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Abstract. We consider exponent matrices and investigate their connections with
tiled orders and quivers, finite partially ordered sets and doubly stochastic matrices.
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1 Introduction

Exponent matrices appeared in the study of tiled orders over discrete valuation
rings. Many properties of such orders are formulated using this notion. We think
that such matrices are of interest in them own right, in particular, it is convenient
to write finite partially ordered sets (posets) and finite metric spaces as special
exponent matrices.

Note that when we defined a quiver Q(E) of a reduced exponent matrix E , E
corresponds to a reduced tiled order Λ, a matrix E(1) corresponds to a Jacobson
radical R of Λ, and E(2) corresponds to R2. Then the adjacency matrix [Q] =
E(2) − E(1) defines a structure of the Λ-bimodule V = R/R2.

Note that investigations on tiled orders over discrete valuation rings and finite
posets are discussed in [10]. The bibliography about tiled orders see in [2] and [3].

2 Quivers

We recall basic facts about quivers and related topics. Following P. Gabriel a
finite directed graph Q is called a quiver.

Definition 2.1. A quiver Q without multiple arrows and multiple loops is called a
simply laced quiver.

Denote by V Q = {1, . . . , s} the set of all vertices of Q and by AQ the set of
its all arrows. We shall write Q = {AQ, V Q}. Denote by 1, . . . , s the vertices of a
quiver Q and assume that we have qij arrows beginning at the vertex i and ending
at the vertex j. The matrix

[Q] =









q11 q12 . . . q1s

q21 q22 . . . q2s

. . . . . . . . . . . .
qs1 qs2 . . . qss








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is called the adjacency matrix of Q.

Obviously, a quiver Q is simply laced if and only if [Q] is a (0, 1)-matrix.

Let Q be a quiver. Usually we will denote the vertices of Q by the numbers
1, 2, . . . , s. If an arrow σ connects a vertex i with a vertex j then i is called its start

vertex and j its end vertex. This will be denoted as σ : i → j. A loop at the vertex
j is an arrow such that the start vertex j coincides with the end vertex j.

A path of the quiver Q from a vertex i to a vertex j is an ordered set of k arrows
{σ1, σ2, ..., σk} such that the start vertex of each arrow σm coincides with the end
vertex of the previous one σm−1 for 1 < m ≤ k, and moreover, the vertex i is the
start vertex of σ1, while the vertex j is the end vertex of σk. The number k of these
arrows is called the length of the path.

The start vertex i of the arrow σ1 is called the start of the path and the end
vertex j of the arrow σk is called the end of the path. We shall say that the path
connects the vertex i with the vertex j and it is denoted by σ1σ2...σk : i → j.

Now we shall give a definition of a diagram Q(P ) of a finite poset P .

Definition 2.2. ([1], Ch.1, §3). By ”a covers b” in a poset P , it is meant that
a > x > b for no x ∈ P .

Definition 2.3. ([4], p. 233, see also [6]). Let P = {α1, α2, . . . , αn} be a finite
poset with an ordering relation ≤. The diagram of P is the quiver Q(P ) with the set
of vertices V Q(P ) = {1, . . . , n} and the set of arrows AQ(P ) such that in AQ(P )
there is an arrow σ : i → j if and only if αj covers αi.

Definition 2.4. ([7], §8.4). A quiver without oriented cycles is called an acyclic

quiver.

Definition 2.5. An arrow σ : i → j of an acyclic quiver Q is called extra if there
exists a path from i to j of length greater than 1.

Theorem 2.6. ([6], [4], §7.7). Let Q be an acyclic simply laced quiver without extra
arrows. Then Q is the diagram of some finite poset P . Conversely, the diagram
Q(P ) of a finite poset P is an acyclic simply laced quiver without extra arrows.

3 Exponent matrices

Denote by Mn(Z) the ring of all square n × n-matrices over the ring of integers
Z. Let E ∈ Mn(Z).

Definition 3.1. We call a matrix E = (αij) an exponent matrix if αij + αjk ≥ αik

for i, j, k = 1, . . . , n and αii = 1, . . . , n for i = 1, . . . , n. These relations are
called ring inequalities. An exponent matrix E is called reduced if αij + αji > 0 for
i, j = 1, . . . , n.

Let E = (αij) be a reduced exponent matrix. Set E(1) = (βij), where βij = αij

for i 6= j and βii = 1 for i = 1, . . . , n, and E(2) = (γij), where γij = min
1≤k≤n

(βik +

βkj). Obviously, [Q] = E(2) − E(1) is a (0, 1)-matrix.
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Definition 3.2. The quiver Q(E) shall be called the quiver of the reduced exponent

matrix E.

Definition 3.3. A strongly connected simply laced quiver shall be called admissible

if it is a quiver of a reduced exponent matrix.

Definition 3.4. A reduced exponent matrix E = (αij) ∈ Mn(Z) shall be called
Gorenstein if there exists a permutation σ of {1, 2, . . . , n} such that αik + αkσ(i) =
αiσ(i) for i, k = 1, . . . , n.

The permutation σ is denoted by σ(E). Notice that σ(E) for a reduced Gorenstein
exponent matrix E has no cycles of the length 1.

Definition 3.5. We shall call two exponent matrices E = (αij) and Θ = (θij)
equivalent if they can be obtained from each other by transformations of the following
two types:

(1) subtracting an integer from the i-th row with simultaneous adding it to the
i-th column;

(2) simultaneous interchanging of two rows and the equally numbered columns.

Proposition 3.6. [3]. Suppose that E = (αij) and Θ = (θij) are exponent matrices
and Θ is obtained from E by a transformation of type (1). Then [Q(E)] = [Q(Θ)].
If E is a reduced Gorenstein exponent matrix with permutation σ(E), then Θ is also
reduced Gorenstein with σ(Θ) = σ(E).

Proposition 3.7. [3]. Under transformations of the second type the adjacency
matrix [Q̃] of Q(Θ) changes according to the formula: [Q̃] = P T

τ [Q]Pτ , where [Q] =
[Q(E)]. If E is Gorenstein then Θ is also Gorenstein and for the new permutation
π we have: π = τ−1στ , i.e., σ(Θ) = τ−1σ(E)τ .

Definition 3.8. The index (in E) of a reduced exponent matrix E is the maximal
real eigenvalue of the adjacency matrix [Q(E)] of Q(E).

It follows from Proposition 3.6 and Proposition 3.7 that indices of equivalent
reduced exponent matrices coincide.

Theorem A. The matrix [Q] = E(2) − E(1) is the adjacency matrix of the strongly
connected simply laced quiver Q = Q(E).

Proof. [Q] is a (0, 1)-matrix, then it is the adjacency matrix of a simply laced
quiver.

We shall show that [Q] is a strongly connected quiver. Suppose the contrary.
It means that there is no path from the vertex i to the vertex j in Q. Denote by
V Q(i) = V1 the set of all vertices k of Q such that there exists a path beginning at
the vertex i and ending at the vertex k. It is obviously that V2 = V Q \ V Q(i) 6= 0
(j ∈ V (Q) \ V (Q)(i)). Consequently, V Q = V1 ∪ V2 and V1 ∩ V2 = 0. It is clear
that there are no arrows from V1 to V2. One can assume that V1 = {1, . . . ,m} and
V2 = {m + 1, . . . , s}. It is obvious, that a simultaneous permutation of rows and
columns will take place in the exponent matrix E . Moreover, under transformations
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of the first type, we can make the elements at the first row of E equal zero, i.e.,
α1p = 0 for p = 1, . . . , s. So, αpq ≥ 0 for p, q = 1, . . . , s and

[Q] =

(

* 0

* *

)

,

E =

(

E1 *

* E2

)

,

where E1 ∈ Mm(Z), E2 ∈ Ms−m(Z). With the exponent matrix E2 we connect a
poset PE2 = {m + 1, . . . , s} with an ordering relation i ≤ j if and only if αij = 0.
One can consider that m + 1 ∈ PE2 is the minimal element. Then αim+1 > 0
for i > m + 1. Since, q1m+1 = 0, then there exists k (2 ≤ k ≤ m) such that
α1m+1 = α1k + αkm+1. Simultaneously interchanging the 2-nd and k-th columns
and the 2-nd and k-th rows of E , we obtain that α2m+1 = 0. Since q2m+1 = 0, again
obtain α2m+1 = 0 = α2k+α2m+1 for 3 ≤ k ≤ m, i.e., one can consider that α23 = 0
and α3m+1 = 0. The elements of the matrix E(1) β31 = α31, β32 = α32, β33 = 1 are
nonzero. Again, q3m+1 = 0 and α3m+1 = 0 = α3k + αkm+1 for 4 ≤ k ≤ m. Hence,
α4m+1 = 0. Continuing this process we have that α12 = α23 = . . . = αm−1m = 0
and αim+1 = 0 for i = 1, . . . ,m, consequently a matrix E1 is down triangular, and
all elements βm1, . . . , βmm are natural integers. So, qmm+1 = min(βmk + βkm+1) −
αmm+1 = 1 − 0 = 0. We obtained a contradiction. Theorem is proved. �

4 Gorenstein exponent matrices and entropic quasigroups

In general case a Latin square [5] of order n is a square with rows and columns
each of which is a permutation of a set S = {s1, . . . , sn}. Every Latin square is a
Cayley table of a finite quasigroup. In particular, the Cayley table of a finite group
is the Latin square. As a set S we will consider S = {0, 1, . . . , n − 1}.
Example 1. The Cayley table of the Klein four-group (2) × (2) can be written in
such form:

K = K(4) =









0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0









.

Then K(4) is a reduced Gorenstein exponent matrix with permutation σ =
σ(K(4)) = (14)(23). Obviously,

K(2) =









2 2 3 3
2 2 3 3
3 3 2 2
3 3 2 2









and
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[Q(K)] = K(2) − K(1) =









1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1









= 3 · P1,

where P1 is a doubly stochastic matrix, and Q(K) is

��
��

t

?

6

��
��

t-�

-� t?

6

��
��t

��
��

Obviously, in K = 3.

Definition 4.1. A real non-negative s × s-matrix P = (pij) is doubly stochastic if
∑s

j=1 pij = 1 and
∑s

i=1 pij = 1 for any i, j = 1, . . . , s.

Definition 4.2. (see [8], p. 140). A quasigroup Q which satisfies the identity
(xu)(vy) = (xv)(uy) for x, y, u, v ∈ Q is called entropic.

Example 2. ([8], p. 141, V. 2.2.1. Example). Let Q(5) = {0, 1, 2, 3, 4} be the
quasigroup with the following Cayley table

0 0 1 2 3 4

0 0 4 3 2 1
1 1 0 4 3 2
2 2 1 0 4 3
3 3 2 1 0 4
4 4 3 2 1 0

It is clear, that Q(5) is an entropic quasigroup. The Cayley table

E(5) =













0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0













of Q(5) is a reduced Gorenstein exponent matrix with σ(E(5)) = (12345).

Obviously,
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[Q(E(5))] =













1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1













= 2P2,

where P2 is a doubly stochastic matrix, and in E(5) = 2.

Definition 4.3. A reduced Gorenstein exponent matrix E is called cyclic if σ(E) is
a cycle.

Remark. Note, that a reduced tiled order Λ is Gorenstein if and only if its reduced
exponent matrix E(Λ) is Gorenstein.

Hence, in view of the Theorem 3.4 [9] we have such theorem.

Theorem B. Let E be a cyclic reduced Gorenstein exponent matrix. Then [Q(E)] =
λP , where λ is a positive integer and P is a doubly stochastic matrix.

For the Cayley table

E(n) =

















0 n − 1 n − 2 . . . 2 1
1 0 n − 1 . . . 3 2
2 1 0 . . . 4 3

. . . . . . . . . . . . . . . . . .
n − 2 n − 3 n − 4 . . . 0 n − 1
n − 1 n − 2 n − 3 . . . 1 0

















of the entropic quasigroup Q(n), we have [Q(E(n))] = En + J−
n (0) + e1n, where

J−
n (0) = e21 + . . . + enn−1 is the lower nilpotent Jordan block.

The next definition is given in ([9], Section IV).

Definition 4.4. A finite quasigroup Q defined on the set S = {0, 1, . . . , n − 1} is
called Gorenstein if its Cayley table C(Q) = (αij) has a zero main diagonal and
there exists a permutation σ : i → σ(i) for i = 1, . . . , n such that αik+αkσ(i) = αiσ(i)

for i = 1, . . . , n.

If σ is a cycle then G is a cyclic Gorenstein quasigroup.

Proposition 4.5. The quasigroup Q(n) is Gorenstein with permutation σ =
(12 . . . n), i.e. Q(n) is a cyclic Gorenstein quasigroup.

Proof. Obvious.

Theorem 4.6. For any permutation σ ∈ Sn without fixed elements there exists a
Gorenstein reduced exponent matrix E with permutation σ(E) = σ.

Proof. Suppose that σ has no cycles of length 1 and decomposes into a product of
non-intersecting cycles σ = σ1 · · · σk, where σi has length mi. Denote by t the least
common multiple of the numbers m1 − 1, . . . ,mk − 1.
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Consider the matrix

E(m1, . . . ,ms) =















t1E(m1) tUm1×m2 tUm1×m3 . . . tUm1×mk

0 t2E(m2) tUm2×m3 . . . tUm2×mk

0 0 t3E(m3) . . . tUm3×mk

. . . . . . . . .
. . . . . .

0 0 0 . . . tkE(mk)















,

where tj = t
mj−1 , Umi×mj

is an mi × mj - matrix whose entries equal 1; E(m) =

(εij), εij =

{

i − j, if i ≥ j;
i − j + m, if i < j.

Let us remark that εij + εjσ(i) = εiσ(i) = m − 1 for all i, j.
Evidently, E(m1, . . . ,ms) is the reduced Gorenstein exponent matrix with per-

mutation π(A) = (123 . . . m1)(m1 + 1 . . . m1 + m2) · · · (m1 + m2 + · · · + mk−1 +
1 . . . m1 + m2 + · · · + mk−1 + mk).

Since the permutations σ and π have the same type, these permutations are
conjugate, i.e., there exists a permutation τ such that σ = τ−1π(A)τ .

Consequently, by Propositions 3.6 and 3.7, the matrix P T
τ E(m1, . . . ,ms)Pτ is the

reduced Gorenstein exponent matrix with permutation σ(E) = σ. �

In conclusion of this section we formulate the following question.
Suppose that a Latin square E [5] defined on S = {0, 1, . . . , n−1} is an exponent

matrix which is doubly symmetric, that is E is symmetric with respect to the main
diagonal and is also symmetric with respect to the secondary diagonal. Suppose also
that the first row of E is {0 1 2 . . . n − 1}.

Is it true that E is necessarily the Cayley table of an elementary abelian 2-group?

5 Reduced exponent (0, 1)-matrices and finite partially

ordered sets

With any finite partially ordered set (poset) P we relate a reduced exponent
(0, 1)-matrix EP = (λij) by the following way: λij = 0 ⇔ i ≤ j, otherwise λij = 1.

It is easy to see that EP is indeed a reduced exponent matrix.
Conversely, a reduced (0, 1)-matrix E = (λij) defines the finite poset PE by the

rule: i ≤ j if and only if λij = 0, and PEP
= P .

Denote by Pmax (resp. Pmin) the set of the maximal (resp. minimal) elements
of P and by Pmax × Pmin their Cartesian product.

From ([2], Theorem 6.12) we have

Theorem C. The quiver Q(EP ) can be obtained from the diagram Q(P ) by adding
the arrows σij for all (pi, pj) ∈ Pmax × Pmin.

Definition 5.1. We shall say that finite posets S and T are Q-equivalent if reduced
exponent (0, 1)-matrices ES and ET are equivalent.

Definition 5.2. An index in P of a finite poset P is the maximal real eigen-value
of the adjacency matrix [Q(EP )] of Q(EP ).
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Now we shall give the list of indexes of posets with at most four elements.

I. (1) = {•}, in (I, 1) = 1.

II. (1) =







•
|
•







, in (II, 1) = 1; (2) = {• •}, in(II, 2) = 2.

III. (1) =























•
|
•
|
•























, in (III, 1) = 1;

(2) =







•
� �

• •







, (3) =







• •
� �

•







, in (III, 2) =

in(III, 3) =
√

2;

(4) =







•
|

• •







, in (III, 4) = 1+
√

5
2 ; (5) = {• • •}, in(III, 5) = 3.

IV. (1) =







































•
|
•
|
•
|
•







































, in (IV, 1) = 1; (2) =























•
� �

• •
� �

•























, in(IV, 2) =

3
√

2;

(3) =























• •
� �

•
|
•























, (4) =























•
|
•

� �

• •























, in (IV, 3) =

in(IV, 4) = 3
√

2;

(5) =























•
|

• •
� |

•























, (6) =























•
� |

• •
|
•























; χ5,6(x) = x(x3 − x − 1) and

1.32 < in (IV, 5) = in (IV, 6) < 1.33;
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(7) =







• •
| |
• •







, in (IV, 7) =
√

2; (8) =























•
|
•
|

• •























, χ8(x) = x(x3 − x2 − 1)

and

1.46 < in (IV, 8) < 1.47;

(9) =







• •
| � |
• •







, in (IV, 9) =
√

3;

(10) =







•
� | �

• • •







, (11) =







• • •
� | �

•







, in(10) =

in(11) =
√

3;

(12) =







•
� �

• • •







, (13) =







• • •
� �

•







,

in (IV, 12) = in (IV, 13) = 2;

(14) =







• •
| �� |
• •







, in(IV, 14) = 2;

(15) =







•
|

• • •







, χ15(x) = x2(x2 − 2x − 1) and in (IV, 15) = 1 +
√

2;

(16) = {• • • •}, in (IV, 16) = 4.

Note that posets (IV, 2), (IV, 3) and (IV, 4) are Q-equivalent. For posets N =
(IV, 9) and F4 = (IV, 11) we have in N = in F4 =

√
3, but N and F4 are non-Q-

equivalent.
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