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The radical theory of convolution rings

Stefan Veldsman

Abstract. Convolution rings have been defined as a unifying approach to a number of
ring constructions, e.g. polynomials, matrices, necklace rings and incidence algebras.
Here the radical theory of convolution rings will be investigated.
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Convolution rings were defined and studied in [22] as a unifying procedure to de-
scribe a wide variety of ring constructions. Every convolution ring is determined by
a convolution type. This type is then imposed on a ring A to give the corresponding
convolution ring C(A). For example, a polynomial convolution type is defined which
leads to the polynomial rings A[x]. Other examples include the direct product of a
ring with itself, matrices (finite, infinite or structural), incidence algebras, necklace
rings, quaternion rings, etc.

Here we will study the radical theory of convolution rings. The language of
convolution rings will enable us to formulate that which is common to all the ring
constructions under consideration. But it will also enable us to isolate those prop-
erties of convolution types which will enforce certain properties on the radicals of
the convolution rings.

1 Introduction

Convolution types have been defined for classes of R-algebras (R any ring), but
here we restrict ourselves to the class of all rings (Z-algebras). We recall from [22]:

Definition 1. A convolution type T is a quadruple T = (X,S, σ, τ) where X is a
non-empty set, S is a non-empty set of subsets of X with S 6= {X}, for every x ∈ X,
σ(x) is a non-empty subset of X ×X and τ is a function τ : X ×X → Z subject to:

(C1) Y1, Y2 ∈ S implies there exist a Y ∈ S with Y ⊆ Y1 ∩ Y2.
(C2) Y1, Y2 ∈ S implies there exist a Y ∈ S such that for all (s, t) ∈ σ(y), y ∈ Y,

either s ∈ Y1 or t ∈ Y2.
(C3) For all Y1, Y2 ∈ S, x ∈ X, the set {(s, t) ∈ σ(x) | s ∈ XrY1 and t ∈ XrY2}

is finite.
(A1) For all (s, t) ∈ σ(x), (p, q) ∈ σ(s) there exists a unique v ∈ X with (p, v) ∈

σ(x), (q, t) ∈ σ(v) and such that τ(s, t)τ(p, q) = τ(p, v)τ(q, t).
(A2) For all (s, t) ∈ σ(x), (p, q) ∈ σ(t) there exists a unique u ∈ X with (u, q) ∈

σ(x), (s, p) ∈ σ(u) and such that τ(s, t)τ(p, q) = τ(u, q)τ(s, p).
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Let T be a convolution type and let A be a ring. Let C(A,T ) = {f : X →
A |there exists a Y ∈ S, in general depending on f, such that f(y) = 0 for all
y ∈ Y }. This set Y associated with f ∈ C(A,T ) is called a zero-set for f (it need
not be unique) and when necessary denoted by Yf . On the set C(A,T ) we define
the following operations: For f, g ∈ C(A,T ) and x ∈ X,

componentwise addition (f + g)(x) = f(x) + g(x) and

convolution product (fg)(x) =
∑

(s,t)∈σ(x) τ(s, t)f(s)g(t).

Then C(A,T ) is a ring with respect to these operations. Usually we will write
C(A) for C(A,T ). Many examples were given in [22], as well as some first results
on ideals and homomorphisms of convolution rings. We recall one which will often
be used. Let I be an ideal of a ring A and let θ : A → A/I be the corresponding
surjective homomorphism. Then C(θ) : C(A) → C(A/I), defined by (C(θ))(f) :=
θ ◦ f for all f ∈ C(A), is a surjective homomorphism with ker C(θ) = C(I), i.e.
C(A/I) ∼= C(A)/C(I).

For a given convolution type and a radical, the single most important problem
is to determine the radical of the convolution ring C(A). Preferably one would
like to express it in terms of the radical of the underlying ring A. For this to be
possible, some connection between A and C(A) will be required. To ensure this, we
will impose further conditions on the convolution type. These conditions (except
Example 3.1 for infinite sets X) will be in force for the remainder of this paper and
all the examples discussed below will satisfy these conditions.

Let T = {t ∈ X | (t, t) ∈ σ(t) and τ(t, x) = 1 = τ(x, t) for all x ∈ X}. This
set could be empty, but the first of the next three conditions, which we require the
convolution type to satisfy, will ensure that T 6= ∅.

(T1) For every x ∈ X, there exists unique lx ∈ T and rx ∈ T such that (lx, x) ∈
σ(x) and (x, rx) ∈ σ(x).

(T2) If (p, q) ∈ σ(x) and p ∈ T (respt. q ∈ T ), then q = x (respt. p = x).

(T3) There exists YT ∈ S such that T ⊆ X \ YT .

It then follows from [22] that the mapping ι : A → C(A) defined by

ι(a) = ιa : X → A with

ιa(x) =

{

a if x ∈ T
0 if x /∈ T,

is a well-defined injective ring homomorphism. If the ring A has an identity 1A, then
C(A) has an identity e := ι1A

and the ideal in C(A) generated by A coincides with
C(A) since e ∈ A.

We should point out that the embedding of A in C(A) need not be unique.
Suppose T 6= ∅ and choose t0 ∈ T fixed. The mapping ς : A → C(A) defined by

ς(a) = ςa : X → A with

ςa(x) =

{

a if x = t0
0 if x 6= t0
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is also an embedding of A into C(A). In this case, however, an identity in A need
not ensure that C(A) has an identity. When |T | = 1, this distinction falls away,
since then ι = ς. Without further notice we will regard ι, as defined above, as our
canonical embedding of A into C(A).

2 Radical theory

Throughout this section, T = (X,S, σ, τ) is a convolution type. Unless men-
tioned explicitly otherwise, all radicals will be in the sense of Kurosh-Amitsur and
when we say that α is a radical, α will denote both the class of radical rings as well
as the radical map which assigns to a ring A its radical α(A). For any class of rings
A, SA will denote the class SA = {A | 0 6= I � A ⇒ I /∈ A}. In particular, if α is a
radical class, Sα is the semisimple class of α.

For a given convolution type, the best possible scenario is α(C(A)) = C(α(A))
for all rings A and all radicals α. This can be realized, but only in a few very special
cases. For example, for any non-empty set X, let C(A) = ⊕x∈XA, the discrete direct
sum of |X|-copies of A (see Example 3.1 below). However, for most convolution types
one could have some radical α for which α(C(A)) = C(α(A)) holds for all rings A,
but for some other radicals these two subsets of C(A) need not even be comparable.
For a given radical α, it could also happen that α(C(A)) = C(α(A)) for a certain
convolution type, but for another convolution type, this equality need no longer be
true.

A radical α is said to be T -invariant if α(C(A)) = C(α(A)) for all rings A. There
are two (trivial) T -invariant radicals, namely α = {0} and α the class of all rings.
In general, invariance will depend on the convolution type as well as the properties
of the radical.

Recall, an ideal K of a convolution ring C(A) is called T −homogeneous if there
is an ideal I of the ring A such that K = C(I). This is equivalent to requiring the
equality C(K ∩ A) = K. Although homogeneity provides a useful link between the
ideals of C(A) and those of A, its real value only comes to the fore if an explicit de-
scription of the ideal K∩A of A is known. We also have a need for the following: The
ideal K of C(A) is called T − weakly homogeneous if C(K∩A) ⊆ K. The motivation
for these notions comes from the work of Amitsur [1] and subsequently Krempa [5] on
the radicals of polynomial rings. For polynomial rings, the homogeneity of α(A[x]),
i.e. α(A[x]) = (α(A[x]) ∩ a)[x], is sometimes referred to as the Amitsur Condition.
We will say the radical α is T −homogeneous if α(C(A)) = C(α(C(A)) ∩ A) for all
rings A and T − weakly homogeneous if C(α(C(A)) ∩A) ⊆ α(C(A)) for all rings A.
Usually we will drop the reference to the convolution type.

Let P be a function which assigns to each ring A and f ∈ C(A) a subset P (f,A)
of A subject to P (0, A) = {0}. In most cases we write P (f) for P (f,A). The most
frequent definition of P is: Let ∅ 6= W ⊆ X and let P (f) = f(W ), but other choices
will also be of some significance. When P (f) = f(W ) for all f, we sometimes write
P as PW . For I � A, let (I : P )C(A) = {f ∈ C(A) | P (f) ⊆ I}. When P = PW for
some W, we use the usual notation (I : W )C(A) = {f ∈ C(A) | f(W ) ⊆ I} in stead
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of (I : PW )C(A). To ensure that (I : P )C(A) is an ideal of C(A), it is sufficient to
require:

(i) For all f, g ∈ (I : P )C(A), P (f − g) ⊆ {a − b | a ∈ P (f), b ∈ P (g)}.
(ii) For all f ∈ (I : P )C(A) and h ∈ C(A), P (fh) ⊆ P (f)P (h) and P (hf) ⊆

P (h)P (f).
In particular, (I : W )C(A) will be an ideal of C(A) provided σ(w) ⊆ W × W for

all w ∈ W. If W = X, then this condition is trivially fulfilled and (I : X)C(A) = C(I)
is an ideal of C(A) as we already know.

The radical α will be called T − accessible if for all rings A there is an ideal I of
A and a function P such that α(C(A)) = (I : P )C(A) for all rings A. Note that if α
is accessible, P = PW for all f and W ∩ T 6= ∅, then I = α(C(A))∩A. Indeed, from
α(C(A)) = (I : W )C(A) it follows that α(C(A))∩A = (I : W )C(A)∩A = I. When I =
α(A) for all A, we say α is directly T −accessible, i.e. α(C(A)) = (α(A) : P )C(A) for
all A. Any invariant radical α is directly accessible with α(C(A)) = (α(A) : X)C(A).
For a homogeneous radical α, we know that α(C(A)) = (α(C(A))∩A : X)C(A), but
this does not necessarily mean that α is directly accessible.

We recall from [22]: Let D = {x ∈ X | σ(x) = {(x, x)}. If D 6= ∅, then there is
a surjective homomorphism θ : C(A) → (A/α(A))D with ker θ = (α(A) : D)C(A).

Since (A/α(A))D ∈ Sα, we have α(C(A)) ⊆ (α(A) : D)C(A). Moreover, for a fixed
d0 ∈ D, there is a surjective homomorphism γ : C(A) → A defined by γ(f) = f(d0).
Thus we have:

Proposition 1. Let T be a convolution type with D 6= ∅. For any radical α and
ring A,

(1) α(C(A)) ⊆ (α(A) : D)C(A) and
(2) C(A) ∈ α ⇒ A ∈ α.

Sometimes it is possible to embed a ring A as an ideal in C(A). More specifically

Proposition 2. Let T be a convolution type which satisfies the condition:
(T4) If t0 ∈ T such that (t0, x) ∈ σ(x) or (x, t0) ∈ σ(x), then x = t0.
Then A can be embedded as an ideal in C(A).

Proof. Define η : A → C(A) by η(a) = ηa : X → A

with ηa(x) =

{

a if x = t0
0 if x 6= t0

.

Then η is an injective homomorphism. We show η(A) is an ideal in C(A). Let
a ∈ A and f ∈ C(A). Then

(ηaf)(x) =
∑

(p,q)∈σ(x) τ(p, q)ηa(p)f(q). Let b := f(t0). Now ηa(p) = 0 for all p
unless p = t0. But (t0, q) ∈ σ(x) implies q = x by condition (T2) and then by (T4)
we have x = t0. Thus

(ηaf)(x) =

{

τ(t0, t0)ηa(t0)f(t0) if x = t0
0 otherwise

=

{

ab if x = t0
0 otherwise

= ηab(x).
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Hence ηaf = ηab ∈ η(A). Likewise fηa ∈ η(A). �

Since semisimple classes are hereditary, we have

Proposition 3. Let T be a convolution type which satisfies condition (T4). Then
C(A) ∈ Sα ⇒ A ∈ Sα.

Proposition 4. Let T be a convolution type and let α be a radical.
Then:
(1) α(C(A)) ⊆ C(α(A)) for all A

⇔ (A ∈ Sα ⇒ C(A) ∈ Sα)
⇒ (C(A) ∈ α ⇒ A ∈ α)

and if α is homogeneous, then (A ∈ Sα ⇒ C(A) ∈ Sα) ⇔ (C(A) ∈ α ⇒ A ∈ α).
(2) C(α(A)) ⊆ α(C(A)) for all A

⇔ (A ∈ α ⇒ C(A) ∈ α)
⇒ (C(A) ∈ Sα ⇒ A ∈ Sα)

and if α is homogeneous, then (A ∈ α ⇒ C(A) ∈ α) ⇔ (C(A) ∈ Sα ⇒ A ∈ Sα).

Proof. (1) The equivalence is clear. Suppose A ∈ Sα ⇒ C(A) ∈ Sα. Let
C(A) ∈ α. Then C(A)/C(α(A)) ∈ α. But A/α(A) ∈ Sα implies C(A)/C(α(A)) ∼=
C(A/α(A)) ∈ Sα which gives A = α(A) ∈ α. Suppose α is homogeneous and
C(A) ∈ α ⇒ A ∈ α. Let A ∈ Sα. Then C(α(C(A)) ∩ A) = α(C(A)) ∈ α implies
α(C(A)) ∩ A ∈ α by the assumption. Thus α(C(A)) ∩ A ⊆ α(A) = 0. This means
α(C(A)) = C(α(C(A)) ∩ A) = 0, i.e. C(A) ∈ α.

(2) Both the equivalence and implication are clear. We only show the converse
of the last implication under the assumption of homogeneity. Suppose α is homo-
geneous and C(A) ∈ Sα ⇒ A ∈ Sα. Let A ∈ α. Then α(C(A)) = C(α(C(A)) ∩ A)
and C(A/α(C(A)) ∩ A) ∼= C(A)/C(α(C(A)) ∩ A) = C(A)/α(C(A)) ∈ Sα. By
our assumption A/α(C(A)) ∩ A ∈ Sα and thus A = α(A) ⊆ α(C(A)) ∩ A, i.e.
A ⊆ α(C(A)). Thus α(C(A)) = C(α(C(A)) ∩ A) = C(A) and so C(A) ∈ α. �

Proposition 5. Let T be a convolution type and let α be a radical. The following
five conditions are equivalent:

(1) α is invariant (i.e. α(C(A)) = C(α(A)) for all A)
(2) (a) α(C(A)) ⊆ C(α(A)) for all A and

(b) C(α(A)) ⊆ α(C(A)) for all A.
(3) (a) A ∈ Sα ⇒ C(A) ∈ Sα and

(b) A ∈ α ⇒ C(A) ∈ α.
(4) (a) α is homogeneous and

(b) A ∈ α ⇔ C(A) ∈ α.
(5) (a) α is homogeneous and

(b) A ∈ Sα ⇔ C(A) ∈ Sα.

We next investigate the homogeneity condition. Krempa [4] has shown that
for polynomial rings A[x] this is equivalent to the condition α(A[x]) ∩ A = 0 ⇒
α(A[x]) = 0. This equivalence does not extend to convolution rings in general, which
necessitates more terminology: A radical α is said to satisfy the Krempa Condition
with respect to the convolution type T if α(C(A)) ∩ A = 0 ⇒ α(C(A)) = 0.
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Proposition 6. Let T be a convolution type and let α be a radical. The following
three conditions are equivalent:

(1) α is homogeneous
(2) (a) α is weakly homogeneous and

(b) α satisfies the Krempa Condition
(3) (a) α is weakly homogeneous and

(b) C(A) ∈ Sα for all rings A which has no non-zero ideals I .
with C(I) ∈ α

Proof. Suppose (1) holds. We show the validity of (3). The first part is obvious,
so we only verify (b). Let A be a ring which has no non-zero ideals I with C(I) ∈ α.
Then C(α(C(A)) ∩ A) = α(C(A) ∈ α implies α(C(A)) ∩ A = 0. Thus α(C(A) = 0,
i.e. C(A) ∈ Sα. Next we show (3) ⇒ (2). Let A be a ring with α(C(A)) ∩ A = 0. If
I is an ideal of A with C(I) ∈ α, then C(I) ⊆ α(C(A)) and thus I ⊆ C(I) ∩ A ⊆
α(C(A)) ∩ A = 0. From (3)(b) we get α(C(A) = 0.

(2) ⇒ (1). Let A be a ring and let B := α(C(A)) ∩ A. Then C(B) ⊆ α(C(A)).

Let A =
A

B
. Then A →֒ C(A) ∼=

C(A)

C(B)
and under this isomorphism, A =

A

B
∼=

A + C(B)

C(B)
→֒

C(A)

C(B)
. Since C(B) ⊆ α(C(A)), α(C(A)) =

α(C(A))

C(B)
. Thus

α(C(A)) ∩ A =
α(C(A))

C(B)
∩

A + C(B)

C(B)
=

=
(α(C(A)) ∩ A) + C(B)

C(B)
=

B + C(B)

C(B)
= 0.

From (2)(a) we get α(C(A)) = 0 which gives α(C(A)) ⊆ C(α(C(A)) ∩ A). The
converse inclusion is given by (2)(b). �

Below we shall see that weakly homogeneity is often a consequence of the proper-
ties of the convolution type. In such cases, homogeneity is equivalent to the Krempa
Condition which in turn is equivalent to condition (3)(b). This latter condition has
been considered by Tumurbat and Wiegandt [16] for polynomial rings.

Proposition 7. Let T be a convolution type such that for every ring R with identity,
all ideals of C(R) are homogeneous. Then every radical α is T -homogeneous.

Proof. Let D(A) be the Dorroh extension of the ring A (i.e. the canonical unital
extension of A). By the ADS-property, α(C(A)) is an ideal of C(D(A)). The assump-
tion implies α(C(A)) = C(I) for some ideal I of D(A). But C(I) = α(C(A)) ⊆ C(A)
implies I ⊆ A. Thus α(C(A)) is a homogeneous ideal of C(A). �

The ideal α(C(A))∩A plays an important role in the homogeneous requirement,
and we next explore this and related properties. Here the work of Amitsur for
polynomial rings [1], Krempa for semi-group rings [5] as well as the generalization
considered by Ortiz [6] serves as motivation for our considerations.

For the radical α, we define two classes of rings αc and α by
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αc := {R | C(R) ∈ α} and
α := {R | R ⊆ α(C(R))} and three ideals of a ring R by
αc(R) :=

∑

(I � R | I ∈ αc) =
∑

(I � R | C(I) ∈ α),
α(R) :=

∑

(I � R | I ∈ α) =
∑

(I � R | I ⊆ α(C(I))) and
α∗(R) := α(C(R)) ∩ R.

All these depend, of course, on the convolution type T , so when necessary, it
will be emphasized by adding a subscript T , as for example in αc

T
.

It can be verified that αc ⊆ α and for any ring R, αc(R) ⊆ α(R) ⊆ α∗(R). If A is a
ring such that the ideal generated by A coincides with C(A), then A ∈ αc ⇔ A ∈ α.
In particular, as we know from [22], if A is a ring with identity, then A ∈ αc ⇔
A ∈ α. If α(C(A)) is weakly homogeneous for all rings A, then αc = α. Indeed,
let A ∈ α. Then A = α(C(A)) ∩ A and so C(A) = C(α(C(A)) ∩ A) ⊆ α(C(A)).
Thus C(A) ∈ α, i.e. A ∈ αc. Also note that C(α∗(A)) ∈ α for all A implies that
α is weakly homogeneous and the converse holds if α is hereditary. It is clear that
αc ⊆ α ⇔ (A ∈ α ⇒ C(A) ∈ α), α ⊆ αc ⇔ (C(A) ∈ α ⇒ A ∈ α) and thus
α = αc ⇔ (C(A) ∈ α ⇔ A ∈ α). If D = {x ∈ X | σ(x) = {(x, x)}} 6= ∅, then α ⊆ α.
Indeed, as mentioned earlier, if D 6= ∅, then there is a surjective homomorphism

θ : C(A) →
A

α(A)
with

C(A)

ker θ
∼=

A

α(A)
∈ Sα, ker θ ∩A = α(A) and C(α(A)) ⊆ ker θ.

So, if A ∈ α, then A ⊆ C(α(A)) ∩ A ⊆ ker θ ∩ A = α(A) which gives A ∈ α.
A last remark on the coincidence of the classes under discussion here, is the

following. If D 6= ∅ and X is U -bounded (cf. [22]) for some finite set U with
∅ 6= U ⊆ X and σ(u) ⊆ U ×U for all u ∈ U, then α = αc = α for any hypernilpotent
radical α (i.e. all nilpotent rings are radical). Indeed, (0 : U)C(A) is a nilpotent ideal

of C(A) with
C(A)

(0 : U)C(A)

∼= AU (cf. Proposition 7 in [22]). Since α is hypernilpotent,

(0 : U)C(A) ∈ α. Thus, if A ∈ α, we have AU ∈ α (since U is finite) and hence
C(A) ∈ α, i.e. A ∈ αc. Since αc ⊆ α ⊆ α, we can conclude that α = αc = α.

An ideal K of C(A) has the Summation Property [22] if it satisfies: Whenever Ip

is an ideal of A with C(Ip) ⊆ K for all p ∈ Λ, Λ is some index set, then C(
∑

p∈Λ Ip) ⊆
K. Any weakly homogeneous ideal K has the summation property. The status of the
converse is not clear. What is known is that an ideal which satisfies the summation
property need not be homogeneous. Indeed, if A = 2Z, the ring of even integers,

let C(A) = M2(A), the ring of 2 × 2 matrices over A. Then K =

[

4Z 2Z
2Z 2Z

]

is weakly homogeneous (and thus satisfies the summation property), but it is not
homogeneous.

Proposition 8. If α is a radical class such that α(C(A)) has the summation property
for all rings A, then αc is a radical class. Conversely, if αc is a radical class and α
is hereditary, then α(C(A)) has the summation property for all rings A.

Proof. For a surjective homomorphism θ : A → B, we have a surjective homomor-
phism C(θ) : C(A) → C(B) defined by C(θ)(f) = θ ◦ f for all f ∈ C(A). From this
the homomorphic closure of αc follows.
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Suppose every non-zero homomorphic image of the ring A has a non-zero ideal
which is in αc. We show A ∈ αc. Let J :=

∑

(Ip � A | C(Ip) ⊆ α(C(A))). Then
C(J) ⊆ α(C(A)) by the summation property. If J 6= A, then there is a non-zero

ideal
I

J
of

A

J
with

I

J
∈ αc. Now C(I) " α(C(A)), for if C(I) ⊆ α(C(A)), then I = J,

a contradiction. Hence 0 6=
C(I)

C(I) ∩ α(C(A))
∼=

C(I) + α(C(A))

α(C(A))
�

C(A)

α(C(A))
∈ Sα.

But C(J) ⊆ C(I) ∩ α(C(A)) and
C(I) ∩ α(C(A))

C(J)
�

C(I)

C(J)
∼= C

(

I

J

)

∈ α which means
C(I)

C(I) ∩ α(C(A))
∈ α ∩

Sα = 0, a contradiction. Thus J = A and so C(A) = C(J) ⊆ α(C(A)), i.e.
C(A) ∈ αc.

Conversely, suppose αc is a radical and α is hereditary. Let Ip � A with C(Ip) ⊆
α(C(A)) for all p ∈ Λ, Λ some index set. Since α is hereditary, we get Ip ∈ αc for
all p. Thus

∑

p∈Λ Ip ⊆ αc(A) and so C(
∑

p∈Λ Ip) ⊆ C(αc(A)) ∈ α since αc(A) ∈ αc.
From the hereditariness of α we get C(

∑

p∈Λ Ip) ⊆ α(C(A)) which shows that the
summation property holds. �

Next we investigate when α will be a radical class. From Ortiz [6] we know that
if for any I � A, C(I) ⊆ IC(D(A)) where D(A) denotes the Dorroh extension of A,

then α is a radical class. We will weaken this requirement. Since α

(

C(A)

C(α∗(A))

)

�

C(A)

C(α∗(A))
, we have α

(

C(A)

C(α∗(A))

)

=
B

C(α∗(A))
for some B = BA � A. Then

α∗(A) ⊆ C(α∗(A)) ⊆ B and so α∗(A) ⊆ B ∩ A. We say that α has the Intersection
Property if α∗(A) = BA ∩ A for all rings A, i.e. α(C(A)) ∩A = BA ∩A for all rings
A. Note that

(1) BA = α(C(A)) ⇔ α(C(A)) is weakly homogeneous. Indeed, if BA =
α(C(A)), then C(α(C(A)) ∩ A) = C(α∗(A)) ⊆ BA = α(C(A)). Conversely, if

α(C(A)) is weakly homogeneous, then C(α∗(A)) ⊆ α(C(A)). Then
BA

C(α∗(A))
=

α

(

C(A)

C(α∗(A))

)

=
α(C(A))

C(α∗(A))
which gives BA = α(C(A)).

(2) If α satisfies the Krempa Condition and the Intersection Property, then

α(C(A)) ⊆ C(α∗(A)) for all A. This follows from α

(

C

(

A

α∗(A)

))

∼= α

(

C(A)

C(α∗(A))

)

,

α

(

C

(

A

α∗(A)

))

∩
A

α∗(A)
=

(BA ∩ A) + C(α∗(A))

C(α∗(A))
= 0 (by the Intersection Prop-

erty) and the Krempa Condition.

Proposition 9. If the radical α satisfies the Intersection Property, then α is a
radical class.

Proof. Let θ : A → B be a surjective homomorphism with A ∈ α. Then A ⊆
α(C(A)) and since C(θ) : C(A) → C(B) is a surjective homomorphism, B = θ(A) =
(C(θ))(A) ⊆ C(θ)(α(C(A))) ⊆ α(C(B)). Thus B ∈ α which shows that α is
homomorphically closed.
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Note that since
A + C(α∗(A))

C(α∗(A))
is the isomorphic image of

A

α∗(A)
under the iso-

morphism C

(

A

α∗(A)

)

∼=
C(A)

C(α∗(A))
, we get

α∗

(

A

α∗(A)

)

= α

(

C

(

A

α∗(A)

))

∩
A

α∗(A)
∼= α

(

C(A)

C(α∗(A))

)

∩
A

α∗(A)
=

=
BA

C(α∗(A))
∩

A + C(α∗(A))

C(α∗(A))
=

(BA ∩ A) + C(α∗(A))

C(α∗(A))
=

α∗(A) + C(α∗(A))

C(α∗(A))
= 0.

Suppose now A is a ring such that every non-zero homomorphic image of A
has a non-zero ideal which is in α. We show A ∈ α. Suppose to the contrary that

A /∈ α. Then α∗(A) $ A. By assumption, there is an ideal 0 6=
I

α∗(A)
�

A

α∗(A)
with

I

α∗(A)
∈ α. Then

I

α∗(A)
⊆ α

(

C

(

I

α∗(A)

))

⊆ α

(

C

(

A

α∗(A)

))

. Thus
I

α∗(A)
⊆

α

(

C

(

A

α∗(A)

))

∩
A

α∗(A)
= α∗

(

A

α∗(A)

)

= 0, a contradiction. Hence A ∈ α. �

Next we investigate the properties of the ideal-mapping α∗(A) = α(C(A)) ∩ A.

Proposition 10. For any radical α, α∗ is a complete pre-radical. It is a Hoehnke
radical if and only if α satisfies the Intersection Property and it is idempotent if
and only if α∗(A) ∈ α. Thus α∗ is a Kurosh-Amitsur radical map if and only if
α∗(A) ∈ α for all rings A and α satisfies the Intersection Property. In this case,
α∗(A) = α(A) for all rings A.

Proof. α∗ is a pre-radical: Let θ : A → B be a surjective homomorphism. Then
θ(α∗(A)) = θ(α(C(A)) ∩ A) ⊆ α(C(θ)(C(A)) ∩ B = α(C(B)) ∩ B = α∗(B) =
α∗(θ(A)).

α∗ is complete: Let α∗(I) = I�A. Then I = α(C(I))∩I ⊆ α(C(A))∩A = α∗(A).

α∗ is idempotent ⇔ α∗(α∗(A)) = α∗(A) ⇔ α(C(α∗(A))) ∩ α∗(A) = α∗(A) ⇔
α∗(A) ⊆ α(C(α∗(A))) ⇔ α∗(A) ∈ α.

Next we show that α∗

(

A

α∗(A)

)

= 0 if and only if α satisfies the Intersection

Property:

α∗

(

A

α∗(A)

)

= α

(

C

(

A

α∗(A)

))

∩
A

α∗(A)
∼= α

(

C(A)

C(α∗(A))

)

∩
A

α∗(A)
=

=
BA

C(α∗(A))
∩

A + C(α∗(A))

C(α∗(A))
=

(BA ∩ A) + C(α∗(A))

C(α∗(A))
= 0 ⇔ BA ∩ A ⊆ C(α∗(A)).

This inclusion holds if and only if BA∩A = α∗(A) (i.e. the Intersection Property
is satisfied). Indeed, suppose BA ∩ A ⊆ C(α∗(A)). Then BA ∩ A = (BA ∩ A) ∩ A ⊆
C(α∗(A))∩A = α∗(A) and C(α∗(A)) ⊆ BA implies α∗(A) ⊆ BA∩A. Thus BA∩A =
α∗(A). The converse is clear since α∗(A) ⊆ C(α∗(A)).
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Lastly we show that if α∗ is a Kurosh-Amitsur radical, then α∗(A) = α(A).
Suppose thus that α∗ is a Kurosh-Amitsur radical. From the above, we know that
the Intersection Property is satisfied and so α is a radical class (Proposition 9).
Since α∗ is idempotent, α∗(A) ∈ α. Thus α∗(A) ⊆ α(A). Since α(A) ⊆ α∗(A) always
hold, we get α(A) = α∗(A). �

As mentioned earlier, weakly homogeneity of α often comes for free as a conse-
quence of properties of the convolution type. We now investigate this and related
concepts. We recall from [22]:

A convolution type T is said to satisfy the Ortiz Condition if C(N) ⊆ NC(D(A))
for every ring A and subring N of A (remember D(A) denotes the Dorroh extension
of A). The origins of the Ortiz condition is to be found in [6], playing a key role in the
generalization of certain radicals classes determined by the radicals of polynomial
rings. T is said to satisfy the Finite Complement Property if X \ Y is finite for
all Y ∈ S. It was shown in [22] that the Finite Complement Property implies the
validity of the Ortiz Condition which in turn implies that every radical is weakly
homogeneous.

A case that often occurs in the examples is the following: α is a radical which
is weakly homogeneous and which satisfies A ∈ α ⇔ C(A) ∈ α. In such a case, α
is invariant if and only if α is homogeneous if and only if α satisfies the Krempa
Condition.

3 Examples

In the examples below, we will not recall or summarize all that is known about
the radical theory of the particular convolution type. We will only recall or proof
results which will bring certain aspects of the radical theory of convolution rings to
the fore.

3.1. Discrete direct sums. Let X be any non-empty set, S = {Y ⊆ X | X\Y
is finite}, σ(x) = {(x, x)} for all x ∈ X and τ(s, t) = 1 for all s, t ∈ X. Then
T = X = D. The corresponding convolution ring C(A) =

⊕

x∈X

A, the discrete direct

sum of |X|-copies of A. For any radical α and ring A, α(C(A)) = α

(

⊕

x∈X

A

)

=
⊕

x∈X

α(A) = C(α(A)); the best possible scenario and there is nothing further to

report.

Note that for infinite sets X, conditions (T1) and (T2) are satisfid but not (T3).

3.2. Direct products.Let X be any infinite set, S = {∅}, σ(x) = {(x, x)} for
all x ∈ X and τ(s, t) = 1 for all s, t ∈ X. Then T = X = D and the convolution
ring C(A) coincides with the direct product AX of |X|-copies of the ring A.

We know that A can be embedded as an ideal in AX and that A is a homomorphic
image of AX . Since radical classes are homomorphically closed and semisimple classes
are hereditary and closed under subdirect products (and thus also direct products),
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we have for any radical class α : A ∈ Sα ⇔ AX ∈ Sα and AX ∈ α ⇒ A ∈ α.
This means that the salient properties of the radical of a direct product depend
only on the validity of the converse of the above implication. In fact, we have:
α(AX) = (α(A))X ⇔ α is homogenous ⇔ (A ∈ α ⇒ AX ∈ α) ⇔ (α(A))X ∈ α for
all rings A. Furthermore, αc ⊆ α ⊆ α and for every ring A, we have αc(A) ⊆ α(A) ⊆
α∗(A) ⊆ α(A) with equality if and only if αc = α.

In general, AX need not be radical even though A is radical. Also, neither αc nor
α need to be Kurosh-Amitsur radicals and α∗ need not even be a Hoehnke radical.
The example which follows will show all these (negative) properties. In addition, it
also shows that A ∈ Sα ⇔ AX ∈ Sα need not be equivalent to AX ∈ α ⇔ A ∈ α. Let
α be the nil radical and let R be the Zassenhaus algebra (see for example Divinsky
[3], Chapter 2, Example 3). This ring R is constructed as follows. Let F be any
field. The elements of R are the formal (finite) sums

∑

t atxt where at ∈ F and

xt ∈ (0, 1). Multiplication is done according to the rule xtxs =

{

xt+s if t + s < 1
0 if t + s ≥ 1

.

As is well known, R is a nil ring. Let X = N be the set of positive integers.
Then RX is not radical, for the element x = (x 1

2
, x 1

4
, x 1

8
, ..., x 1

2n
, ...) of RX is not

nilpotent. Next we show that α does not satisfy the Summation Property (and
thus α is not Kurosh-Amitsur radical). For every t ∈ (0, 1), let It be the ideal in
R generated by xt. Then It is nilpotent with Ik

t = 0 for any k ∈ N with k > 1
t
.

Thus C(It) = (It)
X is nilpotent and so C(It) ⊆ α(C(R)) for all t ∈ (0, 1). But

C(
∑

t It) = C(R) " α(C(R)). Also, αc is not a Kurosh-Amitsur radical, for if it
were, then R =

∑

t It ⊇
∑

(I � R | C(I) ∈ α) = αc(R). This means R ∈ αc, i.e.
RX = C(R) ∈ α; a contradiction. In addition, it also shows that α does not satisfy
the Intersection Property. From Proposition 10 it follows that α∗ is a complete
pre-radical, but not a Hoehnke radical.

Examples of radicals which do satisfy the condition AX ∈ α ⇔ A ∈ α can be ob-
tained from the following. Let k, n ∈ N be fixed with 1 ≤ n < k. Let φ(x1, x2, ..., xk)
be a fixed element from Z{x1, x2, ..., xk}, the ring of polynomials in k non-commuting
indeterminates over the integers Z. For a ring A, let φA : Ak → A be the correspond-
ing evaluation map. The ring A is called an φ− ring if for all a1, a2, ..., an ∈ A there
exists an+1, an+2, ..., ak ∈ A such that φA(a1, a2, ..., an, an+1, an+2, ..., ak) = 0. Let Φ
be the class of all φ-rings and let πx : AX → A be the x− th projection. We suppose
that πx(φAX (a1, a2, ..., ak)) = φA(πx(a1), πx(a2), ..., πx(ak)) for all a1, a2, ..., ak ∈ AX

and x ∈ X. Under this assumption, we get A ∈ Φ ⇔ Ax ∈ Φ. Indeed, let A ∈ Φ. Let
a1, a2, ..., an ∈ AX . For any x ∈ X, πx(a1), πx(a2), ..., πx(ak) ∈ A and by assumption
there exist a′n+1, a

′
n+2, ..., a

′
k ∈ A such that

φA(πx(a1), πx(a2), ..., πx(an), a′n+1, a
′
n+2, ..., a

′
k) = 0.

Each of these a′n+j ’s depends on x, so when we want to emphasize this, we write
a′n+j = a′n+j(x). For each j = n + 1, n + 2, ..., k, define aj : X → A by aj(x) = a′j(x)
for all x ∈ X. Then

πx(φAX (a1, a2, ..., ak))

= φA(πx(a1), πx(a2), ..., πx(ak))

= φA(πx(a1), πx(a2), ..., πx(an), a′n+1, a
′
n+2, ..., a

′
k)
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= 0 for all x ∈ X. Thus φAX (a1, a2, ..., ak) = 0 and AX ∈ Φ. Conversely, suppose
AX ∈ Φ and let a′1, a

′
2, ..., a

′
n ∈ A. Choose x0 ∈ X fixed. For each i = 1, 2, ..., n, define

ai : X → A by ai(x) =

{

a′i if x = x0

0 otherwise
. Since AX ∈ Φ, there are an+1, an+2, ..., ak ∈

AX such that φAX (a1, a2, ..., ak) = 0. Thus

φA(a′1, a
′
2, ..., a

′
n, πx0(an+1), πx0(an+2), ..., πx0(ak))

= φA(πx0(a1), πx0(a2), ..., πx0(an), πx0(an+1), πx0(an+2), ..., πx0(ak))

= πx0(φAX (a1, a2, ..., ak))

= 0. Thus A ∈ Φ.

When α := Φ is a radical class, we will have α(AX) = (α(A))X for all A. As
examples we may mention for n = 1 and k = 2, the polynomials φ(x, y) = x+y−xy
and φ(x, y) = x − xyx which give the Jacobson radical class and the von Neumann
regular radical class respectively.

3.3. Polynomials. Let X = N0 := {0, 1, 2, 3,... }, S = {Yk | k ∈ N0} where
Yk = {k+1, k+2, k+3, ... }, σ(n) = {(i, j) | i, j ∈ N0, i+j = n} and τ(n,m) = 1 for
all n,m ∈ N0. Here T = D = {0} and the convolution ring C(A) is the polynomial
ring A[x] in one indeterminate. The radical theory of this convolution type is one
of the classical cases (the other being matrices which will be discussed below). The
polynomial convolution type satisfies the Finite Complement Property which means
that any radical α is weakly homogeneous, i.e. (α(A[x]) ∩ A)[x] ⊆ α(A[x]) for any
ring A. We also have A[x] ∈ α ⇒ A ∈ α, α(A[x]) ⊆ {f ∈ A[x] | f(0) ∈ α(A)}
and αc = α ⊆ α. Furthermore, the radical α will be homogeneous (i.e. satisfy the
Amitsur condition) if and only if it satisfies the Krempa Condition.

Some of the well-known radicals are invariant, for example the Baer (= prime)
radical as well as the Levitzky (= local nilpotent) radical. Several others are
homogeneous, for example the Jacobson radical, nil radical, Brown-McCoy radi-
cal, uniformly strongly prime radical and any strongly hereditary radical (i.e. a
radical such that any subring of a radical ring is radical). For these homoge-
neous radicals, α∗(A) ∈ αc = α; hence α∗ is a Kurosh-Amitsur radical with
α∗(A) = αc(A) = α(A) ⊆ α(A) for all rings A and the inclusion is in general
strict. By the Krempa Condition, these radicals satisfy A ∈ Sα ⇒ A[x] ∈ Sα.
Smoktunowicz [14] has given an example of a nil ring A for which A[x] is not nil.
Thus for α the nilradical, which is homogeneous, we have A[x] nil implies A nil, but
the converse implication is not true in general. This situation can also be realized
for subidempotent radicals (hereditary and all nilpotent rings are semisimple): Let
ν be the von Neumann regular radical. For any ring A, υ(A[x]) = 0 (cf. [16]) which
means υ is homogeneous, νc = υ = {0}, υ∗(A) = 0 for all A and A ∈ υ does not
necessarily imply A[x] ∈ υ.

The major outstanding problem regarding the radicals of polynomial rings is to
characterize the ideal α∗(A) = α(A[x])∩A of A in terms of properties of the ring A
without reference to α(A[x]).

In striking contrast to most of the other convolution types, the Jacobson radical
J (A[x]) of A[x] is in general not directly accessible. It is known that J (A[x]) = N [x]
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where N := J (A[x]) ∩ A = J ∗(A) is a nil ideal of A. We will now describe the
elements of N and start with:

3.3.1. Let a ∈ A. If axk is right quasi-regular in A[x] for some k ≥ 1, then a is
nilpotent. Conversely, if a ∈ A is nilpotent, then axk is right quasi-regular in A[x]
for all k ≥ 0.

Proof. Let q(x) = q0 + q1x + q2x
2 + ... + qnxn ∈ A[x], qn 6= 0, be such that

axk + q(x) − axkq(x) = 0, i.e. axk + (q0 + q1x + q2x
2 + ... + qnxn) − axk(q0 + q1x +

q2x
2 + ... + qnxn) = 0. Comparing constant terms, we get q0 = 0. If k > n, then the

coefficient of xk on the left hand side is a which gives a = 0 and we are done. Suppose
thus k ≤ n. Comparing coefficients gives qi = 0 for i = 1, 2, 3, ..., k − 1, a + qk = 0,
qk+i − aqi = 0 for i = 1, 2, 3, ..., n − k and aqn−i = 0 for i = 0, 1, 2, ..., k − 1. Since
k ≤ n, we have n = mk + i for some m ≥ 1 and 0 ≤ i < k. Now qmk = −am and so
0 = aqn−i = aqmk = −am+1. Thus a is nilpotent.

Conversely, suppose a is nilpotent, say ap+1 = 0. If k = 0, let q(x) := −ap. If
k 6= 0, let q(x) = qkx

k + q2kx
2k + ... + qpkx

pk where qik = −ai for i = 1, 2, 3, ..., p.
Then q(x) ∈ A[x] and axk + q(x) − axkq(x) = 0, i.e. axk is right quasi-regular in
A[x]. �

For a ring A and elements c1, c2, ..., ck ∈ A, k ≥ 1, define a sequence h =
(h1, h2, h3, ...) by h1 := −c1 and if hi−1 has been defined, let hi :=

∑i−1
j=1 cjhi−j − ci

for i = 2, 3, 4, .... where we take ck+1 = ck+2 = ck+3 = ... = 0. Since this se-
quence depends on the ci’s, if necessary we will denote it by h = h[c1, c2, ..., ck] =
(h1, h2, h3, ...).

An element a ∈ A is called rqr-nilpotent if for any k ≥ 1 and b1, b2, ..., bk ∈ A,
the sequence h = h[ab1, ab2, ..., abk ] is ultimately 0, i.e. there exists an n ≥ 1 such
that hn+1 = hn+2 = hn+3 = ... = 0.

It can be verified that if a is rqr-nilpotent, then a is nilpotent and so is ab (and
hence also ba) for any b ∈ A. If A is commutative, then a ∈ A is rqr-nilpotent if and
only if a is nilpotent.

3.3.2. An element a ∈ A is rqr-nilpotent in A if and only if a(b1x + b2x
2 + ... +

bkx
k) is right quasi-regular in A[x] for all b1, b2, ..., bk ∈ A, k ≥ 1.

Proof. Suppose a is rqr-nilpotent and let b1, b2, ..., bk ∈ A, k ≥ 1. By definition
the sequence h = h[ab1, ab2, ..., abk ] = (h1, h2, h3, ...) is ultimately 0, say hn+1 =
hn+2 = ... = 0 for some n ≥ 1. Then h(x) := h1x + h2x

2 + ... + hnxn ∈ A[x]
and a(b1x + b2x

2 + ... + bkx
k) + h(x) − a(b1x + b2x

2 + ... + bkx
k)h(x) = 0. Thus

a(b1x + b2x
2 + ... + bkx

k) is right quasi-regular in A[x].
Conversely, suppose a(b1x+b2x

2+ ...+bkx
k) is right quasi-regular in A[x] for any

b1, b2, ..., bk ∈ A, k ≥ 1. Choose b1, b2, ..., bk ∈ A and let b(x) := b1x+b2x
2+...+bkxk.

Consider the sequence h = h[ab1, ab2, ..., abk ] = (h1, h2, h3, ...). By assumption there
is a f(x) = f0+f1x+f2x

2 + ...+fnxn ∈ A[x] such that ab(x)+f(x)−ab(x)f(x) = 0.
Comparing coefficients will then give fi = hi for all i = 1, 2, 3, ..., n and hn+i = 0 for
all i = 1, 2, 3, ... .Thus a is rqr-nilpotent. �

3.3.3. Let J denote the Jacobson radical. For any ring A,
J (A[x]) ∩ A = {a ∈ A | a is rqr-nilpotent}.
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Proof. Let a ∈ J(A[x]) ∩ A. Then ab(x) is right quasi-regular in A[x] for any
b(x) ∈ A[x]. In particular, this is true for any b(x) of the form b(x) = b1x + b2x

2 +
... + bkx

k. From 3.3.2 above we then know that a is rqr-nilpotent. Conversely,
suppose a is rqr-nilpotent. Then ac is nilpotent for any c ∈ A and thus acxn is
right quasi-regular in A[x] for all n ≥ 0. To get a in J (A[x]), we need to show
that ab(x) is right quasi-regular for any b(x) = b0 + b1x + b2x

2 + ... + bkx
k ∈ A[x].

For such a b(x) ∈ A[x] we know ab0 is nilpotent and hence right quasi-regular,
say ab0 + u − ab0u = 0 for some u ∈ A. Let b′(x) := b1x + b2x

2 + ... + bkx
k.

Since a is rqr-nilpotent, we know that a(b′(x) − ub′(x)) is right quasi-regular in
A[x], say a(b′(x) − ub′(x)) + q(x) − a(b′(x) − ub′(x))q(x) = 0 for some q(x) ∈ A[x].
Let f(x) := u + q(x) − uq(x). Then f(x) ∈ A[x] and ab(x) + f(x) − ab(x)f(x) =
ab0 + ab′(x) + u + q(x) − uq(x) − (ab0 + ab′(x))(u + q(x) − uq(x)) = 0 which shows
that a ∈ J (A[x]). �

If a ring is called qr-nil if all its elements are qr-nilpotent, then the radical class
J ∗ = {A | A is qr-nil}. The question whether all the elements of a nil ring are
rqr-nilpotent is equivalent to the Köthe Conjecture.

The radical theory of related convolution rings like the ring of polynomials in n
commuting indeterminates C(A) = A[x1, x2, ..., xn], the polynomial ring in n non-
commuting indeterminates C(A) = A{x1, x2, ..., xn}, the ring of formal power series
C(A) = A[[x]], the ring of Laurent series C(A) = A 〈x〉, etc., is not as well-developed
as for the polynomial rings A[x]. This is except for C(A) = A[x1, x2, ..., xn] where
the results of the one indeterminate case carries over mutatis mutandis. For results
on the radicals of these convolution rings, one could consult Amitsur [1] and [2],
Sierpińska [13] and Puczy lowski [9] and [10].

3.4. Necklace rings. Let X = N, S = {∅}, σ(n) = {(i, j) | i, j ∈ N,
lcm(i, j) = n} and τ(n,m) = gcd(n,m) where lcm and gcd denote the least common
multiple and greatest common divisor respectively. Then T = D = {1} and C(A) is
just the necklace ring N(A) over A, see for example [7]. Necklace rings can also be
defined over finite subsets X = {1, 2, 3, ..., k} of N with a similar convolution type
as above, cf [20]. In this case the convolution ring will be denoted by Nk(A). All
results on the radical theory of necklace rings can be found in [20].

We will consider the radical theory of this latter case first. In this case, since X
is finite the convolution type has the Finite Complement Property which means
that any radical α is weakly homogeneous. We also know that α(Nk(A)) ⊆
(α(A) : P )Nk(A) where P (f) = {nf(n) | n = 1, 2, 3, ..., k} for f ∈ Nk(A). Thus
Nk(A) ∈ α ⇒ A ∈ α, αc = α is a Kurosh-Amitsur radical, and αc(A) = α(A) ⊆
α∗(A) = α(Nk(A)) ∩ A ⊆ (α(A) : P )Nk(A) ∩ A ⊆ α(A). If α is supernilpotent
(i.e. α is hereditary and contains all the nilpotent rings), then α(Nk(A)) = (α(A) :
P )Nk(A) ⊇ Nk(α(A)) which gives Nk(A) ∈ α ⇔ A ∈ α. So, for these radicals we
get α = αc and αc(A) = α(A) = α∗(A) = α(A) for all rings A. Furthermore, α
will be homogeneous if and only if α is invariant. Indeed, if α is homogeneous, then
α(Nk(A)) = Nk(α(Nk(A)) ∩ A) ⊆ Nk((α(A) : P )Nk(A) ∩ A) = Nk(α(A)) and so
α(Nk(A)) = Nk(α(A)). In general, a radical α need not be homogeneous: Let α
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be the nilradical and let R = Z8, the ring of integers mod8. Let f(1) = 2, f(2) =
5, f(3) = f(5) = 0 and f(4) = 3. Then f ∈ (α(R) : P )N5(R) = α(N5(R)) where
α(R) = {0, 2, 4, 6}, but f /∈ N5(I) for any proper ideal I of R. To summarize,
here we have an example of a (supernilpotent) radical α which is weakly homoge-
neous, C(A) ∈ α ⇔ A ∈ α, αc(A) = α(A) = α∗(A) = α(A) for all rings A (so
C(α∗(A)) ∈ α), the radical is directly accessible, but the Krempa Condition is not
satisfied (and hence the radical is not homogeneous).

For the general necklace ring (i.e. X = N), we have the following results: For any
radical α, α(N(A)) ⊆ (α(A) : P )N(A) where P is as above. If α = J is the Jacobson
radical, the results are much stronger, for J (N(A)) = (J (A) : P )N(A) ⊇ N(J (A))
and thus

N(J (N(A)) ∩ A) = N((J (A) : P )N(A) ∩ A)

= N(J (A)) ⊆ J (N(A))
which shows that J is weakly

homogeneous. But from [20] we know that J is not homogeneous. Furthermore,
A ∈ J ⇔ N(A) ∈ J and hence J c(A) = J (A) = J ∗(A) = J (A) for all rings A.
We thus see that the Jacobson radical enjoys the same properties for the general
necklace ring as any supernilpotent radical does for the finite necklace ring, except
in the general case the convolution type does not satisfy the Finite Complement
Property.

3.5. Matrices. Let n ≥ 1 be fixed and let X = {(i, j) | i, j = 1, 2, 3, ..., n},S =
{∅}, σ(i, j) = {(i, t), (t, j) | t = 1, 2, 3, ..., n} and τ((i, j), (s, t)) = 1 for all
(i, j), (s, t) ∈ X. Then T = {(i, i) | i = 1, 2, 3, ..., n} and D = ∅. In this case,
the convolution ring C(A) is isomorphic to Mn(A), the complete n × n matrix ring
over A. As is well-known, if R is a ring with an identity, then every ideal of Mn(R) is
homogeneous. From Proposition 7 we then know that any radical α is homogeneous.
The only outstanding issues regarding the radical theory of finite matrix rings is thus
the validity of the following two implications:

(i) A ∈ α ⇒ Mn(A) ∈ α or, equivalently, Mn(A) ∈ Sα ⇒ A ∈ Sα and

(ii) Mn(A) ∈ α ⇒ A ∈ α or, equivalently, A ∈ Sα ⇒ Mn(A) ∈ Sα.

The invariance of a radical α is thus equivalent to (A ∈ α ⇔ Mn(A) ∈ α). In case
a radical does satisfy this property, it is said to be matrix extensible. It is known
that most of the well-known radicals are invariant. There is, however, one notable
exception: For α the nilradical, it is known that Mn(A) ∈ α ⇒ A ∈ α, but the
validity of the converse is equivalent to the well-known Köthe Conjecture (which is
still open).

For infinite matrix rings, there are only a few limited results for which Patterson
[8] and Sands [11] can be consulted.

3.6. Structural matrix rings. Let J be a non-empty set and let ρ be a non-
empty reflexive and transitive relation on J such that the set {z ∈ J | (x, z) ∈ ρ and
(z, y) ∈ ρ} is finite. Put X = J ×J,S = {X \ρ}, σ(i, j) = {((i, t), (t, j)) | t ∈ J} and
τ((i, j), (s, t)) = 1 for all (i, j), (s, t) ∈ X. It can be shown that T = {(a, a) | a ∈ J}
and D = ∅. The convolution ring for this convolution type gives the structural
matrix ring MJ(A, ρ) over the ring A. We restrict our attention here to the finite
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case, i.e. we take J = {1, 2, 3, ..., n} and denote the corresponding structural matrix
ring by Mn(A, ρ). For the radical theory of structural matrix rings, van Wyk [17],
Sands [12] or Veldsman [18] can be consulted. Since X is finite, every radical α
is weakly homogeneous. The radicals of these types of rings have been determined
successfully, albeit in most cases only for radicals α which are invariant with respect
to the finite matrix convolution type (i.e. radicals which are matrix extensible).

For a hypernilpotent radical α (i.e. all nilpotent rings are radical) which is matrix
extensible, α(Mn(A, ρ)) = Mn(α(A), ρs)+Mn(A, ρa) where ρs is the symmetric part
and ρa the anti-symmetric part of ρ (cf. [12]). Thus α∗(A) = (Mn(α(A), ρs) +
Mn(A, ρa)) ∩ A = α(A) (remember, our canonical embedding of A into Mn(A, ρ)
is the mapping which assigns to every a ∈ A, the structural matrix which has a
in every position (i, i), i ∈ J, and 0 elsewhere). Hence Mn(α(Mn(A, ρ)) ∩ A, ρ) =
Mn(α(A), ρ) which means α is invariant if and only if α is homogeneous (this is still
for α hypernilpotent with the matrix extension property). And this will be the case
if and only if ρa = ∅. Indeed, if ρa = ∅, then Mn(A, ρ) = Mn(A, ρs) is a finite direct
sum of complete matrix rings ⊕nt

Mnt
(A). Then α(Mn(A, ρ)) = α(⊕nt

Mnt
(A)) =

⊕nt
α(Mnt

(A)) = ⊕nt
Mnt

(α(A)) = Mn(α(A), ρ). Conversely, suppose

Mn(α(A), ρ) = α(Mn(A, ρ)) = Mn(α(A), ρs) + Mn(A, ρa).

If (i, j) ∈ ρa, then Mn(α(A), ρ) has an element from α(A) in position (i, j),
while the right hand side can have any element from A in position (i, j). Choosing
0 6= A ∈ Sα then leads to a contradiction which means ρa = ∅.

Next we let α be a subidempotent radical (i.e. α is hereditary and all nilpo-
tent rings are semisimple) which is matrix extensible. From [18] we know that
α(Mn(A, ρ)) = Mn(α(A), (ρ∗)s) where (ρ∗)s = {(i, j) ∈ ρ | for t ∈ {i, j} and
k ∈ {1, 2, 3, ..., n}, (t, k) ∈ ρ ⇔ (k, t) ∈ ρ}. If (ρ∗)s = ∅, then α(Mn(A, ρ)) = 0 for all
rings A and α is homogeneous for such a convolution type. Suppose thus (ρ∗)s 6= ∅.
Then α is homogeneous if and only if ρ = (ρ∗)s. Indeed, if ρ = (ρ∗)s then the ho-
mogeneity follows as in the above case. Conversely, suppose (i, j) ∈ ρ \ (ρ∗)s. By
the assumption we have Mn(α(A), (ρ∗)s) = α(Mn(A, ρ)) = Mn(α(Mn(A, ρ))∩A, ρ).
The (i, j)− th entry on the left hand side is 0, while on the right hand side it is from
α(Mn(A, ρ)) ∩ A. Thus Mn(α(A), (ρ∗)s) = α(Mn(A, ρ)) ∩ A = 0. Since (ρ∗)s 6= ∅,
this means α(A) = 0 which is not necessarily true for all rings A. Thus ρ = (ρ∗)s.

3.7. Incidence algebras. Let (J,≤) be a locally finite partially ordered set
(i.e., each interval [x, y] = {z ∈ J | x ≤ z ≤ y} is finite). Let X = {(x, y) | x, y ∈ J,
x ≤ y}, S = {∅}, σ(x, y) = {((x, z), (z, y)) | x, y, z ∈ J with x ≤ z ≤ y} and
τ((x, y), (s, t)) = 1 for all (x, y), (s, t) ∈ X. Here T = {(x, x) | x ∈ J},D = ∅ and
C(A) = IJ(A), the incidence algebra over A. For more information on incidence
algebras, see [15] and for their radicals [19].

For any radical α, α(IJ (A)) ⊆ (α(A) : P )IJ (A) where P (f) := {f(x, x) | x ∈ J}.
From this it follows that IJ(A) ∈ α ⇒ A ∈ α and thus α∗(A) ⊆ α(A) for all
rings A. The strongest results are for α = J , the Jacobson radical. For any ring
A, J is directly accessible since J (IJ(A)) = (J (A) : P )IJ(A) and thus A ∈ J ⇔

IJ(A) ∈ J , J c(A) = J (A) = J ∗(A) = J (A) for all rings A. Moreover, J is weakly
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homogeneous. Since incidence algebras can be regarded as infinite structural matrix
rings, the next statement does not come as a surprise, namely, J is homogeneous
if and only if x = y for all (x, y) ∈ X if and only if IJ(A) ∼= AJ . Indeed, if J is
homogeneous, then (J (A) : P )IJ (A) = J (IJ(A)) = IJ(J (IJ(A)) ∩ A) = IJ(J (A))
for all rings A. Choose (x0, y0) ∈ X with x0 6= y0. For any a ∈ A, define f : X → A

by f(x, y) =

{

a if (x, y) = (x0, y0)
0 otherwise

. Then f ∈ (J (A) : P )IJ(A) = IJ(J (A)) which

means a ∈ J (A). But A = J (A) does not hold for all rings A; hence x = y for all
x, y ∈ J. The other implications are straightforward (just remember, the Jacobson
radical is invariant with respect to arbitrary direct products).

3.8. Splitting extensions. Let (G, ·) be the cyclic group with four elements
{e, a, a2, a3}. Let d ∈ {1,−1} be fixed, X = {e, a},S = {∅}, σ(x) = {(s, t) | s, t ∈

X, st = x or st = a2x} and τ(x, y) =

{

1 if xy ∈ X
d if xy /∈ X

for all x, y ∈ X. Then T = {e}.

For a ring A, this convolution type gives a splitting extension of A. Such rings and
their radicals have been considered in [21]. We identify an element f ∈ C(A) with
the ordered pair f = (f1, f2) = (f(e), f(a)). This means the product of two elements
f, g of C(A) is given by fg = (f1, f2)(g1, g2) = (f1g1 + df2g2, f1g2 + f2g1).

Let P (f) := {f1 +df2, f1−df2} = {f1 +f2, f1−f2}. For a hypernilpotent radical
α, α(C(A)) = (α(A) : P )C(A) for all rings A if and only if α satisfies:

(i) R ∈ α ⇒ C(R) ∈ α

(ii) α(C(R)) ∩ R ∈ α for all rings R.

The Jacobson radical J satisfies these two conditions, so we have J (C(A)) =
(J (A) : P )C(A), A ∈ J ⇔ C(A) ∈ J , J is homogeneous and J c(A) = J (A) =
J ∗(A) = J (A) for all rings A. But J need not be invariant: Let A = Z4, the ring
of integers mod4. If J (C(A)) = C(J (A)), then we have (3, 1) ∈ (J (A) : P )C(A) =
J (C(A)) = C(J (A)). But this is not possible since 3 /∈ {0, 2} = J (A).

For d = 1, α(C(A)) ⊆ (α(A) : P )C(A) holds for all rings A and all radicals α. If
α is supernilpotent, then we have equality. For hypoidempotent radicals α (i.e. all
nilpotent rings are semisimple), α(C(A)) ⊆ C(α(A)) for all rings A with equality if
and only if R ∈ α ⇒ C(R) ∈ α. If α is subidempotent, then C(R) ∈ α ⇔ (R ∈ α and
(0 : P )CR) = 0). This means, for subidempotent radicals α, α(C(A)) = C(α(A)) ⇔
α(A) ∩ (0 : P )C(R) = 0.
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