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Radicals around Köthe’s problem

S. Tumurbat, R. Wiegandt

Abstract. Radicals γ will be studied for which the condition “A[x] ∈ γ for all nil rings
A” is equivalent to the positive solution of Köthe’s Problem (A[x] is Jacobson radical
for all nil rings A, in Krempa’s formulation). The closer γ is to the Jacobson radical,
the better approximation of the positive solution is obtained. Seeking, however, for
a negative solution, possibly large radicals γ are of interest. In this note such large
radicals will be studied.

Mathematics subject classification: Primary: 16N80. Secondary: 16N20, 16N40.
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1 Introduction

We shall work with associative rings (not necessarily with unity element) and
Kurosh–Amitsur radicals. For details we refer to [4]. We shall use the following
letters for operators acting on classes of rings:

L lower radical operator;

U upper radical operator;

h homomorphic closure operator;

H hereditary closure operator.

Further notations:

N = {all nil rings}, the nil radical class;

J the Jacobson radical or radical class;

G the Brown–McCoy radical or radical class;

B the Behrens radical: the upper radical of rings with nonzero idempotents;

u the upper radical of uniformly strongly prime rings (a ring A is uniformly
strongly prime, if there exists a finite subset F ⊆ A such that xFy 6= 0 whenever
0 6= x, y ∈ A);

P = {all primitive rings};

Q = {A[x] | A ∈ N};

ℓ = LhQ;

K = UH(ℓ ∩ P);

M = U(ℓ ∩ P) may not be a radical class, though homomorphically closed.
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Köthe’s Problem (1930) asks as whether the sum of two nil left ideals is always a
nil left ideal. Krempa’s well-known criterion says that Köthe’s Problem is equivalent
to the condition: A[x] ∈ J for every A ∈ N , that is, Q ⊂ J .

This raises the possibility of approximating Köthe’s Problem by radicals. At
present, by [1], [2] we know that A ∈ N implies A[x] ∈ B ∩ u. Tumurbat [9] gave
the exact lower bound ℓ, and a positive solution of Köthe’s Problem is equivalent to
ℓ(A[x]) ⊆ J (A[x]) for all nil rings A.

McConnell and Stokes [6] introduced and investigated a non-hereditary radical
K, they proved that J ⊂ K and that Köthe’s Problem has a positive solution if and
only if A[x] ∈ K for every A ∈ N . Recently Sakhajev [7] announced the negative
solution of Köthe’s Problem. Thus, solving Köthe’s problem in the negative by
an explicitly given counterexample, possibly large radicals γ may be of interest for
which J ⊂ γ and A[x] ∈ γ for every A ∈ N . In this note we shall investigate such
large radicals.

2 An interval of radicals

Proposition 2.1. (i) For a radical γ, J ∩Q = γ∩Q if and only if J ∩hQ = γ∩hQ;

(ii) A ∈ N and A[x] ∈ M implies A[x] ∈ J ∩ ℓ;
(iii) M ∩Q = J ∩ Q = (J ∩ ℓ) ∩ Q.

Proof. (i) Straightforward.
(ii) If A ∈ N and A[x] /∈ J , then A[x] has a nonzero homomorphic image in ℓ∩P;

so A[x] /∈ M. Hence A ∈ N and A[x] ∈ M implies A[x] ∈ J , whence A[x] ∈ J ∩ ℓ.
(iii) Obvious by (ii). �

Proposition 2.2. Let γ be any radical. Then

(i) γ ∈ [ℓ ∩ J ,M] implies γ ∩ Q = J ∩ Q;

(ii) γ ∩ Q = J ∩ Q implies ℓ ∩ J ⊆ γ;

(iii) if γ is hereditary and γ ∩ Q = J ∩ Q, then γ ⊆ M.

Proof. (i) Since Q ⊂ ℓ, the equality (ℓ ∩ J ) ∩ Q = J ∩ Q is obvious.
Next, we prove that M∩Q = J ∩Q. Clearly J ⊆ M, therefore J ∩Q ⊆ M∩Q.

Assume that there exists a ring A[x] ∈ (M ∩ Q) \ J . Then A[x] ∈ ℓ and has a
nonzero homomorphic image B in P. Hence B ∈ ℓ ∩ P, and so A[x] /∈ M. This
contradiction proves that M ∩ Q ⊆ J ∩Q.

Let γ be any radical class in the interval [ℓ ∩ J ,M]. Then we have

J ∩Q = (ℓ ∩ J ) ∩ Q ⊆ γ ∩Q ⊆ M ∩ Q = J ∩ Q.

(ii) Assume that ℓ∩J 6⊆ γ, and A ∈ (ℓ∩J )\γ. Then every nonzero homomorphic
image B of A has a nonzero accessible subring C in hQ ∩ J = hQ ∩ γ ⊆ γ. Hence
A ∈ γ follows, contradicting A /∈ γ.

(iii) Suppose that γ 6⊆ M and A ∈ γ \ M. Then A has a nonzero homomorphic
image B ∈ γ ∩ ℓ∩P, and therefore B has a nonzero accessible subring C ∈ hQ∩P.
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Since γ is hereditary, also C ∈ γ ∩ hQ ∩ P holds. Hence γ ∩ hQ 6⊆ J ∩ hQ follows.
In view of Proposition 2.1 (i) this is a contradiction. �

Theorem 2.3. A radical γ is in the interval [ℓ∩J ,M] if and only if γ ∩ ℓ = J ∩ ℓ.

Proof. Assume that γ ∈ [ℓ∩J ,M]. Clearly ℓ∩J ⊆ γ and so ℓ∩J ⊆ ℓ∩γ. Suppose
that ℓ ∩ J 6= ℓ ∩ γ. Then there exists a ring A ∈ (ℓ ∩ γ) \ (ℓ ∩ J ), and necessarily
A /∈ J . Hence A has a nonzero homomorphic image B ∈ P ∩ ℓ, and so A /∈ M,
contradicting A ∈ ℓ ∩ J ⊆ γ ⊆ M.

Conversely, suppose that γ∩ℓ = J ∩ℓ for some radical γ. We claim that γ ⊆ M.
Assume that this is not true, and γ 6⊆ M. Then there exists a nonzero homomorphic
image of a ring A ∈ γ such that B ∈ γ∩(ℓ∩P) = (J ∩ℓ)∩P = {0}, a contradiction.
Hence γ ⊆ M. Further, J ∩ ℓ = γ ∩ ℓ ⊆ γ. �

Next, we give conditions equivalent to the positive solution of Köthe’s problem.

Theorem 2.4. The following conditions are equivalent:

(i) Köthe’s problem has a positive solution;

(ii) ℓ ⊆ J ;

(iii) ℓ ∩ P = {0};
(iv) K = {all rings} = M;

(v) Q ⊆ γ for any radical γ with ℓ ∩ J ⊆ γ.

Proof. The following implications are straightforward:

(i)=⇒(ii)⇐⇒(iii)⇐⇒(iv),

(ii)=⇒(v)=⇒(i). �

Corollary 2.5. Let γ be a radical such that Q ⊂ γ.

Then γ ⊆ M if and only if Köthe’s problem has a positive solution. In particular,

γ may be the Behrens, Brown–McCoy, uniformly strongly prime radicals, or the

upper radical of von Neumann regular rings.

Proof. Q ⊂ γ implies ℓ ⊆ γ, and so ℓ ∩ J ⊆ γ. Hence from Theorem 2.3 it follows
that ℓ ⊆ γ ∩ ℓ = J ∩ ℓ ⊆ J . Further, Q ⊂ B ∩ G ∩ u∩Uν is well-known (see [1] and
[2]). �

A radical γ is said to be polynomially extensible if A ∈ γ implies A[x] ∈ γ.

Corollary 2.6. Köthe’s problem has a positive solution if and only if the interval

[ℓ ∩ J ,M] contains a polynomially extensible radical.

Proof. If Köthe’s problem has a positive solution, then M = {all rings} is polyno-
mially extensible.

Let γ ∈ [ℓ ∩ J ,M] be a polynomially extensible radical. Then N ⊆ ℓ ∩ J ⊆ γ
implies Q ⊆ γ. Hence Theorem 2.4 (v) yields the assertion. �

Remark 2.7. In Corollaries 2.5 and 2.6 the class M can be replaced by the radical

K.
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3 On the radical K

As we have seen in Theorem 2.4, the radical K is not the class of all rings if and
only if ℓ ∩ P 6= {0}. This is the case precisely when there exists a polynomial ring
R[x] over a nil ring R which has a nonzero primitive homomorphic image. In this
section we shall discuss properties of the radical K and prove criteria of the positive
solution of Köthe’s Problem in terms of K.

Theorem 3.1. Köthe’s Problem has a positive solution if and only if the radical K

is hereditary.

Proof. If Köthe’s Problem has a positive solution, then ℓ ∩ P = {0} and K is the
class of all rings, which is trivially hereditary.

Conversely, suppose that K is hereditary. Let us consider an arbitrary nonzero
ring A and its Dorroh extension A1. We are going to prove that A1 ∈ K. Suppose
the contrary, that A1 /∈ K. Then A1 has a nonzero homomorphic image B1 ∈
H(ℓ ∩ P). Hence B1 is an accessible subring of a ring C ∈ ℓ ∩ P, and so has a
nonzero idempotent, the unity element e of B1. By a Zorn lemma argument C
has a subdirectly irreducible homomorphic image C/M ∈ ℓ possessing a nonzero
idempotent e + M in its heart. Thus C/M is in the Behrens semisimple class SB.
Taking into account that C/M ∈ ℓ, we conclude that there exists a nonzero accessible
subring D of C/M which is in SB ∩ hQ. Thus there exists a polynomial ring E[x]
over a nil ring E such that D ∼= E[x]/K. But by Beidar, Fong and Puczy lowski [1],
E ∈ N implies E[x] ∈ B and also D ∈ B, a contradiction. Hence A1 ∈ K. Thus by
A ⊳ A1 the hereditariness of K yields A ∈ K, which means that K is the class of all
rings, and so ℓ ∩ P = {0} and ℓ ⊆ J follows. Hence A ∈ N implies A[x] ∈ J . �

A ring A is said to be an s-ring if every primitive homomorphic image of A is
a reduced ring or has a homomorphic image with nonzero idempotent. Recall that
the class L of locally nilpotent rings is the Levitzki radical class. In the proof of
the next Proposition and in Theorem 4.5 we shall make use of the radicals ̺ and δ
which are the upper radicals of the classes

{A ∈ SL | every nil subring of A is in L}

and
{A ∈ SN | the nilpotent elements of A form a subring},

respectively.

Proposition 3.2. All s-rings are in the radical class K.

Proof. Suppose that A is an s-ring and A /∈ K. Then A has a nonzero homomorphic
image B which is an accessible subring of a ring C ∈ ℓ ∩ P. Hence also B is a
primitive ring. Suppose that B is a reduced ring. We choose an ideal I of C which
is maximal relative to I ∩ B = 0. Then by B ∼= (B + I)/I, we may assume that B
is an accessible subring in D = C/I. By induction we can see that B is an essential
accessible subring in D. Since B is primitive, we conclude that also D is primitive.
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By an iterated application of the Andrunakievich Lemma we get that a power J of
the ideal of D generated by B, is contained in B. Since B is primitive, necessarily
J 6= 0. Thus D has a nonzero ideal J contained in B. J is a reduced ring as B
is so. We show that also D is a reduced ring. Assume that a2 = 0 for a nonzero
element a ∈ D. Since D is primitive, necessarily aJa 6= 0 and so 0 6= aja ∈ J with a
suitable element j ∈ J . Hence 0 = aja · aja ∈ J follows, a contradiction. Thus D is
a reduced ring and D ∈ ℓ by C ∈ ℓ∩P. As proved in [9, Theorem 2.9], ℓ ⊂ ̺∩δ, and
so D ∈ ℓ ⊂ ̺. Hence D has a nonzero locally nilpotent ideal or D has a nil subring
which is not locally nilpotent, whence D is not reduced, a contradiction. Thus B
is not reduced, but B has a homomorphic image possessing a nonzero idempotent
as well as a subdirectly irreducible homomorphic image B/K which has a nonzero
idempotent in its heart H/K. Let us consider the ideal 〈K〉D of D generated by
K. Now we have K ⊆ 〈K〉D ∩ H. By the simplicity of H/K either 〈K〉D ∩ H = H
or 〈K〉D ∩ H = K. In the first case there exists a natural number n ≥ 3 such that
H = Hn = 〈K〉nD ∩ H ⊆ 〈K〉nD ⊆ K, contradicting H/K 6= 0. So 〈K〉D ∩ H = K.
Using the Zorn Lemma there exists an ideal M of D which is maximal relative
to M ∩ H = K. Then the factor ring D/M is subdirectly irreducible with heart
(H +M)/M ∼= H/K. Hence D/M ∈ ℓ\B, contradicting ℓ ⊂ B (cf. [1]). Thus A ∈ K

has been established. �

Applying Proposition 3.2 to some special cases of s-rings, we get

Corollary 3.3. All rings with unity element, all commutative rings and all rings

with d.c.c. on principal left ideals are in K.

For a ring A we denote by [A,A] the ideal of A generated by the commutators
[a, b] = ab − ba for all a, b ∈ A.

Theorem 3.4. The following conditions are equivalent:

(i) Köthe’s Problem has a positive solution,

(ii) if a finitely generated Jacobson semisimple ring A is in K, then also its

commutator ideal [A,A] is in K.

Proof. (i)=⇒(ii) Trivial by Theorem 2.4 (iv).
(ii)=⇒(i) Let F be a finitely generated free ring.
Clearly, also the unital extension F 1 of F is finitely generated, and both F and

F 1 are Jacobson semisimple. Hence by Corolary 3.3 the ring F 1 is in K, and by (ii)
we have that [F 1, F 1] ∈ K. Again by Corolary 3.3 the commutative ring F/[F,F ] is
in K. But [F,F ] = [F 1, F 1] ∈ K, so also F ∈ K.

Suppose that Köthe’s Problem has a negative solution. Then there exists a nil

ring A such that A[x] /∈ J . Hence there exists a polynomial f(x) =
n
∑

i=0

aix
i ∈ A[x]

such that f(x) has no quasi-inverse in A[x]. Let B denote the subring of A generated
by the elements a0, . . . , an ∈ A. By B ⊆ A, also B is a nil ring, further, also the
ring C generated by B and x is finitely generated. Since every finitely generated
free ring is in K, we have that C ∈ K. Further, from

C/B[x] ∼= {x} ∈ SJ
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it follows that J (C) ⊆ J (B[x]), and from B[x] ⊳ C we conclude that J (B[x]) ⊆
J (C). So D = C/J (B[x]) is a finitely generated Jacobson semisimple ring in K.
Applying condition (ii) we get that [D,D] ∈ K. Obviously we have

[D,D] = [B[x]/J (B[x]), B[x]/J (B[x])] .

Thus, we infer from Corollary 3.3 that

B[x]/J (B[x])

[D,D]
∈ K.

Hence B[x]/J (B[x]) ∈ K and by J (B[x]) ∈ K also B[x] ∈ K follows. Moreover,
using the fact that the Jacobson radical has the Amitsur property, we have

(

B

B ∩ J (B[x])

)

[x] ∼=
B[x]

(B ∩ J (B[x])[x]
=

B[x]

J (B[x])
⊳

C

J (B[x])
∈ SJ ,

and so (B/(B ∩ J (B[x]))[x] ∈ SJ . Thus, taking into account that B ∈ N , there
exists a nonzero homomorphic image E of (B/B ∩ J (B[x]))[x] such that
E ∈ P ∩ hQ ⊆ P ∩ ℓ. Hence E /∈ K, contradicting B[x] ∈ K. �

A finitely generated nil ring L is said to be strongly nil, if

i) L can be embedded into a ring A as a left ideal,

ii) A = L + K where K is a finitely generated nil left ideal of A and L ∩K = 0,

iii) A is generated by two nilpotent elements x ∈ L and y ∈ K.

Theorem 3.5. Köthe’s Problem has a positive solution if and only if L[x] ∈ K for

every strongly nil ring L.

Proof. Suppose that L[x] ∈ K for every strongly nil ring L, but Köthe’s problem
has a negative solution. Then, as is well-known (cf. Krempa [5] and Sands [8]),
there exists a nil ring B such that the 2 × 2 matrix ring M2(B) is not nil. Hence

there exists an element

(

a b
c d

)

∈ M2(B) which is not nilpotent. Nevertheless, the

elements x =

(

a 0
c 0

)

and

(

0 b
0 d

)

are nilpotent, as one readily sees. Let A denote

the subring of M2(B) generated by x and y, and L and K the left ideals of A
generated by x and y, respectively. Obviously, L as a ring is generated by elements
yixk (i ≥ 0, k ≥ 1) and K is generated by xkyi (k ≥ 0, i ≥ 1). Since x and y are
nilpotent elements, both L and K are finitely generated. Clearly A = L + K and
L ∩ K = 0. Thus both L and K are strongly nil rings, and so by the assumption
L[x] ∈ K and K[x] ∈ K. Hence by Proposition 2.1 (ii) we have L[x] ∈ J , K[x] ∈ J ,
and therefore A[x] = (L + K)[x] = L[x] + K[x] ∈ J . But then A is a nil ring, a
contradiction.

The opposite implication is obvious. �
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4 Radicals in [J , M]

Seeking for a positive solution of Köthe’s Problem, it is of interest to find radicals
γ for which A ∈ N implies A[x] ∈ γ and γ is “close” to J . Sakhajev [7], however,
states that Köthe’s Problem has a negative solution. Searching for a counterexample,
one has to find a nil ring A such that A[x] /∈ γ where γ is a possibly large radical in
the interval [J ,M]. The main goal of this section is to construct a rather big radical
Ξ such that J ⊂ Ξ ⊂ M.

McConnell and Stokes [6] considered the following generalization of the Jacobson
radical class

K = {A | (A, ◦) is a simple semigroup}

where ◦ denotes the adjoint operation a ◦ b = a + b + ab and simplicity means that
the semigroup has no proper ideals. In [6] it was proved, among others, that

(1) K is a non-hereditary radical;

(2) J ⊂ K ⊂ G and J = K ∩ B;

(3) Köthe’s problem has a positive solution if and only if A ∈ N implies A[x] ∈ K.
Notice that by (2), (3) requires seemingly less than Krempa’s criterion A ∈ N ⇒

A[x] ∈ J . Moreover, looking at the original definition of K in [6], one sees that K is

a polynomial but not a multiplicative radical in the sense of Drazin and Roberts [3].

Proposition 4.1. K ∈ [ℓ ∩ J ,K].

Proof. By (2) the containment ℓ ∩ J ⊂ K is clear. We show that J ∩ Q = K ∩Q.
Let A[x] ∈ K ∩ Q. Then by [1] we have A[x] ∈ B, and so A[x] ∈ K ∩ B = J . Thus
K∩Q ⊆ J ∩Q. The opposite inclusion is trivial. Applying Proposition 2.2 (iii), we
get that K ⊆ M and also K ⊆ K. �

For a radical γ we consider the classes

µγ = {A ∈ Sγ | A is a prime ring with a minimal left ideal}

and

νγ =

{

A ∈ Sγ

∣

∣

∣

∣

every nonzero prime homomorphic image of A

which is in Sγ, has no minimal left ideals

}

.

Proposition 4.2. If γ is a special radical, then γ = U(µγ ∪ νγ) = Uµγ ∩ Uνγ.

Proof. The inclusion γ ⊆ U(µγ∪νγ) is obvious. For proving U(µγ∪νγ) ⊆ γ, suppose
the contrary. Then there exists a ring A ∈ U(µγ∪νγ)\γ. Since γ is a special radical,
A has a nonzero prime homomorphic image B ∈ Sγ. Certainly B /∈ νγ . Hence B
has a nonzero prime homomorphic image C in Sγ which has a minimal left ideal.
Thus C ∈ µγ , a contradiction.

The proof of U(µγ ∪ Uνγ) = Uµγ ∩ Uνγ is straightforward. �

Let m stand for the class of all subdirectly irreducible rings with minimal left
ideals. Then in view of Proposition 4.2 the heart H(A) of any A ∈ m has a minimal
left ideal, and so by the Litoff Theorem H(A) is a locally matrix ring. Hence
H(A) contains a nonzero idempotent for every A ∈ m. Moreover the Weyl algebra
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W = Q〈x, y〉 of rational polynomials with non-commuting indeterminates subject
to xy − yx = 1 is a simple ring with unity element which does not contain minimal
left ideals. From these considerations we conclude that B ⊂ Um.

Let ̺ and δ stand for the radicals introduced before Proposition 3.2, and put
κ = B ∩ u ∩ ̺ ∩ δ.

Proposition 4.3. ([9, Theorem 2.9]) If A ∈ N , then A[x] ∈ κ.

We shall denote by Ξ the upper radical class of the class

π = {A | A is an accessible subring of a primitive ring in κ}.

Proposition 4.4. K ⊂ Ξ 6⊆ U{S} for every simple ring S with unity element.

Proof. Suppose that K 6⊆ Ξ and there exists a ring A ∈ K\Ξ. Then A has a nonzero
primitive homomorphic image B in π ∩ K. Since κ ⊂ B and the hereditariness of B
implies π ⊂ B, by B ∈ K we get that B ∈ K ∩ B = J , contradicting the primitivity
of B. Thus K ⊆ Ξ. The left ideal L = Wy of the Weyl algebra W is a simple domain
without nonzero idempotents, as it is well known. So L ∈ B∩SJ and L /∈ u. Hence
L /∈ J = K ∩ B and L ∈ Ξ follow, implying L ∈ Ξ \ K and K ⊂ Ξ.

Since every simple ring with unity element is in Ξ, we have Ξ 6⊆ U{S}. �

Theorem 4.5. If A is a nil ring and A[x] ∈ Ξ, then A[x] ∈ J .

Proof. Since A is a nil ring, by [1] we have A[x] ∈ B ⊂ Um.

We shall show that A[x] ∈ Uνγ . Assume that A[x] /∈ Uνγ . Then A[x] has a
nonzero homomorphic image B in SJ , and so B has a nonzero primitive homomor-
phic image C. By Proposition 4.3 we have A[x] ∈ κ and also C ∈ κ. Hence A[x] /∈ Ξ,
a contradiction. Thus

A[x] ∈ Um ∩ UνJ ⊆ UµJ ∩ UνJ = J

in view of Proposition 4.2. �

To attempt the finding of an explicit counterexample, the following may be
helpful.

Corollary 4.6. The following assertiong are equivalent:

i) Köthe’s Problem has a positive solution;

ii) A[x] ∈ Ξ for every nil ring A;

iii) ℓ(A[x]) = Ξ(A[x]) for every nil ring A.

Proof. i)⇐⇒ii) If Köthe’s Problem has a positive solution, then we have

A[x] ∈ J ⊂ Ξ for every nil ring A.

Suppose that A[x] ∈ Ξ for every nil ring. Then by Theorem 4.5 we have A[x] ∈ J .

ii)⇐⇒iii) This is obvious by Theorems 2.4 and 4.5. �



84 S. TUMURBAT, R. WIEGANDT

References

[1] Beidar K.I., Fong Y., Puczy lowski E.R. A polynomial ring over a nil ring cannot

be homomorphically mapped onto a ring with nonzero idempotents. J. Algebra, 2001, 238,
p. 389–399.

[2] Beidar K.I., Puczy lowski E.R., Wiegandt R. Radicals and polynomial rings. J. Austral.
Math. Soc., 2002, 71, p. 1–7.

[3] Drazin M.P., Roberts M.L. Polynomial, multiplicative and special radicals. Comm. in Al-
gebra, 2000, 28, p. 3073–3093.

[4] Gardner B.J., Wiegandt R. Radical theory of rings. Marcel Dekker, 2004.

[5] Krempa J. Logical connections among some open problems in non-commutative rings. Fund.
Math., 1972, 76, p. 121–130.

[6] McConnell N.R., Stokes T. Rings having simple adjoint semigroup. Contemporary Math.,
2001, 273, p. 203–208.

[7] Sakhajev I.I. Negative solution hypothesis of Koethe and some problems connected with it.

Abstract of Talks. Algebra Conference Venezia, 2002, p. 37–38.

[8] Sands A.D. Radicals and Morita contexts. J. Algebra, 1973, 24, p. 335–345.

[9] Tumurbat S. The radicalness of polynomial rings over nil rings. Math. Pannonica, 2002, 13,
p. 191–199.

S. Tumurbat
Department of Algebra
University of Mongolia
P.O. Box 75, Ulaan Baatar 20
Mongolia
E-mail: stumurbat@hotmail.com

R. Wiegandt
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