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About one explicit-difference scheme for solving the

plane problem for two-component medium

V. Cheban, I. Naval

Abstract. The finite-difference scheme for plane dynamical problem of the theory
of elasticity of two-component medium in displacements is obtained. The stability of
this scheme by means of Niemann conditions is studied. Is found the maximal time
step in dependence on the space step for which the stability is kept.
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The research of wave processes in many components continuous media represents
a great interest for seismology, construction, the research of the dynamic behavior of
the various mixtures of the soils etc. The works [1–6] are dedicated to the construc-
tion of mathematical models of such media. M.A. Biot in his works [1–3] proposed
a rather general approach in the linear mechanics of deformation and distribution
of acoustic waves in porous two-component medium.

The non-numerous works [7–13] devoted to the solution of concrete problems
on the basis of M.A. Biot’s equations refer exclusively to the simplest kinds of two-
components media (mixture of two isotropically solid bodies, isotropically solid body
and liquids, a liquid and a gas), the first stage of the solution of the problem doesn’t
provoke any difficulties being the determination of the speeds of the wave types
appeared.

The purpose of the present article is the estimation of the time step providing
the stability of one explicit finite-difference scheme for the plane dynamical problem
of the theory of elasticity of two-component medium. Non-stationary processes in
every layer are described by equations of the theory of elasticity: the equations of
motion, the Hooke’s law and the Cauchy relations.

The relations between stresses and deformations in conditions of plane deforma-
tion are the following:

σxx = −α2 + (λ1 + 2µ1) εxx + λ1εyy + (λ3 + 2µ3) qxx + λ3qyy;

σyy = −α2 + λ1εxx + (λ1 + 2µ1) εyy + λ3qxx + (λ3 + 2µ3) qyy;

πxx = α2 + (λ2 + 2µ2) qxx + λ2qyy + (λ4 + 2µ3) εxx + λ4εyy;

πyy = α2 + λ2qxx + (λ2 + 2µ2) qyy + λ4εxx + (λ4 + 2µ3) εyy;

σxy = 2 (µ1εxy + µ3qxy) − λ5 (hxy − hyx) ;
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σyx = 2 (µ1εxy + µ3qxy) + λ5 (hxy − hyx) ;

πxy = 2 (µ2qxy + µ3εxy) − λ5 (hxy − hyx) ; (1)

πxy = 2 (µ2qxy + µ3εxy) + λ5 (hxy − hyx) .

The behavior of the elastic system is described by the equations of motion:

∂σx x

∂ x
+

∂σx y

∂ y
− ∂π0

∂ x
= ρ11

∂2u1

∂ t2
+ ρ12

∂2u2

∂ t2
+ b

(

∂u1

∂ t
− ∂u2

∂ t

)

;

∂σy x

∂ x
+

∂σy y

∂ y
− ∂π0

∂ y
= ρ11

∂2v1

∂ t2
+ ρ12

∂2v2

∂ t2
+ b

(

∂v1

∂ t
− ∂v2

∂ t

)

;

∂πx x

∂ x
+

∂πx y

∂ y
+

∂π0

∂ x
= ρ12

∂2u1

∂ t2
+ ρ22

∂2u2

∂ t2
− b

(

∂u1

∂ t
− ∂u2

∂ t

)

; (2)

∂πy x

∂ x
+

∂πy y

∂ y
+

∂π0

∂ y
= ρ12

∂2v1

∂ t2
+ ρ22

∂2v2

∂ t2
− b

(

∂v1

∂ t
− ∂v2

∂ t

)

,

where ui, vi (i = 1, 2) are the components of the displacement vector of firm phases;
σxx, σxy, σyx, σyy, πxx, πxy, πyx, πyy are the components of the stress tensor; εxx, εxy,
hyx, εyy, qxx, qxy, hyx, qyy are the components of deformation; ρ11, ρ22 are the effec-
tive component masses at their relative motion; ρ11 + ρ12 = ρ1, ρ22 + ρ12 = ρ2, ρ12

is the ,,connecting parameter” between the components of the mixture or the ad-
ditional apparent mass; α2 = λ3 − λ4is the constant with the dimension of stress;
λj µj , (j = 1, 5) are the Lame constants; ρ1, ρ2are the densities of phases; b is the
diffusion coefficient

π0 = ρ1/ρα2(qx + qy) + ρ1/ρα2(εx + εy).

The relations between the deformations and displacements are the following

εxx =
∂u1

∂x
, εxy =

∂u1

∂y
+

∂v1

∂x
, εyy =

∂v1

∂y
;

qxx =
∂u2

∂x
, qxy =

∂u2

∂y
+

∂v2

∂x
, qyy =

∂v2

∂y
; (3)

hxy =
∂v1

∂x
+

∂u2

∂y
, hyx =

∂u1

∂y
+

∂v2

∂x
.

Let us consider the formulation of the problem in displacements. To obtain this
formulation we substitute the relations (1) and (3) in the equations of motion. After
some simple transformations the obtained equations can be presented in the form:

A11

∂2u1

∂x2
+A12

∂2u1

∂y2
+(A11−A12)

∂2v1

∂x∂y
+B11

∂2u2

∂x2
+B12

∂2u2

∂y2
+(B11−B12)

∂2v2

∂x∂y
=

= ρ11

∂2u1

∂t2
+ ρ12

∂2u2

∂t2
+ b

(

∂u1

∂t
+

∂u2

∂t

)

;
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A21

∂2u1

∂x2
+A22

∂2u1

∂y2
+(A21−A22)

∂2v1

∂x∂y
+B21

∂2u2

∂x2
+B22

∂2u2

∂y2
+(B21−B22)

∂2v2

∂x∂y
=

= ρ12

∂2u1

∂t2
+ ρ22

∂2u2

∂t2
− b

(

∂u1

∂t
+

∂u2

∂t

)

;

A11

∂2v1

∂x2
+A12

∂2v1

∂y2
+(A11 −A12)

∂2u1

∂x∂y
+B11

∂2v2

∂x2
+B12

∂2v2

∂y2
+(B11 −B12)

∂2u2

∂x∂y
=

= ρ11

∂2v1

∂t2
+ ρ12

∂2v2

∂t2
+ b

(

∂v1

∂t
+

∂v2

∂t

)

; (4)

A21

∂2v1

∂x2
+A22

∂2v1

∂y2
+(A21 −A22)

∂2u1

∂x∂y
+B21

∂2v2

∂x2
+B22

∂2v2

∂y2
+(B21 −B22)

∂2u2

∂x∂y
=

= ρ12

∂2v1

∂t2
+ ρ22

∂2v2

∂t2
− b

(

∂v1

∂t
+

∂v2

∂t

)

,

where A11 = λ1 + 2µ1 − ρ2α2/ρ; A12 = µ1 − λ5; A21 = λ2 + 2µ2 + ρ1α2/ρ;
A22 = µ2−λ5; B11 = λ3+2µ3−ρ1α2/ρ; B12 = µ3+λ5; B21 = λ4+2µ3+ρ2α2/ρ;
B22 = µ3 + λ5.

Further it will be convenient to split this system into two systems. The first
system describes the processes connected with elastic properties of the medium. The
second system describes the dissipative properties of the medium. So the systems
differ only in right-hand parts. The first system contains the second derivatives with
respect to time and the second system contains the first derivatives with respect to
time.

Let us consider the following explicit finite-difference scheme for numerical solv-
ing the first system of equations.

Let us consider the rectangular grid with the steps ∆x with respect to variable
x, ∆y with respect to time variable. We’ll denote by fk

ij = f(i∆x, j∆y, k∆t) the
values of function f in the nodes of the grid and approximate the derivatives with
finite-difference relations

∂2f

∂t2
∼

fk+1
n,m − 2fk

n , m + fk−1
n , m

∆t2
=

(

fk
m, n

)

t̄t ;

∂2f

∂y2
∼ fn , m+1 − 2fn , m + fn, m−1

∆y2
=

(

fk
m, n

)

ȳy ;

∂2f

∂x∂y
∼ fn+1 , m+1 − fn−1 , m+1 − fn+1 , m−1 + fn−1 , m−1

4∆ x ∆ y
=

(

fk
m, n

)

x̄y ,

as a result we obtain the following discrete system of equations:

A11

(

uk
1m,n

)

x̄x
+ A12

(

uk
1m,n

)

ȳy
+ (A11 − A12)

(

vk
1m,n

)

x̄y
+ B11

(

uk
2m,n

)

x̄x
+

+B12

(

uk
2m,n

)

ȳy
+ (B11 − B12)

(

vk
2m,n

)

x̄y
= ρ11

(

uk
1m,n

)

t̄t
+ ρ12

(

uk
2m,n

)

t̄t
;
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A21

(

uk
1m,n

)

x̄x
+ A22

(

uk
1m,n

)

ȳy
+ (A21 − A22)

(

vk
1m,n

)

x̄y
+ B21

(

uk
2m,n

)

x̄x
+

+B22

(

uk
2m,n

)

ȳy
+ (B21 − B22)

(

vk
2m,n

)

x̄y
= ρ12

(

uk
1m,n

)

t̄t
+ ρ22

(

uk
2m,n

)

t̄t
;

A11

(

vk
1m,n

)

x̄x
+ A12

(

vk
1m,n

)

ȳy
+ (A11 − A12)

(

uk
1m,n

)

x̄y
+ B11

(

vk
2m,n

)

x̄x
+

+B12

(

vk
2m,n

)

ȳy
+ (B11 − B12)

(

uk
2m,n

)

x̄y
= ρ11

(

vk
1m,n

)

t̄t
+ ρ12

(

vk
2m,n

)

t̄t
; (5)

A21

(

vk
1m,n

)

x̄x
+ A22

(

vk
1m,n

)

ȳy
+ (A21 − A22)

(

uk
1m,n

)

x̄y
+ B21

(

vk
2m,n

)

x̄x
+

+B22

(

vk
2m,n

)

ȳy
+ (B21 − B22)

(

uk
2m,n

)

x̄y
= ρ12

(

vk
1m,n

)

t̄t
+ ρ22

(

vk
2m,n

)

t̄t
.

We do not consider here the initial and boundary conditions supposing that the
grid is unboundly continuous with respect to xand y.

Let us study the stability of finite-difference scheme (5) by means of Neumann
condition [14]. We find the solution of equations (5) in the form

uk
i , m, n = γkei α mei β nui 0; vk

i , m, n = γkei α mei β nvi 0
(i = 1, 2). (6)

As a result we obtain the characteristic equation. After the following notations

ω = −
γ − 2 + 1

γ

∆ t2
; (7)

ξ = −eiα − 2 + e−iα

∆ x2
=

2 (1 − cos α)

∆ x2
=

4 sin 2 α
2

∆ x2
; ζ = − sinα sin β

∆x∆y
;

η = −eiβ − 2 + e−iβ

∆ y2
=

2 (1 − cos β)

∆ y2
=

4 sin 2 β
2

∆ y2
, (8)

the characteristic equation can be written in the form:
∣

∣

∣

∣

∣

∣

∣

∣

∣

aξη
1

− ρ11ω bξη
1

− ρ12 ω (A11 − A12)ζ (B11 − B12)ζ

aξη
2

− ρ12ω bξη
2

− ρ22ω (A21 − A22)ζ (B21 − B22)ζ

(A11 − A12)ζ (B11 − B12)ζ aηξ
1

− ρ11ω bηξ
1

− ρ12 ω

(A21 − A22)ζ (B21 − B22)ζ aηξ
2

− ρ12ω bηξ
2

− ρ22ω

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

where afg
i = Ai1f + Ai2g; bfg

i = Bi1f + Bi2g.
The necessary Neumann condition of stability is that |γ| ≤ 1 for all eight roots

γ calculated from (7), where ω are the four roots of the last equation. From the last
equation we obtain the equation of the fourth order with respect to ω:

ω4 + a∗ω3 + b∗ω2 + c∗ω + d∗ = 0, (9)

where a∗, b∗, c∗, d∗ ∈ R, a∗ 6= 0.
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This equation can be written in the form:

(ω2 + a∗ω/2)2 = (a∗2/4 − b∗)ω2 − c∗ω − d∗.

Let us add to both parts of the equation the term(ω2 + a∗ω/2)2y + y2, then

(ω2 + a∗ω/2 + y/2)2 = (a∗2/4 − b∗ + y)ω2 + (a∗y/2 − c∗)ω + y2/4 − d∗.

We’ll find y in such a way that the right-hand part of the equation would be a
perfect trinomial square. After the following notations A2

∗
= a∗2/4− b∗ + y, B2

∗
=

y2/4− d∗, 2A∗B∗
= a∗y2/2− c∗, this condition can be written in the form 4A2

∗
B2

∗
=

(2A∗B∗
)2. So we’ve obtained the resolvable equation. If y0 is the root of the last

equation, then the solution of equation (9) reduces to the solution of the following
two equations ω2 + a∗ω/2 + y0/2 = A∗ω + B∗ and ω2 + a∗ω/2 + y0/2 = −A∗ω −B∗.
The examination of the roots of these equations by means of computer showed that
all four roots are real and positive.

Let us consider the equation (7). It can be written in the form

γ2 −
(

2 − ω ∆ t2
)

γ + 1 = 0. (10)

It is easy to realize that in the case of real ω one of the following situations is
possible:

– if the next condition is fulfilled

0 ≤ ω ∆ t2 ≤ 4, (11)

then both roots are complex and their modules are equal to 1;

– if the condition (11) is not fulfilled, then both roots are real one of them is less
than 1, but another is greater than1 (the product of the roots is equal to 1).

Thus, even if one of the values ωi (i = 1, 4) does not satisfy (11), then among the
eight roots γ of the characteristic equation (5) there is necessarily one with module
greater than 1. According to Neumann condition the finite-difference scheme (5)
will be unstable. If the values ωi satisfy the condition (11), then the modules of
all eight roots will be equal to 1. Hence, the finite-difference scheme (5) without
boundary conditions will be stable.

The examination of the roots of the equation (9) makes it possible to say that
the maximum value of the greatest of them is achieved at the corner point of the
rectangle 0 ≤ ξ ≤ 4/∆x2 , 0 ≤ η ≤ 4/∆y2.

If the maximum value of the function ω (ξ, η) is achieved at the corner point
ξ = 4/∆x2 , η = 4/∆y2, then the following estimation is fulfilled:

ω ≤
(

Ω +
√

Ω2 − 4∆∗(AC − BD)
)

/(2∆∗), (12)

where Ω = Aρ22 + Cρ11 − (B + D)ρ12, ∆∗ = ρ11ρ22 − ρ2
12, A = 4(A11/∆x2 +

A12/∆y2), B = 4(B11/∆x2 + B12/∆y2), C = 4(B21/∆x2 + B22/∆y2), D =
4(A21/∆x2 + A22/∆y2).



8 V. CHEBAN, I. NAVAL

It is evident that Ω = ∆∗(a2 + b2), where

a2 =

(

Θ +
√

Θ2 − 4∆∗(A11B21 − B
11

A21)

)/

(2∆∗);

b2 =

(

Σ +
√

Σ2 − 4∆∗(A12B22 − B
12

A22)

)/

(2∆∗);

Θ = A11ρ22 + B21ρ11 − (A21 + B11)ρ12; Σ = A12ρ22 + B22ρ11 − (A22 + B12)ρ12,

as a result we obtain

ω ≤ a2 + b2

2

(

4

∆x2
+

4

∆y2

)

+
a2 − b2

2

∣

∣

∣

∣

4

∆x2
− 4

∆y2

∣

∣

∣

∣

. (13)

According to the condition (11) the stability of the finite-difference scheme with-
out boundary conditions will take place if the step with respect to time variable will
satisfy the following condition:

∆t =
h√

a2 + b2
, if ∆ x = ∆ y = h; (14)

∆t =
∆x∆y

√

a2∆y2 + b2∆x2
, if ∆x ≤ ∆y; (15)

∆t =
∆x∆y

√

a2∆x2 + b2∆y2
, if ∆x ≥ ∆y. (16)

Now we’ll take in consideration the dissipative terms in the system (4). The
right-hand parts of the second system can be approximated by the relation

∂f

∂t
∼

fk+1
n,m − fk

n,m

∆t
= (fk

n,m)t̄, (17)

where f is one of the functions ui, vi, i = 1, 2.
The values of these additional terms (in comparison with elastic model) are

taking into account in the construction of transmission formulas for the next time
moment tk+1 = tk + ∆t.

The finite-difference scheme for system (2) in the operator form can be written
in the following form

Uk+1 = [E + τ(AI + AII)] Uk, (18)

where AI , AII are difference operators with chosen approximation of the right-hand
parts.

Let τI and τII be the time steps that provide the stability of these systems, i.e.
the conditions ‖E + τIAI‖ ≤ 1; ‖E + τIIAII‖ ≤ 1 are fulfilled for some norm of the
difference operator. Then, if the step τ , verifies the inequality

τ

(

1

τI
+

1

τII

)

≤ 1; (19)
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then the condition
‖E + τ (AI + AII)‖ ≤ 1, (20)

is fulfilled, i.e. the stability of the finite-difference scheme for system of equations
(4).

In reality, from the identity E+τ (AI + AII) = rI (E + τIAI)+rII (E + τIIAII)+
(1 − rI − rII) E (here rIτI = τ , rIIτII = τ) and from the convexity of the norm
follows that

‖E + τ (AI + AII)‖ ≤ rI‖E + τIAI‖ + rII‖E + τIIAII‖+

+| 1 − rI − rII | ≤ rI + rII + | 1 − rI − rII | .

Hence, the inequality (20) will be fulfilled, if 1 − rI − rII ≥ 0. As rI = τ/τI ,
rII = τ/τII , then the last condition consider with (19).

As it was mentioned above the stability of the finite-difference scheme for elastic
model is provided by conditions (15) and (16), i.e.

1

τI

=

√

a2∆y2 + b2∆x2

∆x∆y
if ∆x ≤ ∆y;

1

τI

=

√

a2∆x2 + b2∆y2

∆x∆y
if ∆x ≥ ∆y. (21)

Let us obtain the value τII , which provides the stability of the corresponding
scheme.

With the help of auxiliary value (λ − 1)/∆t = −µ, we obtain the characteristic
equation in the following form:

∣

∣

∣

∣

∣

∣

∣

∣

∣

aξη
1

− ρ11µ bξη
1

− ρ12 µ (A11 − A12)ζ (B11 − B12)ζ

aξη
2

− ρ12µ bξη
2

− ρ22µ (A21 − A22)ζ (B21 − B22)ζ

(A11 − A12)ζ (B11 − B12)ζ aηξ
1

− ρ11µ bηξ
1

− ρ12 µ

(A21 − A22)ζ (B21 − B22)ζ aηξ
2

− ρ12µ bηξ
2

− ρ22µ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (22)

From this determinantal equation we obtain

(µ − ξ − η)

[

µ2 − 4

3
(ξ + η)µ +

4

3

(

ξη − ζ2
)

]

= 0.

According to the above notations λ = 1− µ∆ t and, hence, the necessary condi-
tion of stability |λ| ≤ 1 is reduced to the inequality

1 − µ ∗ ∆ t ≥ −1 (23)

where µ∗ is the maximal value of the greatest root and α, β are arbitrary.
The maximal value of the greatest root for arbitrary α, β was studied by means

of computer in rectangle 0 ≤ ξ ≤ 4/∆x2 , 0 ≤ η ≤ 4/∆y2. The maximal value of
the greatest root is achieved at a corner point.
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If the maximal value of the function µ (ξ, η) is achieved at the corner point
ξ = 4/∆x2 , η = 4/∆y2, then the following estimation is fulfilled:

µ∗ ≤ AC − BD

b(A + C + B + D)
. (24)

Hence, from (19) we obtain:

∆t ≤ 2/µ∗; τII =
(AC − BD)

2b(A + B + C + D)
. (25)

So, from the condition of stability (19) for equal grid steps ∆ x = ∆ y = h, we obtain

τ =
τI + τII

τIτII
. (26)

Thus, in comparison with ”pure” elastic model the calculations of the dissipative
problem by means of explicit finite-difference scheme must be effectuated with a
smaller time step.

It is obvious that the application of the explicit difference scheme is expedient
only in rather narrow range of dissipative coefficient, when the ratio b/his small.
We shall notice that in the case of small values of b, the attributing of the dissipa-
tive terms in finite-difference equations loses sense as the coefficients of difference
viscosity of this scheme are values of the order h2.

In the case when b >> 1 it is expedient to consider independently a dissipative
system of equations instead of system (4) The elasticity will play a role of small
correction for the solution.

The carried out research allows to hope that the stability of calculations with
the time step verifying condition (26) will take place. However, as the research
was carried out without taking into account boundary conditions, it requires ex-
perimental examination. Such examination was carried out. As an example the
problem of impact of the rectangular domain on a rigid barrier was considered. The
calculated formulas were received in the boundary nodes of the grid. This explicit
finite-difference scheme was successfully approved under test problems. The accept-
able coordination of the compared results and obtaining the converging solutions by
reducing the grid step testify their reliability and closeness to the exact solution.
The realization of numerical experiments with different grids (when h → 0) has
allowed to estimate the actual speed of convergence of the difference scheme and to
optimize the number of nodes of integration to achieve the acceptable accuracy by
the minimal expenses of computer time and operative memory resources.
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