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Abstract. In this paper we extend in this paper a result of Zelinsky to the class of
linearly compact, monocompact rings of prime characteristic.

Mathematics subject classification: 16W80.
Keywords and phrases: Monocompact ring, linearly compact ring, hereditarily
linearly compact ring, topologically locally finite ring, topologically nilpotent ring,
Wedderburn decomposition in the category of topological rings.

1 Introduction

A subtle fact of the theory of algebras over a field is the Wedderburn–Mal’cev
Theorem (see, e.g., [3, 4]). This Theorem was extended also to classes of topological
rings (see, e.g., [1, 10, 13]). The aim of this paper is an extension of the Wedderburn
Theorem to the class of bounded, linearly compact, monocompact rings.

2 Notation and conventions

All topological ring are assumed to be Hausdorff and associative (and not nec-
essarily with identity). If R is a topological ring and S ⊆ R, then by 〈S〉 the closed
subring of R generated by S is denoted.

A monocompact ring [11] is a topological ring R which is the reunion of its
compact subrings (equivalently, for each element x ∈ R the subring 〈x〉 is compact).

A topological ring R is called linearly compact [8] if it has a fundamental system
of neighborhoods of zero consisting of left ideals and every filter base consisting of
cosets relative to closed left ideals has a non-empty intersection.

A topological ring R is called hereditarily linearly compact [1] if every closed
subring is a linearly compact ring.

The class of hereditarily linearly compact rings is intermediate between compact
totally disconnected rings and linearly compact rings.

A topological ring R is called topologically locally finite [11] provided for every
finite subset F the subring 〈F 〉 is compact.

Recall that an element of a topological ring is called topologically nilpotent pro-
vided xn → 0.

The connected component of zero of a topological Abelian group R is denoted
by R0.

As usual, a local ring is a ring with identity having a unique maximal left ideal.
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A semiprimitive ring is a ring with identity whose Jacobson radical is zero.
If n is a natural number and R is a ring, then M (n,R) denotes the ring of n×n

matrices over R.
The symbol A ∼=top B means that topological rings A and B are isomorphic.

3 Semiprimitive LCM-rings

Definition 3.1. A LCM-ring is a linearly compact, monocompact ring, having a
fundamental system of neighborhoods of zero consisting of ideals.

Example 3.2. Let F be any field which is an infinite algebraic extension of a finite

field. Then the ring

[

F F

0 F

]

is a discrete LCM-ring.

Lemma 3.3. For any topologically nilpotent element a of a compact ring R and any

integers cn ∈ Z, the series
∞
∑

n=1

cnan converges.

Proof. We may consider without loss of generality that R is quasi-regular. We may
consider that R = 〈a〉 .

The ring R/R0 has a a fundamental system of neighborhood of zero consisting
of ideals. Evidently, R/R0 is topologically nilpotent. By theorem of Kaplansky
[11, Theorem 2.5.7], R0R = RR0 = 0, hence R is quasi-regular and so is topologi-

cally nilpotent. Since R is complete, by the Cauchy criterion, the series
∞
∑

n=1

cnan is

convergent. �

Recall that a ring R is called SBI-ring [6] if for any a ∈ J (R) there exists an
x ∈ J (R) such that:

(i) x2 + x = a;

(ii) for all z ∈ J (R) , az = za implies xz = zx.

Theorem 3.4. Any topological ring R whose Jacobson radical J (R) is monocompact
is a SBI-ring.

Proof. Let a ∈ J (R) . Then 〈a〉 ⊆ J (R) and 〈a〉 is compact. Consider the sequence

c1 = 1, ck = −
k−1
∑

i=1

cick−i, k = 2, 3, ...,

of integers. Then, by Lemma 3.3, x =
∞
∑

n=1

cnan exists. Evidently, x2 + x = a and

for all z ∈ J (R) , az = za implies xz = zx. �

Corollary 3.5. (see [6, p. 125]). Any compact ring is a SBI-ring.

Corollary 3.6. Any countably compact ring with identity is a SBI-ring.
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Lemma 3.7. If R is a LCM-ring, R′ is a topological ring having a fundamental
system of neighborhoods of zero consisting of left ideals and f : R → R′ is a surjective
continuous homomorphism, then R′ is a LCM-ring, too.

Proof. Indeed, R′ is linearly compact. Since R is the union of its compact subrings,
R is the union of its compact subrings, too. Therefore R′ is monocompact, hence
R′ is LCM-ring. �

Corollary 3.8. If R is a LCM-ring and V is an open ideal, then the quotient ring
R/V is a discrete LCM-ring.

Lemma 3.9. Any discrete LCM-ring R is locally finite.

Proof. For every x ∈ R, the subring 〈x〉 is finite, hence J (R) is a nilring. By [11,
Theorem 2.9.30], J (R) is a locally nilpotent ideal and so J (R) is locally finite.

The ring R/J (R) is isomorphic to a finite product M (n1,∆1)×· · ·×M (nk,∆k) ,
where ∆1, · · · ,∆k are algebraic extensions of finite fields. It follows that R/J (R) is
locally finite. Since the class of locally finite rings is closed under extensions, R is a
locally finite ring. �

Problem 3.10. Let R be a linearly compact ring and I be a closed left topological
nilideal. Is then I locally topologically nilpotent?

In the case when R has a fundamental system of neighborhoods of zero consisting
of ideals, the Problem 3.10 has a positive answer, according to [11, Theorem 2.9.30].

Theorem 3.11. If R is a LCM-ring then R is topologically locally finite.

Proof. By Corollary 3.8 and Lemma 3.9, for every open ideal V, the quotient ring
R/V is a locally finite ring. Then R ∼=top lim

←−
R/V is a topologically finite ring. �

Corollary 3.12. Any LCM-ring is a SBI-ring.

Lemma 3.13. The Jacobson radical J (R) of a LCM-ring R is monocompact.

Proof. By Leptin’s Theorem [7], J (R) is a closed ideal of R. �

Theorem 3.14. If R is a LCM-ring with identity, R/J (R) is topologically isomor-
phic to M (n,∆) where ∆ is a division ring, then R ∼=top M (n, P ) where P is a
LCM-ring and P/J (P ) is topologically isomorphic to ∆.

Proof. By Lemma 3.13, J (R) is monocompact and by Theorem 3.4, R is a SBI-
ring.

By [5, Theorem 3.8.1], R ∼= M (n, P ), where P is a ring with identity and
P/J (P ) ∼= S. We identify R with M (n, P ). By [11, Theorem 2.6.65], there exists
a topology T0 on P such that the ring M (n, P ) is equipped with the canonical
topology of a matrix ring. Since (P,T0) is topologically isomorphic to eM (n, P ) e
for some idempotent e, (P,T0) is a LCM-ring. �
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Lemma 3.15. If R is a left linearly compact discrete ring, then any family
{eα : α ∈ Ω} of orthogonal idempotents of R is finite.

Proof. Indeed, if there exists a sequence (eαn
)n≥1 of pairwise different, non-zero

elements of {eα : α ∈ Ω}, then
∞
∑

n=1

Reαn
is an infinite direct sum of left ideals, a

contradiction. �

Lemma 3.16. If R is a LCM-ring then each family {eα : α ∈ Ω} of orthogonal
idempotents is summable.

Proof. Since R has a fundamental system of neighborhoods B of zero consisting of
ideals,

R ∼=top lim
←−

{R/V : V ∈ B} ⊆
∏

V ∈B

R/V.

For each W ∈ B denote by prW the canonical projection of
∏

V ∈B

R/V on R/W .

Since, {prV (eα) : α ∈ Ω} is a family of orthogonal idempotents, by Lemma 3.15,
this family is finite, therefore it is summable. By [2, Proposition 3.5.4], the family
{eα : α ∈ Ω} is summable in

∏

V ∈B

R/V. Since lim
←−

{R/V : V ∈ B} is a closed subring

in
∏

V ∈B

R/V, this family is summable in lim
←−

{R/V : V ∈ B} ,too. �

Theorem 3.17. An LCM-ring R is semiprimitive if and only if

R ∼=top

∏

α∈Ω

M (nα, Rα) ,

where each Rα is an algebraic extension of a finite field.

Proof. Suppose that R is semiprimitive. By Leptin’s Theorem [7],

R ∼=top

∏

α∈Ω

M (nα, Rα) ,

where each Rα is a division ring. Since each Rα is monocompact, every subring of
Rα generated by one element is finite. Therefore, each Rα has a finite characteristic
and can be regarded as an algebra over a finite field Fα. Since Rα is monocompact,
Rα is an algebraic algebra over Fα and by Theorem of Jacobson [5, Theorem 7.12.2],
Rα is commutative.

Conversely, let R ∼=top

∏

α∈Ω

M (nα, Rα) where each Rα is an algebraic extension

of a finite field. Let x = (xα)α∈Ω ∈
∏

α∈Ω

M (nα, Rα) . Then for every β ∈ Ω,

prβ 〈x〉 ⊆
〈

prβ (x)
〉

= 〈xβ〉 ,

hence 〈x〉 ⊆
∏

α∈Ω

〈prα (x)〉 . Since every subring 〈prα (x)〉 is finite, by Theorem of

Tihonov,
∏

α∈Ω

〈prα (x)〉 is compact and so 〈x〉 is compact. �
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4 Wedderburn decomposition of LCM-rings

We say that a topological ring R admits a Wedderburn decomposition in the
category of topological rings [1] if the Jacobson radical J (R) is closed and there
exists a closed subring S such that:

(i) R = S + J (R) ;

(ii) S ∩ J (R) = 0;

(iii) the restriction of the canonical homomorphism ϕ : R → R/J (R) to S is a
topological isomorphism.

We will use below the following Theorem of Zelinsky:

Theorem 4.1 (13). . If R is a compact ring of prime characteristic p, then there
exists a compact subring S of R such that R = S + J (R) .

Lemma 4.2. If R is a local LCM-ring, R/J (R) is finite and char R = p is a
prime number, then there exists a finite subring F of R which is a field, such that
R = F + J (R) .

Proof. The group of units U (R/J (R)) of the field R/J (R) is cyclic. Denote by
φ the canonical homomorphism of R onto R/J (R) . Let θ ∈ R such that φ (θ) is a
generator of U (R/J (R)) . The subring 〈θ〉 is compact; evidently, R = 〈θ〉 + J (R) .
By Theorem ??, there exists a subfield F of 〈θ〉 such that 〈θ〉 = F + J (〈θ〉) . Since
J (〈θ〉) is topologically nil, J (〈θ〉) ⊆ J (R) , hence R = F + J (R) . �

Remark 4.3. If K is a compact subring of R, then J (K) = J (R) ∩ K.

Indeed, since J (R) ∩ K is a topologically nil ideal of K, we obtain that
J (R) ∩ K ⊆ J (K) . Conversely, since K/ (J (R) ∩ K) ∼=top (K + J (R)) /J (R) and
(K + J (R)) /J (R) is a subfield of R/J (R) or 0, we obtain that J (K) ⊆ J (R)∩K.

Lemma 4.4. Let R be a local LCM-ring of prime characteristic p. Then there exists
a finite subring F of R which is a field, such that R = F + J (R) .

Proof. Denote by ϕ the canonical homomorphism of R onto R/J (R) .

Consider that R/J (R) =
∞
⋃

i=1

Ki , where each Ki is a finite subfield of R/J (R)

and K1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ · · · .

Let K1 = 〈ϕ (x1)〉 and consider the subring 〈x1〉 of R. By Theorem of Zelinsky,
there exists a finite subring S1 of 〈x1〉 such that

〈x1〉 = S1 + J (〈x1〉) .

Assume that we have constructed for a positive integer n, a set {S1, · · · , Sn} of
subrings of R which are finite fields, such that:
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(i) S1 ⊆ S2 ⊆ · · · ⊆ Sn;

(ii) ϕ (Si) = Ki , i = 1, ..., n.

Since Kn+1 is a finite field, there exists xn+1 ∈ R such that Kn+1 = 〈ϕ (xn+1)〉 .
Again, by Theorem of Zelinsky there exists a finite subring P of 〈x1〉 which is a field
such that

〈xn+1〉 = P + J (〈xn+1〉) .

Evidently, ϕ (P ) = ϕ (〈xn+1〉) = Kn+1. Therefore P is isomorphic to Kn+1. We
note that P contains a subfield Q isomorphic to Kn. Consider the subring 〈Q,Sn〉
of R. By Theorem 3.11, 〈Q,Sn〉 is compact. Since R/J (R) contains a unique
subfield isomorphic to Kn , we obtain that ϕ (Q) = ϕ (Sn) = Kn . It follows that
ϕ (〈Q,Sn〉) ⊆ 〈ϕ (Q) , ϕ (Sn)〉 = Kn. Since ϕ (〈Q,Sn〉) ⊇ ϕ (Sn) = Kn, we obtain
that ϕ (〈Q,Sn〉) = Kn. Since ϕ (Q) = ϕ (Sn) = Kn ,

〈Q,Sn〉 = Q + J (〈Q,Sn〉) = Sn + J (〈Q,Sn〉) .

By Theorem of Mal’cev (see, for example [11, Theorem 2.10.3]), there exists a ∈
J (〈Q,Sn〉) ⊆ J (R) , such that

Sn = (1 + a)−1 Q (1 + a) .

Then
(1 + a)−1 P (1 + a) ⊇ (1 + a)−1 Q (1 + a) = Sn .

Put
Sn+1 = (1 + a)−1 P (1 + a) .

Then Sn+1 is a field, Sn ⊆ Sn+1 and

ϕ (Sn+1) = (ϕ (1 + a))−1 ϕ (P ) ϕ (1 + a) = ϕ (P ) = Kn+1.

We constructed a sequence

S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ · · ·

of subrings of R which are finite fields and ϕ (Sn) = Kn , for each n ∈ N. Then

S =
∞
⋃

i=1

Si is a subring of R which is a field and

ϕ

(

∞
⋃

i=1

Si

)

=

∞
⋃

i=1

ϕ (Si) =

∞
⋃

i=1

Ki = R/J (R) .

Therefore R = S + J (R) . Since S ∩ J (R) = 0 and J (R) is open in R, we obtain
that R is a topological direct sum of R and J (R) . �

Lemma 4.5. Let R be a LCM-ring with identity such that R/J (R) ∼= M (n,∆)
where ∆ is a division ring. Then there exists a subring S of R isomorphic to
M (n,∆) such that R = S + J (R) .
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Proof. By Theorem 3.14, there exists a local LCM-ring P such that R ∼=top

M (n, P ) . By Lemma 4.4, there exists a subring S of P such that P = S + J (P ) a
topological direct sum of S and J (P ). We identify R with M (n, P ) . Then

M (n, P ) = M (n, S) + M (n, J (P ))

and

M (n, S) ∩ M (n, J (P )) = 0.

The subring M (n, S) is discrete and J (M (n, P )) = M (n, J (P )) . �

Theorem 4.6. Let f : R → R′ be a continuous homomorphism of a LCM-ring R
with identity e on a LCM-ring R′ with identity e′ and Kerf ⊆ J(R). If {e′α : α ∈ Ω}
is a family of orthogonal idempotents, e′ =

∑

α∈Ω e′α, then there exists a family
{eα : α ∈ Ω} of orthogonal idempotents such that e =

∑

α∈Ω eα, f(eα) = e′α, α ∈ Ω.

The proof of this Theorem is analogous to the proof of Theorem 2.6.57 from [11].

The following Theorem was proved for compact rings by Z.S. Lipkina [9].

Theorem 4.7. Let R be an arbitrary LCM-ring. Then there exists a closed subring
A, topologically isomorphic to a product of primary LCM-rings such that R = A +
J(R).

The proof of this Theorem is analogous to the proof of Theorem 2.6.58 from [11].

Theorem 4.8. Let R be a LCM-ring of prime characteristic. Then there exists a
closed subring S such that R = S ⊕ J (R) (a topological direct group sum).

Proof. By Theorem 4.7, there exists a closed subring A, such that A ∼=top

∏

α∈Ω Rα ,
where each Rα is a primary ring and R = A+J (R) . By Lemma 4.5, for each α ∈ Ω,
there exists a subring Sα, such that Rα = Sα + J (Rα) . Since J

(
∏

α∈Ω Rα

)

=
∏

α∈Ω J (Rα) , there exists a subring S of the ring A, topologically isomorphic to
∏

α∈Ω Sα, such that A = S + J (A) .

We note that J (A) ⊆ J (R) . Indeed, since

R/J (R) = (A + J (R)) /J (R) ∼= A/ (A ∩ J (R)) ,

A/ (A ∩ J (R)) is semiprimitive, hence J (A) ⊆ J (R) .

Therefore

R = A + J (R) = S + J (A) + J (R) = S + J (R)

and, evidently, S ∩ J (R) = 0.

We affirm that this sum is a topological direct sum. Indeed, let ϕ : R → R/J (R)
the canonical homomorphism. Since ϕ |S : S → R/J (R) is a continuous isomor-
phism of semiprimitive linearly compact rings, ϕ |S is a topological isomorphism.
By [1, Lemma 13], this sum is a topological. �
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[1] Andrunakievič V.A., Arnautov V.I., Ursul M.I. Wedderburn decomposition of heredi-

tarily linearly compact rings. Dokl. AN SSSR, 1973, 211(1), p. 15–18.

[2] Bourbaki N. Éléments de mathématique. Topologie générale. Herman, Paris, 1969.

[3] Curtis C.W., Reiner I. Representation theory of finite groups and associative algebras.
Interscience Publishers, New York, London, 1962.

[4] Jacobson N. The theory of rings. Amer. Math. Soc. Surveys, Vol. 2, Providence, 1943.

[5] Jacobson N. Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Providence, 1964
(revised edition).

[6] Kaplansky I. Fields and Rings. The University of Chicago Press, 1969.

[7] Leptin H. Linear kompakte Moduln und Ringe. Mathematische Zeitschrift, 1955, 62,
p. 241–267.

[8] Leptin H. Linear kompakte Moduln und Ringe, II. Mathematische Zeitschrift, 1957, 66,
p. 289–327.

[9] Lipkina Z.S. Structure of compact rings. Sib. Mat. Zhurnal, 1973, 17, p. 1346–1348.

[10] Numakura K. A note on Wedderburn decompositions of compact rings. Nihon Gakushiin.
Proceedings, 1959, 35, p. 313–315.

[11] Ursul M.I. Compact rings satisfying compactness conditions. Kluwer Academic Publishers,
2002.

[12] Warner S. Topological rings, North-Holand Math. Studies 178, 1993.

[13] Zelinsky D. Raising idempotents. Duke Math Journal, 1954, 21(2), p. 315–322.

Department of Mathematics
University of Oradea
str. Armatei Romane 5
3700, Oradea
Romania
E-mail: ursul@uoradea.ro

Received November 25, 2004


