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1 Introduction

A subtle fact of the theory of algebras over a field is the Wedderburn—Mal’cev
Theorem (see, e.g., [3, 4]). This Theorem was extended also to classes of topological
rings (see, e.g., [1, 10, 13]). The aim of this paper is an extension of the Wedderburn
Theorem to the class of bounded, linearly compact, monocompact rings.

2 Notation and conventions

All topological ring are assumed to be Hausdorff and associative (and not nec-
essarily with identity). If R is a topological ring and S C R, then by (S) the closed
subring of R generated by S is denoted.

A monocompact ring [11] is a topological ring R which is the reunion of its
compact subrings (equivalently, for each element = € R the subring (x) is compact).

A topological ring R is called linearly compact [8] if it has a fundamental system
of neighborhoods of zero consisting of left ideals and every filter base consisting of
cosets relative to closed left ideals has a non-empty intersection.

A topological ring R is called hereditarily linearly compact [1] if every closed
subring is a linearly compact ring.

The class of hereditarily linearly compact rings is intermediate between compact
totally disconnected rings and linearly compact rings.

A topological ring R is called topologically locally finite [11] provided for every
finite subset F' the subring (F") is compact.

Recall that an element of a topological ring is called topologically nilpotent pro-
vided =™ — 0.

The connected component of zero of a topological Abelian group R is denoted
by Rp.

As usual, a local ring is a ring with identity having a unique maximal left ideal.
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A semiprimitive ring is a ring with identity whose Jacobson radical is zero.

If n is a natural number and R is a ring, then M (n, R) denotes the ring of n x n
matrices over R.

The symbol A =,, B means that topological rings A and B are isomorphic.

3 Semiprimitive LCM-rings

Definition 3.1. A LCM-ring is a linearly compact, monocompact ring, having a
fundamental system of neighborhoods of zero consisting of ideals.

Example 3.2. Let F be any field which is an infinite algebraic extension of a finite

field. Then the ring [ I(E)‘ E ] is a discrete LCM-ring.

Lemma 3.3. For any topologically nilpotent element a of a compact ring R and any
o

integers cn, € Z, the series Y cpa” converges.
n=1

Proof. We may consider without loss of generality that R is quasi-regular. We may
consider that R = (a) .

The ring R/Ry has a a fundamental system of neighborhood of zero consisting
of ideals. Evidently, R/Ry is topologically nilpotent. By theorem of Kaplansky
[11, Theorem 2.5.7], RyR = RRy = 0, hence R is quasi-regular and so is topologi-

o0
cally nilpotent. Since R is complete, by the Cauchy criterion, the series ) ¢,a” is

n=1
convergent. OJ

Recall that a ring R is called SBI-ring [6] if for any a € J (R) there exists an
x € J(R) such that:

(i) 22+ 2 = a
(1) for all z € J(R), az = za implies zz = zx.

Theorem 3.4. Any topological ring R whose Jacobson radical J (R) is monocompact
is a SBl-ring.

Proof. Let a € J(R). Then (a) C J (R) and (a) is compact. Consider the sequence

k—1
ca=1 ¢ = —ZCiCk—i, k=23,..,
i=1

o0
of integers. Then, by Lemma 3.3, 2 = Y c,a" exists. Evidently, 22 + = = a and
n=1
for all z € J(R), az = za implies zz = zx. O
Corollary 3.5. (see [6, p. 125]). Any compact ring is a SBI-ring.

Corollary 3.6. Any countably compact ring with identity is a SBI-ring.
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Lemma 3.7. If R is a LCM-ring, R is a topological ring having a fundamental
system of neighborhoods of zero consisting of left ideals and f : R — R’ is a surjective
continuous homomorphism, then R’ is a LCM-ring, too.

Proof. Indeed, R’ is linearly compact. Since R is the union of its compact subrings,
R is the union of its compact subrings, too. Therefore R’ is monocompact, hence
R’ is LCM-ring. O

Corollary 3.8. If R is a LCM-ring and V is an open ideal, then the quotient ring
R/V is a discrete LCM-ring.

Lemma 3.9. Any discrete LCM-ring R is locally finite.

Proof. For every x € R, the subring (z) is finite, hence J (R) is a nilring. By [11,
Theorem 2.9.30], J (R) is a locally nilpotent ideal and so J (R) is locally finite.
The ring R/J (R) is isomorphic to a finite product M (n1, Ay)x---x M (ng, Ag) ,
where Ay, -+, Ay are algebraic extensions of finite fields. It follows that R/J (R) is
locally finite. Since the class of locally finite rings is closed under extensions, R is a
locally finite ring. O

Problem 3.10. Let R be a linearly compact ring and I be a closed left topological
nilideal. Is then I locally topologically nilpotent?

In the case when R has a fundamental system of neighborhoods of zero consisting
of ideals, the Problem 3.10 has a positive answer, according to [11, Theorem 2.9.30].

Theorem 3.11. If R is a LCM-ring then R is topologically locally finite.

Proof. By Corollary 3.8 and Lemma 3.9, for every open ideal V| the quotient ring
R/V is a locally finite ring. Then R =%, imR/V is a topologically finite ring. O

Corollary 3.12. Any LCM-ring is a SBI-ring.
Lemma 3.13. The Jacobson radical J (R) of a LCM-ring R is monocompact.
Proof. By Leptin’s Theorem [7], J (R) is a closed ideal of R. O

Theorem 3.14. If R is a LCM-ring with identity, R/J (R) is topologically isomor-
phic to M (n,A) where A is a division ring, then R =, M (n, P) where P is a
LCM-ring and P/J (P) is topologically isomorphic to A.

Proof. By Lemma 3.13, J (R) is monocompact and by Theorem 3.4, R is a SBI-
ring.

By [5, Theorem 3.8.1], R = M (n,P), where P is a ring with identity and
P/J(P) = S. We identify R with M (n,P). By [11, Theorem 2.6.65], there exists
a topology ¥y on P such that the ring M (n, P) is equipped with the canonical
topology of a matrix ring. Since (P, %) is topologically isomorphic to e M (n, P) e
for some idempotent e, (P, %) is a LCM-ring. O



88 M.I. URSUL, I. FECHETE

Lemma 3.15. If R is a left linearly compact discrete ring, then any family
{ea : a € Q} of orthogonal idempotents of R is finite.

Proof. Indeed, if there exists a sequence (eq,,),~; of pairwise different, non-zero
(&)

elements of {ey : o € Q}, then > Re,, is an infinite direct sum of left ideals, a
n=1

contradiction. O

Lemma 3.16. If R is a LCM-ring then each family {e, : a € Q} of orthogonal
idempotents is summable.

Proof. Since R has a fundamental system of neighborhoods B of zero consisting of
ideals,
R im{R/V:V eB}C [[ R/V.
vVeB

For each W € B denote by pry, the canonical projection of [[ R/V on R/W.
veB
Since, {pry (eq): a € Q} is a family of orthogonal idempotents, by Lemma 3.15,

this family is finite, therefore it is summable. By [2, Proposition 3.5.4], the family

{eq : @ € O} is summable in [[ R/V. Since im {R/V : V € B} is a closed subring
VeB —
in [[ R/V, this family is summable in im {R/V : V € B} ,too. O
veB —

Theorem 3.17. An LCM-ring R is semiprimitive if and only if

R Z¢op H M (nq, Ra)
ae)

where each R, is an algebraic extension of a finite field.

Proof. Suppose that R is semiprimitive. By Leptin’s Theorem [7],

R [[ M (na, Ra)

ae)

where each R, is a division ring. Since each R, is monocompact, every subring of
R, generated by one element is finite. Therefore, each R, has a finite characteristic
and can be regarded as an algebra over a finite field F,. Since R, is monocompact,
R, is an algebraic algebra over F,, and by Theorem of Jacobson [5, Theorem 7.12.2],
R, is commutative.
Conversely, let R =i, [[ M (nq, Ro) where each R, is an algebraic extension
e

of a finite field. Let z = (24),cq € [I M (na, Ra) . Then for every 3 € Q,
a€ell

prg (x) C (prg (z)) = (zg)

hence (x) C [] (pr, (x)). Since every subring (pr, (z)) is finite, by Theorem of
acfl
Tihonov, [] (pr, (z)) is compact and so (x) is compact. O
ac
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4 Wedderburn decomposition of LCM-rings

We say that a topological ring R admits a Wedderburn decomposition in the
category of topological rings [1] if the Jacobson radical J (R) is closed and there
exists a closed subring S such that:

(i) R=S+J(R);
(i5) SN .J(R)=0;

(7i7) the restriction of the canonical homomorphism ¢ : R — R/J(R) to S is a
topological isomorphism.

We will use below the following Theorem of Zelinsky:

Theorem 4.1 (13). . If R is a compact ring of prime characteristic p, then there
exists a compact subring S of R such that R=S+ J(R).

Lemma 4.2. If R is a local LCM-ring, R/J (R) is finite and char R = p is a
prime number, then there exists a finite subring F' of R which is a field, such that
R=F+J(R).

Proof. The group of units U (R/J (R)) of the field R/J (R) is cyclic. Denote by
¢ the canonical homomorphism of R onto R/J (R). Let § € R such that ¢ () is a
generator of U (R/J (R)). The subring (6) is compact; evidently, R = (§) + J (R).
By Theorem ??, there exists a subfield F' of () such that (§) = F + J ((6)) . Since
J ((#)) is topologically nil, J ((#)) € J (R), hence R = F + J (R). O

Remark 4.3. If K is a compact subring of R, then J (K) = J (R) N K.

Indeed, since J(R) N K is a topologically nil ideal of K, we obtain that
J(R)NK C J(K). Conversely, since K/ (J(R)NK) Zp (K +J(R))/J (R) and
(K + J(R))/J(R) is a subfield of R/J (R) or 0, we obtain that J(K) C J(R)NK.

Lemma 4.4. Let R be a local LCM-ring of prime characteristic p. Then there exists
a finite subring F' of R which is a field, such that R =F + J (R).

Proof. Denote by ¢ the canonical homomorphism of R onto R/J (R).
Consider that R/J (R) = |J K, where each K; is a finite subfield of R/J (R)
i=1

)

and K1 C Ko C---C K, C--- .
Let K1 = (¢ (x1)) and consider the subring (x1) of R. By Theorem of Zelinsky,
there exists a finite subring S of (1) such that

(1) = S1+J ({z1)) -

Assume that we have constructed for a positive integer n, a set {S1,---,S,} of
subrings of R which are finite fields, such that:
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(i) S1 €85 C---C Sy
(i1) 0 (S) = Ki, i=1,...m.

Since K41 is a finite field, there exists x,+1 € R such that K11 = (¢ (zn41)) -
Again, by Theorem of Zelinsky there exists a finite subring P of (x1) which is a field
such that

(ni1) = P+ J ((Tn41) -

Evidently, ¢ (P) = ¢ ({(xn+1)) = Kpt1. Therefore P is isomorphic to K,+1. We
note that P contains a subfield @) isomorphic to K,. Consider the subring (Q, S,)
of R. By Theorem 3.11, (Q,S,) is compact. Since R/J (R) contains a unique
subfield isomorphic to K, , we obtain that ¢ (Q) = ¢ (S,) = K, . It follows that

v ({Q;5n)) € (¢ (Q), ¢(Sn)) = Kn. Since ¢ ((Q,50)) 2 ¢ (5n) = Kp, we obtain
that ¢ ((Q, Sn)) = Ky. Since ¢ (Q) = ¢ (Sy) = Ky,

(Q,5n) =Q+ J((Q,5n)) =S+ J ((Q;Sn)) -

By Theorem of Mal'cev (see, for example [11, Theorem 2.10.3]), there exists a €
J ((Q,Sn)) € J(R), such that

Sp=>0+4a)""Q (1+a).

Then
(I4a)'PA+a)2(1+a)'Q1+a)=25,.

Put
Spy1=(1+4a)'P(1+a).

Then S, 41 is a field, S, C 5,41 and
#(Sur1) = (p(1+a)) ™ 9(P) p(1+4a) = p(P) = Kny1.
We constructed a sequence
5, CSC---CS,C---

of subrings of R which are finite fields and ¢ (S,) = K, , for each n € N. Then

S = | S; is a subring of R which is a field and
i=1

2 <U52) = U(,D(Si) = UKZ =R/J(R).
=1 i=1 =1

Therefore R = S + J(R). Since SN J (R) =0 and J (R) is open in R, we obtain
that R is a topological direct sum of R and J (R). O

Lemma 4.5. Let R be a LCM-ring with identity such that R/J (R) = M (n,A)
where A is a division ring. Then there exists a subring S of R isomorphic to
M (n,A) such that R=S+ J (R).



WEDDERBURN DECOMPOSITION OF LCM-RINGS 91

Proof. By Theorem 3.14, there exists a local LCM-ring P such that R =,
M (n, P). By Lemma 4.4, there exists a subring S of P such that P =S+ J(P) a
topological direct sum of S and J (P). We identify R with M (n, P). Then

M (n,P)= M (n,S)+ M (n,J (P))

and
M (n,S)N M (n,J(P)) =0.

The subring M (n,S) is discrete and J (M (n, P)) = M (n,J (P)). O

Theorem 4.6. Let f : R — R’ be a continuous homomorphism of a LCM-ring R
with identity e on a LCM-ring R' with identity ¢’ and Kerf C J(R). If {el, : « € Q}
is a family of orthogonal idempotents, € = > €L, then there exists a family
{ea : a € Q} of orthogonal idempotents such that e =3 €a, f(ea) = €, o € L

The proof of this Theorem is analogous to the proof of Theorem 2.6.57 from [11].
The following Theorem was proved for compact rings by Z.S. Lipkina [9].

Theorem 4.7. Let R be an arbitrary LCM-ring. Then there exists a closed subring
A, topologically isomorphic to a product of primary LCM-rings such that R = A +
J(R).

The proof of this Theorem is analogous to the proof of Theorem 2.6.58 from [11].

Theorem 4.8. Let R be a LCM-ring of prime characteristic. Then there exists a
closed subring S such that R =S @ J (R) (a topological direct group sum).

Proof. By Theorem 4.7, there exists a closed subring A, such that A Zop, [[,cq Ra
where each R, is a primary ring and R = A+ J (R) . By Lemma 4.5, for each a € €,
there exists a subring S,, such that R, = S, + J(R,). Since J(Haeﬂ Ra) =
[IocaJ (Ra), there exists a subring S of the ring A, topologically isomorphic to
[Iocq Sa, such that A =S+ J(A).

We note that J (4) C J(R). Indeed, since

R/J(R) = (A+J(R))/J(R)= A/ (ANJ(R)),

A/ (AN J(R)) is semiprimitive, hence J (A) C J (R).
Therefore

R=A+J(R)=S+J(A) +J(R)=S+J(R)

and, evidently, SN J (R) = 0.

We affirm that this sum is a topological direct sum. Indeed, let ¢ : R — R/J (R)
the canonical homomorphism. Since ¢|g : S — R/J(R) is a continuous isomor-
phism of semiprimitive linearly compact rings, ¢ |s is a topological isomorphism.
By [1, Lemma 13], this sum is a topological. O
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