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The optimal flow in dynamic networks

with nonlinear cost functions on edges

M. Fonoberova, D. Lozovanu

Abstract. In this paper we study the dynamic version of the nonlinear minimum-
cost flow problem on networks. We consider the problem on dynamic networks with
nonlinear cost functions on edges that depend on time and flow. Moreover, we assume
that the demand function and capacities of edges also depend on time. To solve the
problem we propose an algorithm, which is based on reducing the dynamic problem
to the classical minimum-cost problem on a time-expanded network. We also study
some generalization of the proposed problem.

Mathematics subject classification: 90B10, 90C35, 90C27.
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1 Introduction

In this paper we study the dynamic version of the nonlinear minimum-cost flow
problem on networks, in which flows from supply nodes should be sent, in minimum
cost, to demand nodes such that the flows on used links do not exceed their capaci-
ties. This problem generalizes the well-known classical minimum-cost flow problem
on static networks [1] and extends some dynamic models from [2–5].

Classical static network flow models have been well known as valuable tools for
many applications. However, they fail to capture the property of many real-life
problems. The static flow can not properly consider the evolution of the system
in time. The time is an essential component, either because the flows of some
commodity take time to pass from one location to another, or because the structure
of network changes over time. To tackle this problem, we use dynamic network flow
models instead of the static ones.

The minimum cost flow problem is the problem of sending flows in a network from
supply nodes to demand nodes with minimum total cost such that link capacities
are not exceeded. This problem has been studied extensively in the context of static
networks. In this paper, we study the minimum cost flow problem in dynamic
networks.

We consider the problem on dynamic networks with nonlinear cost functions on
edges that depend on time and on flow. Moreover, we assume that the demand
function and capacities of edges also depend on time. We propose an algorithm
for solving the problem, which extends the algorithms from [2, 3] and is based on
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reducing the dynamic problem to the classical minimum-cost problem on a time-
expanded network.

2 Problem formulation

A dynamic network N = (V,E, u, τ, d, ϕ) consists of directed graph G =
= (V,E) with the set of vertices V and the set of edges E, capacity function
u: E × T → R, transit time function τe: E → R+, demand function d: V × T → R
and cost function ϕ: E × R+ × T → R+, where T = {0, 1, 2, . . . , T}. The demand
function dv(t) satisfies the following conditions:

a) there exists v ∈ V with dv(0) < 0;

b) if dv(t) < 0 for a node v ∈ V then dv(t) = 0, t = 1, 2, . . . , T ;

c)
∑

t∈T

∑

v∈V

dv(t) = 0.

Nodes v ∈ V with
∑

t∈T

dv(t) < 0 are called sources, nodes v ∈ V with
∑

t∈T

dv(t) > 0

are called sinks and nodes v ∈ V with
∑

t∈T

dv(t) = 0 are called intermediate.

A feasible dynamic flow on N is a function x: E × T → R+ that satisfies the
following conditions:

∑

e∈E+(v)
t−τe≥0

xe(t − τe) −
∑

e∈E−(v)

xe(t) = dv(t), ∀ t ∈ T, ∀ v ∈ V ; (1)

0 ≤ xe(t) ≤ ue(t), ∀ t ∈ T, ∀ e ∈ E; (2)

xe(t) = 0, ∀ e ∈ E, t = T − τe + 1, T ; (3)

where E+(v) = {(u, v) | (u, v) ∈ E}, E−(v) = {(v, u) | (v, u) ∈ E}.

Here the function x defines the value xe(t) of flow entering edge e at time t. It is
easy to observe that the flow does not enter edge e at time t if it will have to leave
the edge after time T ; this is ensured by condition (3).

To model transit costs, which may change over time, we define the cost function
ϕe(xe(t), t) with the meaning that flow of value ξ = xe(t) entering edge e at time t
will incur a transit cost of ϕe(ξ, t). We consider the discrete time model, in which all
times are integral and bounded by horizon T . The time horizon (finite or infinite)
is the time until which the flow can travel in the network and defines the makespan
T = {0, 1, . . . , T} of time moments we consider.

The integral cost F (x) of dynamic flow on N is defined as follows:

F (x) =
∑

e∈E

∑

t∈T

ϕe(xe(t), t). (4)
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Our dynamic minimum-cost flow problem is to find a flow that minimizes the ob-
jective function (4).

It is easy to observe that if τe = 0, ∀ e ∈ E and T = 0 then the formulated
problem becomes the classical minimum-cost flow problem on a static network.

3 Main results

We have obtained a necessary and sufficient condition for the existence of admis-
sible flow in dynamic network N , i.e. the condition when the set of solutions of the
system (1)–(3) is not empty. In this paper we propose a new approach for solving
the formulated problem, which is based on its reduction to a static minimum-cost
flow problem. We show that our problem on network N = (V,E, u, τ, d, ϕ) can be
reduced to a static problem on auxiliary static network NT = (V T , ET , uT , dT , ϕT );
we name it the time-expanded network. We define this network as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T};

2. ET : = {(v(t), w(t + τe)) | e = (v,w) ∈ E, 0 ≤ t ≤ T − τe};

3. uT

e(t): = ue(t) and ϕT

e(t)(xe(t)): = ϕe(xe(t), t) for e(t) ∈ ET ;

4. dT

v(t): = dv(t) for v(t) ∈ V T .

If we define a flow correspondence to be xT

e(t): = xe(t), the minimum-cost flow
problem on dynamic networks can be solved by using the solution of the static
minimum cost flow problem on the expanded network.

The essence of the time-expanded network is that it contains a copy of the
vertices of the dynamic network for each time t ∈ T, and the transit times and flows
are implicit in the edges linking those copies.

Now let us define a correspondence between feasible dynamic flows on the dy-
namic network N and feasible static flows on the time-expanded network NT . A
feasible static flow on NT is a function xT

e(t) that satisfies the following conditions:

∑

e(t)∈E+(v(t))

xT

e(t) −
∑

e(t)∈E−(v(t))

xT

e(t) = dT

v(t), ∀ v(t) ∈ V T ;

0 ≤ xT

e(t) ≤ uT

e(t), ∀ e(t) ∈ ET ;

xT

e(t) = 0, ∀ e(t) ∈ ET , t = T − τe + 1, T .

Let e(t) = (v(t), w(t + τe)) ∈ ET and let xe(t) be a flow on the dynamic network
N . The corresponding function xT

e(t) on the time-expanded network NT is defined
as follows:

xT

e(t) = x(v(t), w(t + τe)) = xe(t), ∀ e(t) ∈ ET . (5)
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Lemma 1. The correspondence (5) is a bijection from the set of feasible flows
on the dynamic network N onto the set of feasible flows on the time-expanded
network NT .

Proof. It is obvious that the correspondence above is a bijection from the set of
T-horizon functions on the dynamic network N onto the set of functions on the
time-expanded network NT . It is also easy to observe that a feasible flow on the
dynamic network N is a feasible flow on the time-expanded network NT and vice-
versa. Indeed,

0 ≤ xT

e(t) = xe(t) ≤ de(t) = dT

e(t), ∀ e ∈ E, 0 ≤ t < T.

Therefore it is enough to show that each dynamic flow on the dynamic network N
is put into the correspondence with a static flow on the time-expanded network NT

and vice-versa.

Let xe(t) be a dynamic flow on N and let xT

e(t) be a corresponding function on

NT . Let’s prove that xT

e(t) satisfies the conservation constraints on its static network.
Let v ∈ V be an arbitrary node in N and t: 0 ≤ t < T an arbitrary moment of time:

dv(t)
(i)
=

∑

e∈E+(v)
t−τe≥0

xe(t − τe) −
∑

e∈E−(v)

xe(t) =

=
∑

e(t−τe)∈E+(v(t))

xT

e(t−τ(e)) −
∑

e(t)∈E−(v(t))

xT

e(t)

(ii)
= dT

v(t). (6)

Note that according to the definition of the time-expanded network the set of
edges {e(t − τe)|e(t − τe) ∈ E+(v(t))} consists of all edges that enter v(t), while
the set of edges {e(t)|e(t) ∈ E−(v(t))} consists of all edges that originate from v(t).
Therefore, all necessary conditions are satisfied for each node v(t) ∈ V T . Hence,
xT

e(t) is a flow on the time-expanded network NT .

Let xT

e(t) be a static flow on the time-expanded network NT and let xe(t) be a

corresponding function on the dynamic network N . Let v(t) ∈ V T be an arbitrary
node in NT . The conservation constraints for this node in the static network are
expressed by equality (ii) from (6), which holds for all v(t) ∈ V T at all times t: 0 ≤
t < T . Therefore, equality (i) holds for all v ∈ V at all times t: 0 ≤ t < T and xe(t)
is a flow on the dynamic network N . �

The total cost of the static flow in the time-expanded network NT is denoted as
follows:

F T (x) =
∑

e(t)∈E

∑

t∈T

ϕT

e(t)(xe(t)).
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Lemma 2. If xe(t) is a flow on the dynamic network N and xT

e(t) is a corresponding

flow on the time-expanded network NT , then

F (xe(t)) = F T (xe(t)).

Proof. The proof is straightforward:

F (xe(t)) =
∑

e∈E

∑

t∈T

ϕe(xe(t), t) =
∑

e(t)∈E

∑

t∈T

ϕT

e(t)(xe(t)) = F T (xe(t)). �

The above lemmas imply the validity of the following theorem:

Theorem 1. For each minimum-cost flow in the dynamic network there is a corre-
sponding minimum-cost flow in the static network.

Therefore, we can solve the dynamic minimum-cost flow problem by reducing it
to the minimum-cost flow problem on static networks.

4 Algorithm

Let a dynamic network N be given. The minimum-cost flow problem is to be
solved on N . Proceedings are following:

1. Building the time-expanded network NT for the given dynamic network N .

2. Solving the classical minimum-cost flow problem on the static network NT .

3. Reconstructing the solution of the static problem on NT to the dynamic
problem on N . �

5 Generalization

Now let us study some general cases of the dynamic networks. First of all, we
assume that only a part of the flow is dumped into the considered network at the
time 0, i.e. the condition b) in the definition of the demand function dv(t) doesn’t
hold. Using the following, this case can be reduced to the one considered above.

Let us consider an arbitrary dynamic network N defined above and let the flow
be dumped into the network from the node v ∈ V at an arbitrary moment of time t,
different from the ordinary moment. We can reduce this problem to the problem in
which all of the flow is dumped into the network at the initial time by introducing
loops in all nodes from V , except the node v from which the flow is dumped into the
network at the time t. For such loops we attribute capacities ue(t) and transit times
which are equal to the time t. The cost functions are equal to 0 on these loops. So,
we can consider that all the flow is dumped in the network at the time t, which we
define as the initial time.
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The argumentation is the same when the flow is dumped in the network from
different nodes at different moments of time. Let t be the maximum of those mo-
ments. In this case we take t as the initial time and attribute capacities ue(t) and
transit times to loops constructed from all the nodes, except those that dump the
flow in the network at time t. The transit times are equal to the difference between
time t and the time when the flow from those nodes that generate loops is dumped
in the network. We consider the cost functions that are zero on such loops. So, we
reduce this problem to the one considered above where the whole flow is dumped
into the network at the initial moment of time.

Further we consider the variation of the dynamic network when the condition c)
in the definition of the demand function dv(t) doesn’t hold. We assume that after
time t = T there still is flow in the network, i.e. the following condition is true:

∑

t∈T

∑

v∈V

dv(t) ≥ 0.

We also can reduce this case to the initial one, using the following argumentation.

Let us consider an arbitrary dynamic network N defined above and let the flow
exist in the network after time t = T . We can reduce this problem to the problem
without flow in the network after an upper bound of time by the introduction of
an additional node v /∈ V and additional edges which are not contained in E. The
rest of the flow in the network is sent to the node v through the arcs which we just
introduced. We consider that these arcs have capacities ue(t) and specified limited
transit times and that the cost functions on these loops are zero. In such a way we
obtain the initial model of the dynamic network.

The next model of the dynamic network is the one when we allow flow storage
at the nodes. In this case we can reduce this dynamic network to the initial one by
introducing the loops in those nodes in which there is flow storage. For these loops
we attribute capacities ue(t), specified limited transit times, and zero cost functions.
The flow which was stored at the nodes passes through these loops. Accordingly, we
reduce this problem to the initial one.

The other variation of the dynamic network is the one when the cost functions
also depend on the flow at the nodes. In this case we can reduce this model of the
dynamic network to the initial one by introducing new arcs and attributing the cost
functions, which were defined in the nodes, capacities ue(t), and fixed transit times
to these arcs. Consequently, we obtain the initial model of the dynamic network.

The same reasoning to solve the minimum-cost flow network problem on the
dynamic networks and its generalization can be held in the case when, instead of the
condition (2) in the definition of the feasible dynamic flow, the following condition
takes place:

u1
e(t) ≤ xe(t) ≤ u2

e(t), ∀ t ∈ T, ∀ e ∈ E,

where u1
e(t) and u2

e(t) are lower and upper boundaries of the capacity of the edge e,
respectively.
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