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Cyclic planar random evolution with four directions

Alexander D. Kolesnik

Abstract. A four-direction cyclic random motion with constant finite speed v in
the plane R

2 driven by a homogeneous Poisson process of rate λ > 0 is studied. A
fourth-order hyperbolic equation with constant coefficients governing the transition
law of the motion is obtained. A general solution of the Fourier transform of this
equation is given. A special non-linear automodel substitution is found reducing the
governing partial differential equation to the generalized fourth-order ordinary Bessel
differential equation, and the fundamental system of its solutions is explicitly given.
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1 Introduction

Various models of Markovian random evolutions performed by a particle moving
at chance with a constant finite speed are fairly attractive subject, which many
researchers have been dealing with. Such an interest is mostly due to the fact that
a great deal of practically important applied models in statistical physics, biology,
transport processes and engineering (see, for instance, Tolubinsky [15], Ratanov
[14], Papanicolaou [13], Brooks [1], Kolesnik [6] and the bibliography therein) can
be described and studied in terms of random evolutions.

The one-dimensional motions are the most studied models in which one often
managed to obtain the explicit forms of distributions (see Foong [3], Foong and
Kanno [4], Orsingher [10], Ratanov [14], Kolesnik [7]) or the estimates of their normal
approximations (see Brooks [1]). As far as their multidimensional counterparts are
concerned, only a few particular planar random evolutions were studied so far (see
Kolesnik [5], Orsingher and San Martini [12], Kolesnik and Turbin [8], Orsingher
[11], Kolesnik and Orsingher [9], Di Crescenzo [2]). By this, an explicit form of the
distribution was obtained only for the planar random motion with four mutually
orthogonal directions without reflection (see Orsingher [11]).

The planar random evolutions performed by a particle changing the directions of
its motion in a cyclic way are of a special interest because various cyclic processes are
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rather broadly used for modelling real phenomena. For example, in the well-known
statistical problem of discovering a random signal in a multi-channel system the
optimal strategy is just the cyclic choice of the channels. In biology the behaviour
of tetramers obeys a cyclic scheme too.

The cyclic planar random evolutions have been examined by some authors. In
particular, in Orsingher and San Martini [12] such a motion with three cyclically
changing directions has been studied, and the explicit solutions of some initial-value
problems for the governing equations have been found. The similar three-direction
model have recently been investigated by Di Crescenzo [2] where, by different meth-
ods, the functional relations for the distribution of this motion have been given in
terms of multidimensional convolutions.

In this paper we present a further generalization of the models mentioned above
to the case of four mutually orthogonal directions changing in the cyclic way. We
obtain a fourth-order hyperbolic equation governing the transition law of the motion
and give its general solution in terms of Fourier transforms. It is important to note
that the roots of corresponding characteristic equation are found explicitly. As an
alternative approach, we were able to find a non-linear automodel substitution reduc-
ing governing partial differential equation to the generalized fourth-order ordinary
Bessel differential equation, whose linearly independent solutions (i.e. fundamental
system of solutions) are also given. It is worth to especially emphasize that we were
able to find the fundamental system of solutions in an explicit form. This interesting
fact gives us some hints for further generalizations of such types of models.

2 Description of the Motion and the Governing Equation

A particle moves with some constant finite speed v in the plane R2. At every
time instant t it can have one of the four possible directions of motion D(t) = Ek,
where the direction Ek is orientated like the unit vector (cos (πk/2), sin (πk/2)), k =
0, 1, 2, 3. In other words, the particle can move parallelly to the coordinate axes OX
and OY only. The motion is controlled by a homogeneous Poisson process of rate
λ > 0 changing the directions according to the cyclic scheme

· · · → E0 → E1 → E2 → E3 → E0 → . . .

This means that at each Poisson-paced time moment the particle instantly changes
its direction in accordance with this rule and continues its motion in the chosen
direction with the same speed v until the next Poisson event occurs, then it cyclically
takes on a new direction, and so on.

Denote by Z(t) = (X(t), Y (t)) the particle’s position in the plane R2 at some
time instant t > 0. We are interested in studying the behaviour of the transition law
of the process Z(t). Introduce the joint partial densities fk = fk(x, y, t), (x, y) ∈
R2, t > 0, of the particle’s position and its direction as follows

fk(x, y, t) dxdy = P{x ≤ X(t) < x+ dx, y ≤ Y (t) < y + dy, D(t) = Ek}, (1)
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k = 0, 1, 2, 3.

Since the random events {D(t) = Ek, k = 0, 1, 2, 3, } do not intersect and form
the full group of events, then the function p = p(x, y, t), (x, y) ∈ R2, t > 0, defined
as p = f0 + f1 + f2 + f3, represents the transition density of the motion Z(t).

Our first result concerns the equation governing function p. It is given by the
following theorem.

Theorem 1. The transition density p = p(x, y, t), (x, y) ∈ R2, t > 0, of the
cyclic planar random evolution with four directions satisfies the following fourth-
order hyperbolic equation with constant coefficients

{[

(

∂

∂t
+ λ

)2
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2

∂x2

][
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}

p = 0. (2)

Proof. The Kolmogorov equation written down for the densities (1) leads to the
following hyperbolic system of four first-order PDEs

∂fk

∂t
= −v cos

πk

2
·
∂fk

∂x
− v sin

πk

2
·
∂fk

∂y
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k = 0, 1, 2, 3, f−1
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= f3.

Computing the determinant of this system and according to Kolesnik [7], Theorem
2, we come to the conclusion that each function fk as well as their sum satisfy
hyperbolic PDE (2). �

It is easy to check that the exponential substitution

p(x, y, t) = e−λtw(x, y, t) (3)

reduces equation (2) to the equation

{(
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− λ4
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w(x, y, t) = 0. (4)

This equation will become the main subject of our further analysis.
The Fourier transform of the function w = w(x, y, t)

W(α, β, t) =

∫∫

R2

eiαx+iβyw(x, y, t) dxdy

satisfies the ordinary differential equation

d4W

dt4
+ v2(α2 + β2)

d2W

dt2
+ (v4α2β2 − λ4)W = 0. (5)

Our next result concerns the general solution of equation (5). It is given by the
following theorem.
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Theorem 2. The general solution of equation (5) has the form

W(α, β, t) = C0e
r0t + C1e

r1t + C2e
r3t + C3e

r3t, (6)

where C0, C1, C2, C3 are arbitrary constants, and
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2
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2
.

(7)

Proof. The characteristic equation of the ordinary differential equation (5) is the
bi-square equation

r4 + v2(α2 + β2)r2 + (v4α2β2 − λ4) = 0,

whose roots, as is easy to see, are given by (7). �

Remark. The constants C0, C1, C2, C3 (depending on α and β) can be found from
the initial conditions in each particular case.

Corollary. The general solution P(α, β, t) of the Fourier transform of equation (2)
has the form

P(α, β, t) = C0e
(−λ+r0)t + C1e

(−λ+r1)t + C2e
(−λ+r3)t +C3e

(−λ+r3)t,

where r0, r1, r2, r3 are given by (7). This immediately follows from (3).

3 Fundamental System of Solutions

In this section we give an alternative approach leading to the fundamental system
of solutions of equation (2). One should especially emphasize that we obtain such a
system in an explicit form, unlike the solutions in terms of Fourier transforms given
above.

The principal result of this section is given by the following theorem.

Theorem 3. The fundamental system of solutions of equation (2) has the form

gi(x, y, t) = e−λtJ (i)(x, y, t), i = 0, 1, 2, 3, (8)

where J (i) are the generalized Bessel functions
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and z is given by the equality

z =
[

(v2t2 − x2)(v2t2 − y2)
]1/4

. (10)

Proof. By means of simple but fairly unwieldy computations one can show that
the automodel substitution (10) reduces partial differential equation (4) to the gen-
eralized fourth-order ordinary Bessel differential equation

{

B4
z −

(

2λ

v

)4

z4

}

ψ(z) = 0, (11)

where B4
z is the generalized fourth-order Bessel differential operator

B4
z =

(

z
d

dz

)4

.

According to Turbin and Plotkin [16], p.118, the solutions of equation (11) are given
by the generalized Bessel functions (9). In order to check the linear independence of
these functions one needs to show that their Wronskian is not zero at some arbitrary
point. It is convenient to check that, for instance, at the point z = 1 or z = 4. Then
taking into account (3) we obtain the statement of the theorem. �
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