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Kojalovich Method and Studying Abel’s Equation

with the one known solution

A.V. Chichurin

Abstract. The problem of constructing a general solution for the Abel’s equation
of the special kind with a known partial solution is considered.
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1 Introduction

It is known that there are some classes of differential equations that are not
integrable in quadratures but become integrable if some its partial solution has been
found. As an example, let us consider the following Abel’s equation of the second
kind [1, 2]

yy′ − y = r(x), (1)

where y = y(x) is an unknown function and r(x) is some known function which
will be determined below. Equation (1) is connected closely with many problems
of physics, mechanics, chemistry, biology, ecology and other [1]. Some differential
equations which are reduced to Abel equation are considered in [1–3].

In order to solve this equation we shall use the following special method which
was developed in the textbook of Kojalovich [4].

2 Kojalovich’s method

Let a function f be an integrating function of equation (1). Then, according to
[4], it satisfies the following equality

∂f

∂x
+
∂f

∂y

y + r

y
+
∂f

∂αi

+
αi + r

αi

= ψ(x, y) ω(x, αi), (2)

where αi (i = 1, n) are partial solutions of equation (1).

Instead of f let us consider new integrating function F (x, y, αi) of the form

F (x, y, αi) = f(x, y, αi) + λ1(x)
∂f

∂αi

+ λ2(x)
∂2f

∂α2
i

, (3)
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where λ1(x), λ2(x) are unknown functions. The function F is obviously a superpo-
sition of functions of x. So its derivative may be written as
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, (4)

because of (1)

y′ =
y + r(x)

y
, α′

i =
αi + r(x)

αi

.

Differentiating equation (2) by αi we write

∂2f

∂x ∂αi

+
∂2f

∂y ∂αi

y + r(x)

y
+
∂2f

∂αi
2
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, (5)
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2
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y
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. (6)

Using relations (5) and (6) we rewrite (4) in the form
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As the function F is an integrating function (it is easy to verify that F satisfies

the criterium (2)) then the coefficients of
∂f

∂αi

and
∂2f

∂αi
2

must be equal to 0. Thus

the functions λ1(x), λ2(x) satisfy the following differential equations

λ′1(x) + λ1(x)
r(x)

αi
2
− 2λ2(x)

r(x)

αi
3

= 0, λ′2(x) + 2λ2(x)
r(x)

αi
2

= 0. (8)

General solution of the second equation of the system (8) may be written in the
form

λ2(x) = C1 exp(2 I1), (9)

where I1 ≡ −

∫

r(x)

αi
2
dx and C1 is an arbitrary constant. Using (9) we rewrite

the first equation of the system (8) in the form

λ′1(x) + λ1(x)
r(x)

αi
2

= 2C1
r(x)

αi
3

exp(2 I1). (10)

Its general solution has the form

λ1(x) =

(

C2 + 2C1

∫

exp(I1)
r(x)

αi
3
dx

)

exp(I1). (11)

Thus, the function F satisfies the equation

dF

dx
=
∂F

∂x
+
∂F

∂y

y + r(x)

y
+
∂F

∂αi

αi + r(x)

αi

= Ψ(x, y) Ω(x, αi),

where

Ψ(x, y) = ψ(x, y),

Ω(x, αi) = ω(x, αi) + λ1(x)
∂ω(x, αi)

∂αi

+ λ2(x)
∂2ω(x, αi)

∂αi
2

.

Hence F is the integrating function for equation (1).

3 Application of the method

Let us know one partial solution α of the equation (1). Kojalovich proved [4]
that there are three types of autonomous integrating functions which may be written
in the form

f =

∫ y−αi exp(h u)

u
du, (12)

f =
1

hy
exp(h(y − αi)) −

∫ y−αi exp(h u)

u
du,

f = −

1

hαi

exp(h(y − αi)) −

∫ y−αi exp(h u)

u
du,
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where h is a constant. We consider here only the integrating function (12).
Substituting (12) into the equation (3) ( the functions λ2(x), λ1(x) are deter-

mined from equations (9), (11)) we obtain

exp(h(y − α) + 2I(x)) C1 (h(y − α) − 1)

(y − α)2
+

∫ x exp(hy)

u
du−

−

exp(h(y − α) + I(x))
(

C2 + 2C1

∫ x

0
exp(I(v1)) r(v1)

α3(v1)
dv1

)

y − α
= 0, (13)

where C1, C2 are arbitrary constants and

I(x) ≡ −

∫ x

0

r(v)

α2(v)
dv.

Differentiating (13) yields

r(x) exp(h(y − α))

α3 y
(α2

− C2α(1 + h α) eI(x) + C1(2 + 2h α+ h2α2) e2I(x)
−

−2C1 α(1 + hα) eI(x)

∫ x

0

r(t)

α3(t)
eI(t) dt) = 0.

Thus, the partial solution α must satisfy the following equation

α2 = α(1 + hα) eI(x)

(

C2 + 2C1

∫ x

0

r(t)

α3(t)
eI(t) dt

)

− C1(2 + 2h α+ h2α2) e2I(x).

(14)
Solving equation (14) for C1 = 3/h, C2 = 0 we find

α = −

3 r(x)

1 + h r(x)
. (15)

Substituting (15) into equation (1) we obtain

x(r) = C3 +
3

h(hr + 1)
+

ln(hr − 2) − ln(hr + 1)

h
,

where C3 is an arbitrary constant. Then equation (1) has the form

y(r) y′(r) =
9(r + y(r))

(hr − 2)(hr + 1)2
. (16)

Substituting (15) into equation (3) (functions λ1(x), λ2(x) have the form (9),
(11)) we obtain the general integral of equation (16)
∫ x

0

exp(h Φ)

Φ
dt−

exp (h Φ)) (1 + hr)(6r(hr − 1) + 3r + (hr − 2)(hr + 1)y(r))

h(hr − 2)(y(r) + r(3 + hy(r)))2
= C,

(17)
where

Φ ≡

3r

1 + hr
+ y(r)

and C is an arbitrary constant.
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4 Conclusion

We have shown that using the integrating function (12) it is possible to build a
new integrating function of the form (3), where functions λ1(x), λ2(x) are defined
in (9), (11). Besides, the corresponding Abel’s equation is obtained in the form (16)
and its general integral has the form (17).

It is possible to consider integrating function of the form

F (x, y, αi) = f(x, y, αi) +
n

∑

k=1

λk(x)
∂kf

∂αk
i

,

where λk(x) (k = 1, n) are some functions of x. This functions also may be found
with the help of the upper considered procedure.

This procedure may be used for solving Abel’s equation of the form

y(r) y′(r) =
4n3(r + y(r))

(hr − n)(hr + n)2
, (18)

where n is a natural number, h is a constant and r = r(x). The corresponding
partial solution of equation (18) is

y = −

2nr

n+ hr
.

Note that equation (18) for n = 1 was integrated in [5].
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