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Transfer properties in radical theory

B.J. Gardner

Abstract. A functor is said to reflect radical classes if under this functor the inverse
image of a radical class is always a radical class.Prototypical examples of such functors
include polynomial and matrix functors and various forgetful functors.This paper is
for the most part a survey of known results concerning radical reflections,but there are
a few new results,including a generalization to right alternative rings of a well known
result of Andrunakievici on upper radicals of simple associative rings.

Mathematics subject classification: 18E40,16N80,16S90.
Keywords and phrases: Radical,category suitable for radical theory,multioperator
group, right alternative ring.

A functor φ : C → D is said to reflect radical classes if for every radical class R in
D, the class R∗ = φ−1(R) = {A : φ(A) ∈ R} is a radical class in C. This notion was
studied systematically in the ’70s, but there are many examples in the earlier and
later literature, and the concept has been investigated by (in no particular order, and
with apologies to those overlooked) Amitsur, Ortiz, Gardner, Stewart, Puczy lowski,
Sierpińska, Beattie, Fang, Krempa, Skosyrskii, Widarma, Thedy, McCrimmon, Ar-
nautov, Vodinchar, Slin’ko and Soweiter. (This joke is due to Georges Perec.) From
the number of talks at the Chişinău conference which mentioned problems, questions
and results which concern examples of radical reflections, it seems that the idea has
considerable contemporary relevance for radical theorists.

There are a number of significant ways in which the study of radical reflections
(and other methods for transferring radicals from one context to another) can con-
tribute to radical theory.

• As a source of examples.
• By describing interactions between radicals and algebraic constructions ( ma-

trix rings, polynomial rings and so on).
• By generalizing particular radicals to new settings ( e.g. finding the ”correct

version” of local nilpotence for varieties of non-associative rings).
• By extending known results concerning radicals in one context to analogous

results in another (e.g. existence of hereditary semi-simple classes, lattice pro-
perties ).

• By transferring a ”traditional” radical theory to a non-standard setting, per-
haps comparing the transferred theory with some ad hoc version of radical theory
set up in the latter.

• By transferring some kind of radical theory to a context where no obvious
one exists (as when a category ”suitable for radical theory” is equivalent to an
”unsuitable” one and an equivalence effects the transfer).
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In what follows we shall give examples to illustrate all of these possibilities.
While on the whole we are presenting a survey of known results, there are a few
novelties. We do not work at a fixed level of generality. For much of the time we
work with multioperator groups for the sake of definiteness. Laci Márki suggested
that semi-abelian categories in the sense of [1] might provide an appropriate context.
Certainly the group-based structures of [2] are sometimes too general (see Example
1.6). On the whole our terminology is consistent with [2] and [3]. In some of the
examples, categories are given self-explanatory bold-faced names, but on occasion
they are also referred to more informally.

A preliminary version of part of this paper was contained, together with some
other topics, in a talk to the Pat Stewart Memorial Session of the 2002 APICS
mathematics meeting in Sackville, New Brunswick.

1 Reflected Radicals

Let C and D be varieties of multioperator groups. We say that a functor φ : C →
D reflects radical classes if for every radical class R in D, the class R∗ = φ−1(R) is
a radical class in C.

Theorem 1.1. (See [4]). If φ is exact and preserves unions of chains of normal
subobjects, then φ reflects radical classes.

We list some examples of functors satisfying the conditions of 1.1. In each case
the action of the given functor on morphisms is well known.

Example 1.2.

(i)Rings → Rings; A 7→ A[X].
(ii)Rings → Rings; A 7→ [S] (semigroup ring; fixed semigroup S).
(iii)Rings → Rings; A 7→Mn(A)(matrix ring, fixed n).
(iv)Rings → Jordan Rings; (A,+, ·) 7→ (A,+,⊙) where a⊙ b = ab+ ba.
(v)Rings → Lie Rings;(A,+, ·) 7→ (A,+, [∗, ∗]).
(vi)Rings → Abelian Groups; (A,+, ·) 7→ (A,+).
(vii)K−Algebras → Rings (for a commutative ring K with identity); forgetful

functor.
(viii)Rings → Rings;A 7→ Aop (opposite ring).
(ix)Differential Rings → Rings; forgetful functor.
(x)Rings with Involution → Rings; forgetful functor.
(xi)Quasiregular Rings → Groups; (A+, ·) 7→ (A, ◦).

We shall see later that neither of the conditions of 1.1 is necessary for the reflec-
tion of radical classes, but as the following few examples show, neither is sufficient
either.

Example 1.3. (See [4].) The functor from Rings to Rings which associates
with each ring A the power series ring A[[X]] is exact but does not reflect radi-
cal classes.(For some information on radicals and power series, see [5].)
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Example 1.4. The functor φ : Rings → Rings, where φ(A) = A2 for each A and
φ acts on homomorphisms by restriction, is not exact: if

0 → I → A→ A/I → 0

is exact, then so is

0 → I ∩A2 → A2 → A2/I ∩A2 ∼= (A2 + I)/I = (A/I)2 → 0

but in general I2 and I ∩ A2 can be quite different. For instance, if I is a ring
with I2 = 0 and A = I ∗ Z is the standard unital extension, then I2 = 0 and
I ∩ A2 = I ∩ A = I. However, as one shows easily, φ preserves unions of chains of
ideals. Let R be the (radical)class of boolean rings. If R is a ring with R3 = 0 6= R2,
then trivially(R2)2 ∈ R and (R/R2)2 = 0 ∈ R so R2 and R/R2 ∈ R∗. But R 6∈ R∗

as 0 6= R2 6∈ R. Thus R∗ is not a radical class. (Note that φ preserves quotients.)

Example 1.5. Let φ : Abelian Groups → Abelian Groups assign the socle and
act on homomorphisms in the usual way. If

0 → H → G→ G/H → 0

is exact, then so is

0 → φ(H) → φ(G) → φ(G)/φ(H) → 0

but if, e.g., H = Z(p) and G = Z(p∞), then φ(G)/φ(H) = 0, while φ(G/H) ∼=
φ(Z(p∞) ∼= Z(p). On the other hand, if {Hλ : λ ∈ Λ} is a chain of subgroups of G,
then

φ(
⋃

λ∈Λ

Hλ) = {x ∈
⋃

λ∈Λ

Hλ : 0(x)is square-free} =
⋃

λ∈Λ

φ(Hλ).

Let Tp be the (radical) class of abelian p-groups, q a prime 6= p. Then φ(Z) = 0 ∈ Tp

but φ(Z/qZ) = Z/qZ 6∈ Tp, so Z ∈ T ∗
p while Z/qZ 6∈ T ∗

p . Hence φ does not reflect
radical classes. (Note that φ takes subgroups to subgroups.)

Though we shall not seriously address the problem of characterizing the functors
which reflect radical classes, we note one further pertinent example of one which
doesn’t. One of our categories is not a variety of multioperators here, but the functor
is a forgetful one and provides some contrast with some of our cited examples in 1.2.

Example 1.6. Let φ be the forgetful functor from Hausdorff Topological

Groups to Abelian Groups (forget the topology). Let R be a radical class of
abelian groups, {Aλ : λ ∈ Λ} ⊆ R. Give each Aλ the discrete topology and let P
denote the cartesian product of the Aλ with the product topology. Then

⊕
λ∈ΛAλ

with the subspace topology from P is in R∗, so if R∗ is a radical class, R∗(P ) is
a closed subgroup containing

⊕
λ∈ΛAλ. But the latter is dense, so we must have

P ∈ R∗. Hence if R∗ is a radical class, then R must be closed under direct products.
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Closure under direct products is not enough, however. For a prime p, let Q(p)
be the group {m/pn : m,n ∈ Z}. Let Dp be the (radical) class of p-divisible groups.
Let H be a torsion-free group of rank 2 with Dp(H) ∼= Q(p) and H/Dp(H) ∼= Q(q)
for a prime q 6= p. Then H has no elements of infinite q-height and Dp(H) is dense
in H for the q-adic topology. If D∗

p were a radical class it would have to contain H.
But H 6∈ Dp.

The analogous question for hausdorff topological rings (algebraic radicals) has
been treated in [6].

2 The Local Effect

Reflection of radical classes as thus far described is a global phenomenon. There
is also a local phenomenon, which we can illustrate by first observing that for some
ring radical classes R we have R(A[X]) = R(A)[X] for all A, and then asking, if
this equation is not universally valid but for some ring A we have R(A[X]) = I[X]
for some I ⊳ A, what is the nature of I?

We maintain the notation and assumptions of the previous section.

Lemma 2.1. Let φ satisfy the conditions of 1.1. If R is a radical class in D then
φ(R∗(A)) ⊆ R(φ(A)) for each A ∈ C.

Proof Since R∗(A) ∈ R∗ we have φ(R∗(A)) ∈ R. But
R∗(A) ⊳ A, so φ(R∗(A)) ⊳ φ(A).

Theorem 2.2. For φ : C → D as in Theorem 1.1, the following are equivalent for
A ∈ C. (i)R(φ(A)) = φ(R(A)); (ii)R(φ(A)) = φ(I) for some I ⊳ A.

Proof (ii)⇒(i):If R(φ(A)) = φ(I),where I ⊳ A, then φ(I) ∈ R, so I ∈ R∗ and hence
I ⊆ R∗(A). But then I ⊳R∗(A) so

R(φ(A)) = φ(I) ⊳ φ(R∗(A)).

The reverse inclusion follows from 2.1.

Corollary 2.3. For a ring A and a radical class R of rings, R(A[X]) = I[X] for
some I ⊳ A if and only if R(A[X]) = R∗(A)[X].

Example 2.4. (See [7].) Let C = D =the category of rings, φ(A) = Mn(A) for all A.
Then for every A and every R there is an ideal I of A for which R(Mn(A)) = Mn(I).
Thus

R(Mn(A)) = R(φ(A)) = φ(R∗(A)) = Mn(R∗(A)).

Example 2.5. (See [8].) Let φ be the forgetful functor from rings to abelian groups.
If R is any radical class of abelian groups, then for every G, R(G) is a fully invariant
subgroup of G. Hence for a ring A, R((A,+)) is a fully invariant subgroup of (A,+).
Since left and right multiplications are additive endomorphisms, R(A,+) is an ideal
of A, or, more precisely, R(A,+) = (I,+) for some I ⊳ A. this I must be R∗(A).
Thus R(A,+) = (R∗(A),+) for all R, A.
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Example 2.6. (See [9].) Let φ be the forgetful functor from algebras over a field
K to rings. For every radical class R of rings, R(A) is an algebra ideal of every
K-algebra A. Thus ”R(A) = R∗(A)”.

Example 2.7. (See [10].) For the functor φ from right alternative algebras over Q(2)
to Jordan algebras over Q(2) where the multiplication is replaced by a⊙ b = 1

2
(ab+

ba), if R is a non-degenerate radical of Jordan algebras (semi-simple algebras have no
strong zero- divisors) then the same is true of R∗, and (R∗(A),+,⊙) = R(A,+,⊙),
since R(φ(A)) = R(A,+,⊙) is (I,+,⊙) for an ideal I of A (for every A). This result
is used in [10] to transfer many standard radicals from Jordan to right alternative
algebras and show that they retain significant properties. (The same functor can
be used to define a substitute for local nilpotence in right alternative algebras [11].)
Analogous results for some other types of algebras are given in [12]. On the other
hand, the similar notion of reflection of radicals from Lie algebras seems not to have
attracted much attention.

The conditions of 2.2 are met (for a given A and R) when R(A) is ”highly
invariant”, maintaining normality when a richer, or at least different structure is
imposed (as in the passage from abelian groups to rings or from right alternative to
Jordan rings). In the cases of the polynomial and matrix functors, the conditions
correspond to ”well-behaved ideals”; e.g. ideals of matrix rings which have to be
matrix rings over ideals. This piece of unification is perhaps of some independent
interest.

3 Properties Preserved by the Lower Radical Construction

We consider a functor φ as in Section 1, but with C = D, and call a class K ⊆ C
a φ-invariant class if φ(A) ∈ K for all A ∈ K. We can then ask whether φ-invariance
is preserved by the lower radical construction in the sense indicated in the following
result.

Proposition 3.1. Let φ : C → C satisfy the conditions of Section 1. Let M be a
homomorphically closed subclass of C, L(M) its lower radical class. If M is φ-
invariant, then L(M) ⊆ L(M)∗ and L(M) is φ-invariant.

Proof If A ∈ M, then φ(A) ∈ M ⊆ L(M) so A ∈ L(M)∗. Thus M ⊆ L(M)∗ so
L(M) ⊆ L(M)∗. Hence for all B ∈ L(M) we have B ∈ L(M)∗, i.e. φ(B) ⊆ L(M).

Thus, e.g., if a class of (associative) rings is closed under formation of polynomial
rings, then so is its lower radical class ([13]; see [14] for the corresponding result for
Jordan rings). Likewise a class closed under formation of n × n matrix rings forms
a lower radical class with the same property.

The following property is also worth looking at.

A ∈ M and φ(A) ∼= φ(B) ⇒ B ∈ M−−−−−−−−(†)
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When is (†) preserved under the lower radical construction? We have just a little
information about this.

Proposition 3.2. If φ is a monoid ring functor (φ(A) = A[S], S fixed) from rings
to rings, and if M is homomorphically closed and φ-invariant, then M satisfies (†).

Proof If A ∈ M and A[S] ∼= B[S], then by φ-invariance, A[S] ∈ M, so B[S] ∈ M
and thus B ∈ M.

Using 3.1 and 3.2, we get

Corollary 3.3. If M is homomorphically closed and φ-invariant and satisfies (†),
then L(M) satisfies (†).

Example 3.4. When φ is the forgetful functor from rings to abelian groups, (†) need
not be preserved under the lower radical construction. For instance {GF (p),Z(p)0}
satisfies (†) but its lower radical class excludes GF (p2), though this field has the
same additive group as GF (p) ⊕ Z(p)0.

4 Categorical Equivalence

If C and D are varieties of multioperator groups, and φ : C → D is an equivalence,
with ψ : D → C the complementary equivalence, then for a radical class R in D we
denote φ−1(R) byR∗ as before, and for a radical class U in C we let ψ−1(U) = U#.
As φ and ψ preserve limits and colimits, R∗ and U# are always radical classes. Now

R∗# = {D ∈ D : ψ(D) ∈ R∗} = {D ∈ D : φψ(D) ∈ R},

so, since D ∼= φψ(D) we have R∗# = R for every radical class R in D, and similarly
U#∗ = U for every radical class U in C. Thus we have

Proposition 4.1. A categorical equivalence φ between varieties C and D of multi-
operator groups induces a bijection R ↔ R∗ between radical classes in D and C.

It is easy to see that 4.1 has no converse; if F is a finite field and K an infinite
field, then in the categories of F− and K− vector spaces there are only the trivial
radical classes, but the categories are not equivalent since all pairs of non-zero K-
vector spaces have infinite Hom-sets but this is not so for F -vector spaces.

One feels that equivalent categories (of multioperator groups or not) should be
”radically the same”. It is possible for a category which supports some kind of radi-
cal theory to be equivalent to one which does not (at least not in any obvious sense).
In such circumstances it seems reasonable to use the equivalence to induce radical
notions in the second category. If there is already some kind of radical theory in the
second category, a comparison of the two competing versions may prove instructive.
For instance radical theory for modules over a ring R can be transferred easily to
the category of affine R-modules [15], or that of pointed R-modules. The categories
of affine and pointed modules over certain rings are equivalent to certain categories
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of quasigroups [16],[17]. We shall consider some of these module-quasigroup connec-
tions elsewhere. In the case of idempotent quasigroups, there is already a version of
radical theory [18], which contributes a further strand to this story. There are also
equivalences between categories of MV -algebras and l-rings and abelian l-groups
[19],[20],[21]. The l-structures are of course multioperator groups, but MV -algebras
are rather different. Would radical theory reflected to MV -algebras by these equiv-
alences produce anything interesting?

5 Transferring Radicals from a Subvariety

A rather different kind of functor from those treated hitherto enables us to reflect
radical classes to a variety from a subvariety. If the radical theory of the subvariety
is well understood, this technique may provide useful information about radicals in
the larger variety. We shall again work with multioperator groups.

For a subvariety V of a variety W, for each A ∈ W we let

A(V) =
⋂

{I : I ⊳ A,A/I ∈ V}.

If f : A→ B is a homomorphism in W and B/J is in V, then denoting the natural
map B → B/J by p, we have

A/Ker(pf) ∼= Im(pf) = (Im(f) + J)/J ⊆ B/J ∈ V,

so A(V) ⊆ Ker(pf) and so f(A(V)) ⊆ Ker(pf) = J . This being so for all such
J , we have f(A(V)) ⊆ B(V). Thus the correspondence A 7→ A(V) defines a func-
tor (subfunctor of the identity). Now (for f as above) we get a homomorphism
f̂ : A/A(V) → B/B(V) by defining f̂(a+A(V)) = f(a) +B(V) for each a ∈ A. This
makes a functor of the correspondence A 7→ A/A(V) (factor functor of the identity)
and this is the functor we shall use.

We shall denote by UV(), UW () the upper radical in V,W respectively.

Theorem 5.1. (See [22].) Let V be a subvariety of W. For a radical class R in
V let R∗ = {A ∈ W : A/A(V) ∈ R}. Then if R has semi-simple class S, we have
R∗ = UW(S). In particular, R∗ is a radical class in W.

(We note that no matter what W is, UW((S) exists, as S is a regular class in
both V and W.)

The transfer obtained is likely to be useful only if the classes R∗ are not too big.
For instance if W is the variety of alternative rings and V that of associative rings,
there are lots of Cayley-Dickson rings which must belong to every R∗.We impose
another condition and get a stronger conclusion than that of 5.1 which is useful.

Theorem 5.2. (See [22].) Let V,W be as in 5.1 and suppose further that
A(V)/A(V)(V) ∈ R (i.e. A(V) ∈ R∗) for every A ∈ W. Then

(i)R∗(A)/A(V) = R(A/A(V)) for all A ∈ V and
(ii)S is the semi-simple class of R∗.
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Here we have some possibility of extending a result concerning well-behaved
radicals from V to W, since some semi-simple classes in V remain semi-simple classes
in W, and there are properties of semi-simple classes which make for well-behaved
radicals. We give some illustrations of the situation described in 5.2.

Example 5.3. V is a semi-simple radical class in W if and only if A(V) = A(V)(V)
for every A ∈ W [23], i.e. A(V) ∈ {0}∗ = UW(V) for every A. If R is any radical
class in V, then each A(V) is in R∗ and the semi-simple class of R in V remains a
semi-simple class in W.

Example 5.4. If W is the class of all (not necessarily associative) rings, V the class
of associative rings, then in W the only hereditary semi-simple classes are those
corresponding to A-radicals [24] while all semi-simple classes in V are hereditary.
Hence only A-radicals (in W) satisfy the hypotheses of 5.2.

It is more convenient to have examples of the phenomenon in 5.2 where our
starting point is a radical class in W rather than in V.

Proposition 5.5. ([22])(Notation as in 5.2.) If U is a radical class in W and
A(V) ∈ U for all A ∈ W, then U = (U ∩ V)∗ and U , U ∩ V are related as R∗ and R
are related in (i),(ii) of 5.2.

Example 5.6. We illustrate 5.5 by considering the case where W is the class of
right alternative rings, V the class of alternative rings. By a result of Skosyrskii [25]
A(V), which is called the alternator of A, is contained in the McCrimmon radical of
A (cf. 2.7). The McCrimmon radical is the upper radical defined by the class of non-
degenerate rings, i.e. rings with no strong zero-divisors. For this example, ”ring”
always means ”ring in which division by 2 is possible”; in particular, characteristic 2
is avoided. Thus if U is any non-degenerate radical class in W (i.e. all U -semi-simple
rings are non-degenerate) then A(V) ∈ U . Hence, by 5.5, U (in W) and U ∩ V (in
V) have the same semi-simple class. In particular, non-degenerate radicals of right
alternative rings have hereditary semi-simple classes.

This can be improved.

Theorem 5.7. (See [22].) Let W be a variety, V a subvariety, U a hereditary radical
class in W such that A(V) ∈ U for all A ∈ W. If every radical class in V satisfies
ADS then every radical class T in W with U ⊆ T also satisfies ADS.

Now all radical classes of alternative rings satisfy ADS so we have

Corollary 5.8. (See [22].) Every non-degenerate radical class of right alternative
rings satisfies ADS.

We conclude with a more detailed result obtained similarly.

Theorem 5.9. Let M be a class of simple right alternative rings, U the upper
radical class defined by M (in the class of right alternative rings). The following
conditions are equivalent.
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(i) U is hereditary and has the intersection property with respect to M.
(ii) All rings in M are unital.

(This theorem was proved for associative rings by Andrunakievich [26] and can
be generalized to alternative rings by means of results of Suliński [27]. More recently,
Leavitt [28] has shown that for associative rings (ii) is equivalent to the intersection
property alone, and taking account of the fact that non-unital simple alternative
rings are associative, one can show straightforwardly that the stronger result is
valid in the alternative case too.)

Proof ¬ (ii)⇒ ¬ (i). If M contains a non-unital ring S, let S∗ be the ring obtained
form S by the adjunction of the identity of Q or Zp to match the characteristic
of S (so that S∗/S is isomorphic to the appropriate field). The only simple image
of S∗ is S∗/S. If S∗/S 6∈ M, then S∗ ∈ U but S 6∈ U , so U is not hereditary. If
S∗/S ∈ M, then S∗ is in the semi-simple class of U but is subdirectly irreducible
and non-simple, so that U does not have the intersection property with respect to
M. (This is a familiar argument in the associative case.)

(ii)⇒(i). Suppose all rings in M are unital. As every right alternative ring has nil
alternator, the rings in M are alternative. Let S be the class of subdirect products
of rings in M. Then S is a semi-simple class in the universal class of alternative
rings and U is its upper radical class in the universal class of right alternative rings.
Since the alternator of every ring is in U , 5.5 says that S is the semi-simple class
of U (in the class of right alternative rings). Hence U has the intersection property
with respect to M.

Now a radical class with ADS is hereditary if and only if its semi-simple class
is closed under essential extensions. (This is proved as for the associative case in
[29].)Every radical class of alternative rings has ADS, so S is closed under alternative
essential extensions. If A ∈ S, A ⊳• B and B is right alternative, let J be the
alternator of B. Then J ∩ A is a nil ideal of A and a member of S, so J ∩ A = 0,
whence J = 0 and B is alternative. But then B is in S. Thus S is closed under
right alternative essential extensions, so that by 5.8, U is hereditary.

It’s well known that 5.9 is not valid for the class of all (not necessarily associative)
rings, and it would be interesting to know how far beyond right alternative rings it
extends. It does not extend to power-associative rings. The following example was
used by Henriksen [30] for other purposes.

Example 5.10. Let F be a field, and let R be an F -algebra with basis {a, b, e},
ab = e = −ba, e2 = e and all other basis products zero. If α, β, γ ∈ F then
(αa + βb + γe)2 = γ2e, (αa + βb + γe)γ2e = γ3e = γ2e(αa + βb + γe) and so on,
so R is power-associative. If g : R → F is a homomorphism, then g(a)2 = 0 = g(b)2

so g(a) = 0 = g(b), and then g(e) = g(ab) = g(a)g(b) = 0, so g = 0. Thus R is in
the upper radical class defined by {F}, but F ∼= Fe ⊳ R, so the upper radical class
is not hereditary.
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[15] Csákány B. Varieties of affine modules. Acta. Sci. Math. (Szeged), 1975, 37, p. 3–10.
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