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Totally bounded rings and their groups of units
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Abstract. We will present here some recent results concerning totally bounded
topological rings. Most results will be presented but not proved.

Mathematics subject classification: 16W80.

Keywords and phrases: Pseudo-compact space, countably compact space, precom-
pact group, the pointwise topology, atomic boolean ring, Bohr compactification of a
topological ring.

All topological spaces are assumed to be Tychonoff. Topological groups are as-
sumed to be Hausdorff. Topological rings are assumed to be associative and Haus-
dorff. The Jacobson radical of a ring R will be denoted J(R). The symbol R = A⊕B
means that the group R is a topological direct sum of its subgroups A and B.

A topological space X is called:
pseudo-compact provided each real-valued function on it is bounded;
countably compact provided each countable open cover has a finite subcover.

The closure of a subset A of a topological space X will be denoted by A. If R is
a ring and A its subset, then 〈A〉 stands for the subring of R generated by A.

We will examine endomorphisms of linear spaces over finite fields by using of
pointwise topology.

Let k be a finite field and V be a linear k-space. Recall that the pointwise
topology on EndV is given by a fundamental system of neighbourhoods of zero
consisting of subsets of the form T (K) = {α : α ∈ EndV, α(K) = 0}, where K
runs all finite subsets of V. We will consider EndV as a topological ring with the
pointwise topology. Below GL(V ) stands for the topological group of all invertible
elements of EndV with respect to the pointwise topology.

The pointwise topology allows to study some endomorphisms of V.

Definition 1. An element α of EndV is called: topologically nilpotent provided it
is a topologically nilpotent element of EndV ; compact provided the subring 〈α〉 is
compact; topologically unipotent provided the element 1−α is topologically nilpotent;
semisimple provided the subring 〈α〉 is a compact semiprimitive ring.

Recall that an element α ∈ EndV is called locally finite provided V is decomposed
in a direct sum of α-invariant finite-dimensional subspaces.

Remark 1. It follows from ([18], Theorem 19.4) that if k is a finite field, V a left

vector k-space, then α ∈ EndV is compact ⇔ for every v ∈ V , the subset 〈α〉 v is
finite.
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We note that every locally finite element of EndV is compact. The following
example shows that the reverse affirmation is not true:

Let k be any finite field and V a linear k-space of countable infinite dimension.
Fix a countable base {vi : i ∈ ω}. Let α ∈ EndV, α(v0) = 0, and α(vi) = vi−1 for
i > 0. Each nonzero α-invariant linear subspace of V contains kv0, hence V cannot
be decomposed in a direct sum of finite-dimensional α-invariant subspaces, i.e., α is
not locally finite. It follows from Remark 1 that α is compact.

Proposition 1. Let V be a linear space over a finite field k and α ∈ EndV a
compact element. Then:

i) there exist unique elements αs, αn such that α = αs +αn, where αs is semisim-
ple, αn is topologically nilpotent, and αsαn = αnαs;

ii) if α ∈ GL(V ), then there exist unique elements αs, αu ∈ GL(V ) satisfying
the conditions: αs is semisimple, αu topologically unipotent, α = αsαu, and αsαu =
αuαs.

In analogy with the theory of linear algebraic groups we shall call the decompo-
sition α = αs + αn the additive Jordan decomposition of α and the decomposition
α = αsαu for an invertible α the multiplicative Jordan decomposition for α.

Theorem 2. Let R = S ⊕ J(R) be Wedderburn-Mal’cev decomposition of a com-
pact ring with identity of prime characteristic. Then U(R) = U(S) · (1 + J(R)),
U(S) ∩ (1 + J(R)) = 1, i.e., U(R) is a semidirect topological product of U(S) and
1 + J(R).

Theorem 3. Let V be a linear space over a finite field k. If H is a closed subgroup
of GL(V ), x ∈ H,x is compact, x = xsxu its multiplicative Jordan decomposition
then xs ∈ H and xu ∈ H.

Theorem 4 [15]. Let R be a countably compact ring with identity. The following
conditions are equivalent:

1) U(R) is a torsion group;
2) R has a finite characteristic and there exist two different positive integers n

and k such that the ring R satisfies the identity xn = xk;
3) R is a locally finite ring;
4) for every x ∈ R the subring 〈x〉 is finite.

Theorem 5 [15]. Let R be a compact ring with identity. Then the following
conditions are equivalent:

1) U(R) is a torsion group;
2) R(+) is a torsion group and R/J(R) ∼=top Lm1

1
× · · ·×Lmn

n , where L1, · · · , Ln

are finite simple rings and m1, . . . ,mn are arbitrary cardinal numbers.

In 1988–1997 there appeared a number of interesting papers of Jo-Ann Cohen,
Kwangil Koh and I. W. Lorimer concerning groups of units of compact rings with
identity [1–11].
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A topological ring R is a semidirect product of a subring S and an ideal I provided
R is a topological group sum of S and I.

The following Theorem of A.Tripe generalizes a result obtained by Jo-Ann Cohen
and K.Koh [10]:

Theorem 6 [14]. Let R be a countably compact ring with identity. Then the group
U(R) is simple iff R is a boolean ring or it is topologically isomorphic to one of the
following rings:

1) A0×I where A0 is a finite field of cardinality 3 or 2m where 2m−1 is a prime
number (=a prime number of Mersenne);

2) A0 × I where A0 is the ring of n × n matrices over Z/(2), n ≥ 3;
3) a semidirect product of I and Z/(4);
4) a semidirect product of I and Z/(2)[x]/(x2);
5) a semidirect product of I and M(2, Z/(2)),
where in all cases I is a countably compact boolean ring.

There are examples showing that in 3), 4), 5) the semidirect product cannot be
replaced by direct products.

There is a gap between pseudo-compactness and countable compactness:

Theorem 7 [16]. Let k be a finite field and X a set of cardinality 2ω. Then the
ring k[X] of polynomials over X with coefficients from k admits a pseudo-compact
ring topology.

As follows from Chevalley’s Theorem ([19], Chapter II, Theorem13) if (R,T ) is
a commutative compact Noetherian ring and T1 is a ring topology on R such that
(R,T1) has a fundamental system of neighbourhoods of zero then T ≤ T1. We extend
this assertion to the noncommutative case:

Theorem 8. Let (R,T ) be a compact left Noetherian ring with identity. If T1 is a
ring topology on R and (R,T1) has a fundamental system of neighbourhoods of zero
consisting of left ideals then T ≤ T1.

Proof. Any left ideal of R is closed in (R,T ). Let {Vα}α∈Ω be a fundamental system
of neighbourhoods of zero of (R,T1) consisting of left ideals. If V is an open ideal of
(R,T ), then {0} ⊆ ∩α∈ΩVα ⊆ V. By compactness of (R,T ) there exist α1 . . . , αn ∈ Ω
such that Vα1 ∩ · · · ∩ Vαn

⊆ V. Therefore V is an open ideal of (R,T1). Since V was
arbitrarily, T ≤ T1. �

Recall that if a, b are two elements of a boolean ring R, then put a ≤ b if ab = a.
An element a of a boolean ring R is called an atom provided a 6= 0 and for each
x ∈ R, x ≤ a, x 6= a, x = 0. A boolean ring R is called atomic provided for each
x ∈ R, x 6= 0, there exists at least one atom a such that a ≤ x.

Theorem 9. Let R be an atomic boolean ring. Then there exists a totally bounded
ring topology T0 on R such that T0 ≤ T1 for each Hausdorff ring topology T1

on R.
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Proof. Consider the family B consisting of ideals of the form Ann(a), a ∈ R.
Each element of B is a maximal ideal of R, hence it is cofinite. We note that B
is a filter base. Indeed, let a1, a2, ..., an ∈ R. Then there exists a ∈ R such that
Ra1 +Ra2 + ...+Ran = Ra. Evidently, Ann(a) = Ann(a1)∩Ann(a2)∩ ...∩Ann(an).
We affirm that ∩B = 0: Let 0 6= x ∈ R. If a is an atom of R, a ≤ x, then xa = a,
hence x /∈ Ann(a) = R(1 − a) ∈ B. It follows that B gives a totally bounded ring
topology T0 on R. If T1 is another T1-ring topology on R, then each Ann(a) is closed
in (R,T1) and cofinite, hence Ann(a) is open in (R,T1) and so T0 ≤T1. �

Corollary 10. The quasicomponent of any atomic topological T1-ring is equal to
zero.

The notion of the Bohr compactification of a topological ring was introduced by
Holm [12, 13].

Definition 2. Let (R,T ) be a topological ring. A pair ((bR, bT ), bR) with the
following properties is called a Bohr compactification of (R,T ):

1) (bR, bT ) is a compact ring;
2) bR is a continuous homomorphism from (R,T ) onto a dense subring (bR, bT );
3) for every continuous homomorphism α of (R,T ) into a compact ring C there

exists a continuous homomorphism α̂ : (bR, bT ) → C such that α̂ ◦ bR = α.

Theorem 11. Every topological ring (R,T ) has a Bohr compactification unique up
to an isomorphism.

It is interesting to calculate the Bohr compactification of concrete topological
rings.

Theorem 12 [12]. The Bohr compactification b(Z,Td) of the ring of integers is
isomorphic to

∏
p∈P Zp as a topological ring.

Theorem 13 [12]. Let R be a ring furnished with the discrete topology, bR its
Bohr compactification, P (R) the lattice of all precompact ring topologies on R, and
C(bR) the lattice of closed ideals of bR. Then there is a lattice antiisomorphism
Φ : P (R) → C(bR) such that bR/Φ(T ) is isomorphic to the completion of (R,T ).

In [12] was introduced the concept of a van der Waerden ring: A compact ring
(R,T ) is called a vdW-ring provided each ring homomorphism h : (R,T ) → (K,U)
with (K,U) is continuous.

Fix a faithful indexing {Rn : n ∈ ω} of all matrix rings over finite fields. By
Theorem of Kaplansky a semiprimitive ring R is of the form R =

∏
n∈I Rαn

n for
suitable I = I(R) ⊆ ω and cardinal numbers αn = αn(Rn).

Theorem 14 [12]. Let R be a compact semiprimitive ring with Kaplansky represen-
tation R =

∏
n∈I Rαn

n . In order that R be a vdW-ring it is necessary and sufficient
that each αn be finite.

A compact ring with identity is a vdW-ring iff every cofinite ideal is open.

Theorem 15 [12, 17]. A compact semisimple ring admits a unique pseudo-compact
topology iff it is metrizable.
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