anti-automorphism) δ of a group G is called
strongly regular if

δ(xy) 6= yx

for all x, y ∈ G, y 6= Ix.

It is easy to see that a strongly regular automorphism (anti-automorphism) δ is
regular and δ−1 is also strongly regular.

In abelian groups the concepts of a regular automorphism and a strongly regular
automorphism coincide.

Recall that a complete mapping of a group G is a bijective mapping x → θx of
G onto G such that the mapping x → ηx defined by ηx = x · θx is again a bijective
mapping of G onto G.

A permutation α of G is called an orthomorphism of a group G, if the mapping
β : βx = x · Iαx is also a permutation of G [9].

According to [9] an automorphism α is an orthomorphism if and only if the
automorphism α is regular.

It is evident that if α is an orthomorphism, then Iα is a complete mapping and
conversely.

An automorphism is called complete if it is a complete mapping.

Proposition 2. Let G be a group, δ ∈ Aut G. Then the following statements are
equivalent:

(i) δx 6= y−1xy for all x, y ∈ G, x 6= e;

(ii) δ is strongly regular;

(iii) δ is anti-symmetric;

(iv) δ satisfies the inequality xy · δz 6= zy · δx for all x, y, z ∈ G, x 6= z.

Proof. (i)⇔(ii): let x 6= e, then δx 6= y−1xy
x⇄yx
⇐⇒ δ(yx) 6= y−1(yx)y = xy, if

y 6= Ix.

(ii)⇔(iii): let x 6= z, then x · δz 6= z · δx ⇐⇒ Iz · x 6= δx · Iδz = δx · δIz
z⇄Iz
⇐⇒

zx 6= δ(xz), if x 6= Iz, since Iδ = δI.

(iii)⇔(iv): let x 6= z, then x · δz 6= z · δx
x⇄xy, z⇄zy

⇐⇒ xy · δ(zy) 6= zy · δ(xy) ⇐⇒
xy · δz 6= zy · δx, if x 6= z , since δ ∈ AutG. �

Proposition 3. Let G be a finite group, δ ∈ AutG. Then the following statements
are equivalent:

(i) δx 6= y−1x−1y for all x, y ∈ G, x 6= e;
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(ii) the anti-automorphism Iδ is strongly regular;

(iii) δ is a complete mapping;

(iv) δ satisfies the inequality xy · δx 6= zy · δz for all x, y, z ∈ G, x 6= z.

Proof. (i)⇔(ii): let x 6= e, then δx 6= y−1x−1y
x⇄yx−1

⇐⇒ δ(yx−1) 6= y−1(xy−1)y =

y−1x = I(x−1y)
x⇄Ix
⇐⇒ δ(yx) 6= I(xy) ⇐⇒ Iδ(yx) 6= xy, if y 6= Ix.

(ii)⇔(iii): let x 6= Iy, Iδ(yx) 6= xy ⇐⇒ δ(yx) 6= I(xy)
x⇄Ix
⇐⇒ δy · δIx 6= Iy ·x ⇐⇒

y · δy 6= x · δx, if x 6= y, since δI = Iδ. Thus, δ is a complete automorphism, since
G is a finite group.

(iii)⇔(iv): let x 6= z, then x · δx 6= z · δz
x⇄xy, z⇄zy

⇐⇒ xy · δ(xy) 6= zy · δ(zy) ⇐⇒
xy · δx 6= zy · δz, since x 6= z and δ ∈ AutG. �

Proposition 4. An automorphism δ (anti-automorphism Iδ) of a finite group G is
strongly regular if and only if δ (Iδ) is regular on the conjugacy classes of G (that
is it does not fix any conjugacy class of G\{e}).

Proof. By Proposition 2 an automorphism δ is strongly regular if and only if δ is
anti-symmetric. But by Proposition 4.3 of [11] δ is anti-symmetric if and only if it
does not fix any conjugacy class H 6= {e} of G.

According to Proposition 3 the anti-automorphism Iδ is strongly regular if and
only if δx 6= y−1x−1y or Iδx 6= y−1xy if x 6= e for all x, y ∈ G. It means that
IδH 6= H for any conjugacy class H of G if H 6= {e} (that is the anti-automorphism
Iδ is regular on the conjugacy classes, since it maps a class in a class). �

Proposition 5. Let δ ∈ AutG and δ2 be a strongly regular automorphism of a finite
group G. Then the automorphism δ and the anti-automorphism Iδ are also strongly
regular.

Proof. Let an automorphism δ2 be strongly regular, then by Proposition 4 δ2H 6= H

for any conjugacy class of G if H 6= {e}. From this it follows that δH 6= H and
δH 6= IH (otherwise, δ2H = δ(δH) = δ(IH) = IδH = I2H = H, contradiction) if
H 6= {e}.

Thus, according to Proposition 4 δ and Iδ are strongly regular. �

Note that this proposition means that from anti-symmetry of δ2 anti-symmetry
and completeness of δ follows (see Proposition 2 and Proposition 3).

Theorem 1. An automorphism δ of a finite group G is good if and only if the
automorphism δ2 and the anti-automorphism Iδ2 are strongly regular.

Proof. The conditions of Definition 1 mean that an automorphism δ is good if
and only if δx 6= y−1xy, δx 6= y−1x−1y, δ2x 6= y−1xy and δ2x 6= y−1x−1y for all
x, y ∈ G , x 6= e or δH 6= H, δH 6= IH, δ2H 6= H and δ2H 6= IH respectively for
any conjugacy class H of G, H 6= {e}.
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Taking into account Proposition 4 for the automorphisms δ and δ2 (for the anti-
automorphisms Iδ and Iδ2) we obtain that an automorphism δ of G is good if and
only if δ, Iδ, δ2 and Iδ2 are strongly regular. Now use Proposition 5. �

Thus, the first two from four conditions of Definition 1 of a good automorphism
are unnecessary.

From Proposition 1 and Theorem 1 it follows

Corollary 1. A check character system S(G, δ) over a finite group G with δ ∈ AutG

detects all single errors, transpositions, jump transpositions, twin errors and jump
twin errors if and only if the automorphism δ2 and the anti-automorphism Iδ2 are
strongly regular.

By Proposition 2 (Proposition 3) δ2 (Iδ2) is a strongly regular automorphism
(anti-automorphism) if and only if δ2 is anti-symmetric (δ2 is complete). So we
obtain the following

Corollary 2. A system S(G, δ) over a finite group G with δ ∈ AutG detects all
five error types considered above if and only if δ2 is an anti-symmetric and complete
mapping.

Corollary 3. A system S(G, δ) over a finite abelian group with δ ∈ AutG detects
all five error types considered above if and only if δ2 is an orthomorphism and a
complete mapping.

Indeed, in this case the automorphism δ2 is anti-symmetric if and only if it is
regular (by Proposition 2 for δ2), that is δ2 is an orthomorphism.

As it was remarked after Definition 1 an automorphism δ of an abelian group
admits to detect single errors, transpositions, jump transpositions and twin errors
if δ2 is fixed point free (that is regular).

Now consider check character systems S(G, δ) over a finite abelian group G where
δ is a permutation on G (δ ∈ SG).

Theorem 2. A check character system S(G, δ) over a finite abelian group G with
δ ∈ SG detects all single errors, transpositions, jump transpositions, twin errors
and jump twin errors if and only if the permutations δ and δ2 are orthomorphisms
and complete mappings (that is all permutations δ, δ2, Iδ and Iδ2 are complete
mappings).

Proof. In an abelian group G we have from conditions a) – b) in the beginning of
section 2:

x · δy 6= y · δx ⇐⇒ x · Iδx 6= y · Iδy

for all x 6= y, that is δ is an orthomorphism;

xy · δ2z 6= zy · δ2x ⇐⇒ x · δ2z 6= z · δ2x ⇐⇒ x · Iδ2x 6= z · Iδ2z

for all x 6= z, that is δ2 is an orthomorphism.
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Condition c) means that δ is a complete mapping; for codition d) we have

xy · δ2x 6= zyδ2z ⇐⇒ x · δ2x 6= z · δ2z

for all x 6= z, that is δ2 is a complete mapping. �

According to Theorem 2.3 of [11] a finite abelian group G admits a complete
mapping if and only if G has odd order or contains more than one involution (that
is an element a ∈ G, a 6= e such that a2 = e), so we have from Theorem 2 the
following

Corollary 4. A check character system S(G, δ) over an abelian group (with one
involution) and δ ∈ SG is not able to detect all transpositions (jump transpositions,
twin errors or jump twin errors).

Example. Consider the abelian group Z3
2 = Z2×Z2×Z2 of order 8. Its Cayley Table

is given in Table 2. In this group the permutation I is the identity permutation, so
each complete mapping is an orthomorphism and conversely. According to [9] in Z3

2

there are 48 regular automorphisms (that is orthomorphisms) which enter in eight
subgroups of order 7. As computer research has shown one of such subgroups is the
following:

ε = (0 1 2 3 4 5 6 7), δ0 = (0 2 6 5 3 7 4 1), δ2
0 = (0 6 4 7 5 1 3 2),

δ3
0 = (0 4 3 1 7 2 5 6), δ4

0 = (0 3 5 2 1 6 7 4), δ5
0 = (0 5 7 6 2 4 1 3), δ6

0 = (0 7 1 4 6 3 2 5).

We do not write the first row of permutations in the natural order.

Table 2. Z3
2 = Z2 × Z2 × Z2.

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 4 5 2 3 7 6
2 2 4 0 6 1 7 3 5
3 3 5 6 0 7 1 2 4
4 4 2 1 7 0 6 5 3
5 5 3 7 1 6 0 4 2
6 6 7 3 2 5 4 0 1
7 7 6 5 4 3 2 1 0

By Corollary 3 (or Theorem 2) each of six systems S(Z3
2 , δ), where δ is one of

these automorphisms, δ 6= ε, detects all single errors, transpositions, jump transpo-
sitions, twin errors and jump twin errors.
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