Wedderburn decomposition of LCM-rings

M.I. Ursul, I. Fechete

Abstract. In this paper we extend in this paper a result of Zelinsky to the class of linearly compact, monocompact rings of prime characteristic.

Mathematics subject classification: 16W80.

Keywords and phrases: Monocompact ring, linearly compact ring, hereditarily linearly compact ring, topologically locally finite ring, topologically nilpotent ring, Wedderburn decomposition in the category of topological rings.

1 Introduction

A subtle fact of the theory of algebras over a field is the Wedderburn–Mal'cev Theorem (see, e.g., [3, 4]). This Theorem was extended also to classes of topological rings (see, e.g., [1, 10, 13]). The aim of this paper is an extension of the Wedderburn Theorem to the class of bounded, linearly compact, monocompact rings.

2 Notation and conventions

All topological ring are assumed to be Hausdorff and associative (and not necessarily with identity). If R is a topological ring and $S \subseteq R$, then by $\langle S \rangle$ the closed subring of R generated by S is denoted.

A monocompact ring [11] is a topological ring R which is the reunion of its compact subrings (equivalently, for each element $x \in R$ the subring $\langle x \rangle$ is compact).

A topological ring R is called linearly compact [8] if it has a fundamental system of neighborhoods of zero consisting of left ideals and every filter base consisting of cosets relative to closed left ideals has a non-empty intersection.

A topological ring R is called *hereditarily linearly compact* [1] if every closed subring is a linearly compact ring.

The class of hereditarily linearly compact rings is intermediate between compact totally disconnected rings and linearly compact rings.

A topological ring R is called *topologically locally finite* [11] provided for every finite subset F the subring $\langle F \rangle$ is compact.

Recall that an element of a topological ring is called *topologically nilpotent* provided $x^n \to 0$.

The connected component of zero of a topological Abelian group R is denoted by R_0 .

As usual, a *local* ring is a ring with identity having a unique maximal left ideal.

[©] M.I. Ursul, I. Fechete, 2004

A *semiprimitive* ring is a ring with identity whose Jacobson radical is zero.

If n is a natural number and R is a ring, then M(n, R) denotes the ring of $n \times n$ matrices over R.

The symbol $A \cong_{top} B$ means that topological rings A and B are isomorphic.

3 Semiprimitive LCM-rings

Definition 3.1. A LCM-ring is a linearly compact, monocompact ring, having a fundamental system of neighborhoods of zero consisting of ideals.

Example 3.2. Let \mathbb{F} be any field which is an infinite algebraic extension of a finite field. Then the ring $\begin{bmatrix} \mathbb{F} & \mathbb{F} \\ 0 & \mathbb{F} \end{bmatrix}$ is a discrete LCM-ring.

Lemma 3.3. For any topologically nilpotent element a of a compact ring R and any integers $c_n \in \mathbb{Z}$, the series $\sum_{n=1}^{\infty} c_n a^n$ converges.

Proof. We may consider without loss of generality that R is quasi-regular. We may consider that $R = \langle a \rangle$.

The ring R/R_0 has a a fundamental system of neighborhood of zero consisting of ideals. Evidently, R/R_0 is topologically nilpotent. By theorem of Kaplansky [11, Theorem 2.5.7], $R_0R = RR_0 = 0$, hence R is quasi-regular and so is topologically nilpotent. Since R is complete, by the Cauchy criterion, the series $\sum_{n=1}^{\infty} c_n a^n$ is convergent.

Recall that a ring R is called SBI-*ring* [6] if for any $a \in J(R)$ there exists an $x \in J(R)$ such that:

- (*i*) $x^2 + x = a;$
- (*ii*) for all $z \in J(R)$, az = za implies xz = zx.

Theorem 3.4. Any topological ring R whose Jacobson radical J(R) is monocompact is a SBI-ring.

Proof. Let $a \in J(R)$. Then $\langle a \rangle \subseteq J(R)$ and $\langle a \rangle$ is compact. Consider the sequence

$$c_1 = 1, \ c_k = -\sum_{i=1}^{k-1} c_i c_{k-i}, \ k = 2, 3, ...,$$

of integers. Then, by Lemma 3.3, $x = \sum_{n=1}^{\infty} c_n a^n$ exists. Evidently, $x^2 + x = a$ and for all $z \in J(R)$, az = za implies xz = zx.

Corollary 3.5. (see [6, p. 125]). Any compact ring is a SBI-ring.

Corollary 3.6. Any countably compact ring with identity is a SBI-ring.

Lemma 3.7. If R is a LCM-ring, R' is a topological ring having a fundamental system of neighborhoods of zero consisting of left ideals and $f : R \to R'$ is a surjective continuous homomorphism, then R' is a LCM-ring, too.

Proof. Indeed, R' is linearly compact. Since R is the union of its compact subrings, R is the union of its compact subrings, too. Therefore R' is monocompact, hence R' is LCM-ring.

Corollary 3.8. If R is a LCM-ring and V is an open ideal, then the quotient ring R/V is a discrete LCM-ring.

Lemma 3.9. Any discrete LCM-ring R is locally finite.

Proof. For every $x \in R$, the subring $\langle x \rangle$ is finite, hence J(R) is a nilring. By [11, Theorem 2.9.30], J(R) is a locally nilpotent ideal and so J(R) is locally finite.

The ring R/J(R) is isomorphic to a finite product $M(n_1, \Delta_1) \times \cdots \times M(n_k, \Delta_k)$, where $\Delta_1, \cdots, \Delta_k$ are algebraic extensions of finite fields. It follows that R/J(R) is locally finite. Since the class of locally finite rings is closed under extensions, R is a locally finite ring.

Problem 3.10. Let R be a linearly compact ring and I be a closed left topological nilideal. Is then I locally topologically nilpotent?

In the case when R has a fundamental system of neighborhoods of zero consisting of ideals, the Problem 3.10 has a positive answer, according to [11, Theorem 2.9.30].

Theorem 3.11. If R is a LCM-ring then R is topologically locally finite.

Proof. By Corollary 3.8 and Lemma 3.9, for every open ideal V, the quotient ring R/V is a locally finite ring. Then $R \cong_{top} \lim R/V$ is a topologically finite ring. \Box

Corollary 3.12. Any LCM-ring is a SBI-ring.

Lemma 3.13. The Jacobson radical J(R) of a LCM-ring R is monocompact.

Proof. By Leptin's Theorem [7], J(R) is a closed ideal of R.

Theorem 3.14. If R is a LCM-ring with identity, R/J(R) is topologically isomorphic to $M(n, \Delta)$ where Δ is a division ring, then $R \cong_{top} M(n, P)$ where P is a LCM-ring and P/J(P) is topologically isomorphic to Δ .

Proof. By Lemma 3.13, J(R) is monocompact and by Theorem 3.4, R is a SBI-ring.

By [5, Theorem 3.8.1], $R \cong M(n, P)$, where P is a ring with identity and $P/J(P) \cong S$. We identify R with M(n, P). By [11, Theorem 2.6.65], there exists a topology \mathfrak{T}_0 on P such that the ring M(n, P) is equipped with the canonical topology of a matrix ring. Since (P, \mathfrak{T}_0) is topologically isomorphic to eM(n, P) e for some idempotent $e, (P, \mathfrak{T}_0)$ is a LCM-ring. \Box

Lemma 3.15. If R is a left linearly compact discrete ring, then any family $\{e_{\alpha} : \alpha \in \Omega\}$ of orthogonal idempotents of R is finite.

Proof. Indeed, if there exists a sequence $(e_{\alpha_n})_{n\geq 1}$ of pairwise different, non-zero elements of $\{e_{\alpha} : \alpha \in \Omega\}$, then $\sum_{n=1}^{\infty} Re_{\alpha_n}$ is an infinite direct sum of left ideals, a contradiction.

Lemma 3.16. If R is a LCM-ring then each family $\{e_{\alpha} : \alpha \in \Omega\}$ of orthogonal idempotents is summable.

Proof. Since R has a fundamental system of neighborhoods \mathcal{B} of zero consisting of ideals,

$$R \cong_{\mathrm{top}} \lim_{\longleftarrow} \{R/V : V \in \mathcal{B}\} \subseteq \prod_{V \in \mathcal{B}} R/V.$$

For each $W \in \mathcal{B}$ denote by pr_W the canonical projection of $\prod_{V \in \mathcal{B}} R/V$ on R/W. Since, $\{\operatorname{pr}_V(e_\alpha) : \alpha \in \Omega\}$ is a family of orthogonal idempotents, by Lemma 3.15, this family is finite, therefore it is summable. By [2, Proposition 3.5.4], the family $\{e_\alpha : \alpha \in \Omega\}$ is summable in $\prod_{V \in \mathcal{B}} R/V$. Since $\lim_{K \to \mathcal{B}} \{R/V : V \in \mathcal{B}\}$ is a closed subring in $\prod_{V \in \mathcal{B}} R/V$, this family is summable in $\lim_{K \to \mathcal{B}} \{R/V : V \in \mathcal{B}\}$,too.

Theorem 3.17. An LCM-ring R is semiprimitive if and only if

$$R \cong_{\mathrm{top}} \prod_{\alpha \in \Omega} M\left(n_{\alpha}, R_{\alpha}\right)$$

where each R_{α} is an algebraic extension of a finite field.

Proof. Suppose that R is semiprimitive. By Leptin's Theorem [7],

$$R \cong_{\mathrm{top}} \prod_{\alpha \in \Omega} M\left(n_{\alpha}, R_{\alpha}\right),$$

where each R_{α} is a division ring. Since each R_{α} is monocompact, every subring of R_{α} generated by one element is finite. Therefore, each R_{α} has a finite characteristic and can be regarded as an algebra over a finite field F_{α} . Since R_{α} is monocompact, R_{α} is an algebraic algebra over F_{α} and by Theorem of Jacobson [5, Theorem 7.12.2], R_{α} is commutative.

Conversely, let $R \cong_{top} \prod_{\alpha \in \Omega} M(n_{\alpha}, R_{\alpha})$ where each R_{α} is an algebraic extension of a finite field. Let $x = (x_{\alpha})_{\alpha \in \Omega} \in \prod_{\alpha \in \Omega} M(n_{\alpha}, R_{\alpha})$. Then for every $\beta \in \Omega$,

$$\operatorname{pr}_{\beta}\langle x\rangle \subseteq \langle \operatorname{pr}_{\beta}(x)\rangle = \langle x_{\beta}\rangle,$$

hence $\langle x \rangle \subseteq \prod_{\alpha \in \Omega} \langle \operatorname{pr}_{\alpha}(x) \rangle$. Since every subring $\langle \operatorname{pr}_{\alpha}(x) \rangle$ is finite, by Theorem of Tihonov, $\prod_{\alpha \in \Omega} \langle \operatorname{pr}_{\alpha}(x) \rangle$ is compact and so $\langle x \rangle$ is compact. \Box

4 Wedderburn decomposition of LCM-rings

We say that a topological ring R admits a Wedderburn decomposition in the category of topological rings [1] if the Jacobson radical J(R) is closed and there exists a closed subring S such that:

- $(i) \ R = S + J(R);$
- (*ii*) $S \cap J(R) = 0;$
- (*iii*) the restriction of the canonical homomorphism $\varphi : R \to R/J(R)$ to S is a topological isomorphism.

We will use below the following Theorem of Zelinsky:

Theorem 4.1 (13). If R is a compact ring of prime characteristic p, then there exists a compact subring S of R such that R = S + J(R).

Lemma 4.2. If R is a local LCM-ring, R/J(R) is finite and char R = p is a prime number, then there exists a finite subring F of R which is a field, such that R = F + J(R).

Proof. The group of units U(R/J(R)) of the field R/J(R) is cyclic. Denote by ϕ the canonical homomorphism of R onto R/J(R). Let $\theta \in R$ such that $\phi(\theta)$ is a generator of U(R/J(R)). The subring $\langle \theta \rangle$ is compact; evidently, $R = \langle \theta \rangle + J(R)$. By Theorem ??, there exists a subfield F of $\langle \theta \rangle$ such that $\langle \theta \rangle = F + J(\langle \theta \rangle)$. Since $J(\langle \theta \rangle)$ is topologically nil, $J(\langle \theta \rangle) \subseteq J(R)$, hence R = F + J(R).

Remark 4.3. If K is a compact subring of R, then $J(K) = J(R) \cap K$.

Indeed, since $J(R) \cap K$ is a topologically nil ideal of K, we obtain that $J(R) \cap K \subseteq J(K)$. Conversely, since $K/(J(R) \cap K) \cong_{\text{top}} (K + J(R))/J(R)$ and (K + J(R))/J(R) is a subfield of R/J(R) or 0, we obtain that $J(K) \subseteq J(R) \cap K$.

Lemma 4.4. Let R be a local LCM-ring of prime characteristic p. Then there exists a finite subring F of R which is a field, such that R = F + J(R).

Proof. Denote by φ the canonical homomorphism of R onto R/J(R).

Consider that $R/J(R) = \bigcup_{i=1}^{\infty} K_i$, where each K_i is a finite subfield of R/J(R)and $K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n \subseteq \cdots$.

Let $K_1 = \langle \varphi(x_1) \rangle$ and consider the subring $\langle x_1 \rangle$ of R. By Theorem of Zelinsky, there exists a finite subring S_1 of $\langle x_1 \rangle$ such that

$$\langle x_1 \rangle = S_1 + J(\langle x_1 \rangle).$$

Assume that we have constructed for a positive integer n, a set $\{S_1, \dots, S_n\}$ of subrings of R which are finite fields, such that:

- (i) $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n$;
- (*ii*) $\varphi(S_i) = K_i, \ i = 1, ..., n.$

Since K_{n+1} is a finite field, there exists $x_{n+1} \in R$ such that $K_{n+1} = \langle \varphi(x_{n+1}) \rangle$. Again, by Theorem of Zelinsky there exists a finite subring P of $\langle x_1 \rangle$ which is a field such that

$$\langle x_{n+1} \rangle = P + J(\langle x_{n+1} \rangle).$$

Evidently, $\varphi(P) = \varphi(\langle x_{n+1} \rangle) = K_{n+1}$. Therefore P is isomorphic to K_{n+1} . We note that P contains a subfield Q isomorphic to K_n . Consider the subring $\langle Q, S_n \rangle$ of R. By Theorem 3.11, $\langle Q, S_n \rangle$ is compact. Since R/J(R) contains a unique subfield isomorphic to K_n , we obtain that $\varphi(Q) = \varphi(S_n) = K_n$. It follows that $\varphi(\langle Q, S_n \rangle) \subseteq \langle \varphi(Q), \varphi(S_n) \rangle = K_n$. Since $\varphi(\langle Q, S_n \rangle) \supseteq \varphi(S_n) = K_n$, we obtain that $\varphi(\langle Q, S_n \rangle) \supseteq \varphi(S_n) = K_n$, we obtain that $\varphi(\langle Q, S_n \rangle) = K_n$. Since $\varphi(Q) = \varphi(S_n) = K_n$,

$$\langle Q, S_n \rangle = Q + J(\langle Q, S_n \rangle) = S_n + J(\langle Q, S_n \rangle).$$

By Theorem of Mal'cev (see, for example [11, Theorem 2.10.3]), there exists $a \in J(\langle Q, S_n \rangle) \subseteq J(R)$, such that

$$S_n = (1+a)^{-1} Q \ (1+a)$$

Then

$$(1+a)^{-1} P (1+a) \supseteq (1+a)^{-1} Q (1+a) = S_n.$$

Put

$$S_{n+1} = (1+a)^{-1} P (1+a).$$

Then S_{n+1} is a field, $S_n \subseteq S_{n+1}$ and

$$\varphi(S_{n+1}) = (\varphi(1+a))^{-1} \varphi(P) \varphi(1+a) = \varphi(P) = K_{n+1}$$

We constructed a sequence

$$S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq \cdots$$

of subrings of R which are finite fields and $\varphi(S_n) = K_n$, for each $n \in \mathbb{N}$. Then $S = \bigcup_{i=1}^{\infty} S_i$ is a subring of R which is a field and

$$\varphi\left(\bigcup_{i=1}^{\infty}S_i\right) = \bigcup_{i=1}^{\infty}\varphi\left(S_i\right) = \bigcup_{i=1}^{\infty}K_i = R/J(R).$$

Therefore R = S + J(R). Since $S \cap J(R) = 0$ and J(R) is open in R, we obtain that R is a topological direct sum of R and J(R).

Lemma 4.5. Let R be a LCM-ring with identity such that $R/J(R) \cong M(n, \Delta)$ where Δ is a division ring. Then there exists a subring S of R isomorphic to $M(n, \Delta)$ such that R = S + J(R). **Proof.** By Theorem 3.14, there exists a local LCM-ring P such that $R \cong_{top}$ M(n, P). By Lemma 4.4, there exists a subring S of P such that P = S + J(P) a topological direct sum of S and J(P). We identify R with M(n, P). Then

$$M(n, P) = M(n, S) + M(n, J(P))$$

and

$$M(n,S) \cap M(n,J(P)) = 0.$$

The subring M(n, S) is discrete and J(M(n, P)) = M(n, J(P)).

Theorem 4.6. Let $f: R \to R'$ be a continuous homomorphism of a LCM-ring R with identity e on a LCM-ring R' with identity e' and $Kerf \subseteq J(R)$. If $\{e'_{\alpha} : \alpha \in \Omega\}$ is a family of orthogonal idempotents, $e' = \sum_{\alpha \in \Omega} e'_{\alpha}$, then there exists a family $\{e_{\alpha} : \alpha \in \Omega\}$ of orthogonal idempotents such that $e = \sum_{\alpha \in \Omega} e_{\alpha}$, $f(e_{\alpha}) = e'_{\alpha}$, $\alpha \in \Omega$.

The proof of this Theorem is analogous to the proof of Theorem 2.6.57 from [11]. The following Theorem was proved for compact rings by Z.S. Lipkina [9].

Theorem 4.7. Let R be an arbitrary LCM-ring. Then there exists a closed subring A, topologically isomorphic to a product of primary LCM-rings such that R = A + AJ(R).

The proof of this Theorem is analogous to the proof of Theorem 2.6.58 from [11].

Theorem 4.8. Let R be a LCM-ring of prime characteristic. Then there exists a closed subring S such that $R = S \oplus J(R)$ (a topological direct group sum).

Proof. By Theorem 4.7, there exists a closed subring A, such that $A \cong_{top} \prod_{\alpha \in \Omega} R_{\alpha}$, where each R_{α} is a primary ring and R = A + J(R). By Lemma 4.5, for each $\alpha \in \Omega$, there exists a subring S_{α} , such that $R_{\alpha} = S_{\alpha} + J(R_{\alpha})$. Since $J(\prod_{\alpha \in \Omega} R_{\alpha}) =$ $\prod_{\alpha \in \Omega} J(R_{\alpha})$, there exists a subring S of the ring A, topologically isomorphic to $\prod_{\alpha \in \Omega} S_{\alpha}$, such that A = S + J(A).

We note that $J(A) \subseteq J(R)$. Indeed, since

$$R/J(R) = (A + J(R))/J(R) \cong A/(A \cap J(R)),$$

 $A/(A \cap J(R))$ is semiprimitive, hence $J(A) \subseteq J(R)$. Therefore

$$R = A + J(R) = S + J(A) + J(R) = S + J(R)$$

and, evidently, $S \cap J(R) = 0$.

We affirm that this sum is a topological direct sum. Indeed, let $\varphi: R \to R/J(R)$ the canonical homomorphism. Since $\varphi|_{S}: S \to R/J(R)$ is a continuous isomorphism of semiprimitive linearly compact rings, $\varphi|_S$ is a topological isomorphism. By [1, Lemma 13], this sum is a topological.

References

- ANDRUNAKIEVIČ V.A., ARNAUTOV V.I., URSUL M.I. Wedderburn decomposition of hereditarily linearly compact rings. Dokl. AN SSSR, 1973, 211(1), p. 15–18.
- [2] BOURBAKI N. Éléments de mathématique. Topologie générale. Herman, Paris, 1969.
- [3] CURTIS C.W., REINER I. Representation theory of finite groups and associative algebras. Interscience Publishers, New York, London, 1962.
- [4] JACOBSON N. The theory of rings. Amer. Math. Soc. Surveys, Vol. 2, Providence, 1943.
- [5] JACOBSON N. Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Providence, 1964 (revised edition).
- [6] KAPLANSKY I. Fields and Rings. The University of Chicago Press, 1969.
- [7] LEPTIN H. Linear kompakte Moduln und Ringe. Mathematische Zeitschrift, 1955, 62, p. 241–267.
- [8] LEPTIN H. Linear kompakte Moduln und Ringe, II. Mathematische Zeitschrift, 1957, 66, p. 289–327.
- [9] LIPKINA Z.S. Structure of compact rings. Sib. Mat. Zhurnal, 1973, 17, p. 1346–1348.
- [10] NUMAKURA K. A note on Wedderburn decompositions of compact rings. Nihon Gakushiin. Proceedings, 1959, 35, p. 313–315.
- [11] URSUL M.I. Compact rings satisfying compactness conditions. Kluwer Academic Publishers, 2002.

Received November 25, 2004

- [12] WARNER S. Topological rings, North-Holand Math. Studies 178, 1993.
- [13] ZELINSKY D. Raising idempotents. Duke Math Journal, 1954, **21(2)**, p. 315–322.

Department of Mathematics University of Oradea str. Armatei Romane 5 3700, Oradea Romania E-mail: ursul@uoradea.ro