Rings over which some preradicals are torsions

I.D. Bunu

Abstract. Let R be an associative ring with identity and z be a pretorsion such that its filter consists of the essential left ideals of the ring R. In this paper, it is proved that every preradical $r \ge z$ of R - Mod is a torsion if and only if the ring R is a finite direct sum of pseudoinjective simple rings.

Mathematics subject classification: 16S90.

Keywords and phrases: Torsion (pretorsion), essential ideal, strongly prime ring, pseudoinjective module (ring).

Let z be the Goldie pretorsion of R - Mod category of left R – modules over the associative ring R with identity, i.e. its filter consists of essential left ideals of this ring.

In this paper some rings are described, over which all preradicals $r \geq z$ are torsions. It is proved that such rings are exactly those that can be decomposed in a finite direct sum of pseudoinjective simple rings.

First of all we present some preliminary notions and definitions.

01. A preradical r of R - Mod is a subfunctor of the identity functor of R - Mod [1, 2].

A preradical r is called

- radical if r(M/r(M)) = 0 for any $M \in R - Mod$;

- pretorsion if $r(N) = N \cap r(M)$ for any submodule N of an arbitrary module M;

- torsion if r is a radical and pretorsion.

02. An arbitrary preradical r of category R-Mod defines two classes of modules: $\mathcal{R}(r) = \{M \in R - Mod \mid r(M) = M\}$ and $\mathcal{P}(r) = \{M \in R - Mod \mid r(M) = 0\}$. Modules of the class $\mathcal{R}(r)$ are called *r*-torsion, and of the class $\mathcal{P}(r)$ are called *r*-torsion free.

Preradicals 0 and ε for which $\mathcal{P}(0) = R - Mod$ and $\mathcal{R}(\varepsilon) = R - Mod$ are called *nul* and *identity*, respectively.

03. If r_1 and r_2 are two arbitrary preradicals, then $r_1 \leq r_2$ means that $r_1(M) \subseteq r_2(M)$ for any $M \in R - Mod$.

The intersection of preradicals r_1 and r_2 is the preradical $r_1 \wedge r_2$ determined by the rule: $(r_1 \wedge r_2)(M) = r_1(M) \cap r_2(M)$ for any $M \in R - Mod$.

The sum of preradicals r_1 and r_2 is the preradical $r_1 + r_2$ defined by the relation $(r_1 + r_2)(M) = r_1(M) + r_2(M)$ for any $M \in R - Mod$.

[©] I.D. Bunu, 2004

04. The least pretorsion containing preradical r is denoted by h(r). It always exists and is determined by the equality $h(r)(M) = M \cap r(\hat{M})$, where \hat{M} is the injective envelope of an arbitrary module $M \in R - Mod$ ([1], p.23).

For any pretorsion r the least torsion \bar{r} containing it exists and satisfies the property $r(M) \subseteq \bar{r}(M)$ for any $M \in R - Mod$, ([1], 1.8 item Cyrillic "b").

05. Every nonzero module M determines the radical r_M such that $r_M(A) = \cap Kerf$ for all homomorphism $f \in Hom_R(A, M)$ for every $A \in R - Mod$. The radical r_M is the greatest among all preradicals r with the property r(M) = 0 ([1], p.13). If the module M is injective, then the radical r_M is a torsion ([1], p.32). Moreover $r_M(R) = (0:M)$.

06. A module M is called *pseudoinjective* if for any monomorphism $i: B \to A$ and every homomorphism $f: B \to M$ there are such homomorphisms $\alpha: M \to M$ and $\bar{f}: A \to M$ that $0 \neq \alpha f = i \bar{f}$.

The following conditions are equivalent:

(1) M is a pseudoinjective module.

(2) $r_M = r_{\hat{M}}$.

(3) The radical r_M is a torsion ([3], p.45).

07. The Goldie pretorsion z is a torsion if and only if z(R) = 0 ([2], prop. I.10.2).

08. A ring R is called

- strongly prime (SP), if r(R) = 0 for any proper pretorsion r of R - Mod category;

- left strongly semiprime (SSP), if every essential ideal P is cofaithful, i.e. $(0:P) = \bigcap_{\alpha=1}^{n} (0:p_{\alpha}) = 0$ (essential ideal means a two-sided ideal that is essential as a left ideal).

Some descriptions of SSP-rings are obtained in the papers [4–7]. We present only a part of them.

The following conditions are equivalent:

- (1) R is a SSP-ring.
- (2) All pretorsions $r \ge z$ are torsions.
- (3) Every proper pretorsion generates a proper torsion.

(4) R is a semiprime ring every nonzero ideal P of which possesses the property $\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}^n$

$$(0:P) = (0:\hat{P}) = \bigcap_{\alpha=1} (0:p_{\alpha})$$
 for some elements $p_{\alpha} \in P$.

(5) The ring R is a finite subdirect sum of SP-rings.

09. Let $R = R_1 \oplus R_2 \oplus \ldots \oplus R_n$ be a ring direct sum. Denote by f_i the corresponding projections. There is a one-to-one correspondence between preradicals of R-Mod and ordered n - tuples (r_1, r_2, \ldots, r_n) , where r_i is a preradical for $R_i - Mod$, given by $r \to (f_1[r], \ldots, f_n[r])$ and $(r_1, r_2, \ldots, r_n) \to \sum \{r_i\} f_i = \cap [r_i] f_i$. This correspondence preserves the elementary properties, intersections, sums, inclusions in both directions ([2], prop. I.9.1).

Now we begin the investigation of rings over which any preradical $r \ge r_R$ $(r \ge z)$ is a radical (torsion).

Proposition 1. Every SSP-ring is a finite direct sum of indecomposable SSP-rings.

Proof. We show that a SSP-ring does not contain any infinite direct sums of two-sided ideals ([4], prop. 6). Indeed, let us consider a direct sum $P = \sum_{i} \oplus P_{i}$ of ideals of the ring R. Then since R is semiprime we have $P \oplus (0:P) \subseteq' R$. By assumption, R is a SSP-ring. Then the ideal $P \oplus (0:P)$ is cofaithful and therefore $(0:[P \oplus (0:P)]) = \bigcap_{i=1}^{n} [0:(p_{i}+p_{i}^{*})]$ for some $p_{i} \in P$ and $p_{i}^{*} \in (0:P)$. We show that in this case $P_{\alpha} = 0$ for any $\alpha = n + 1$, n + 2, Indeed, from the equality $P_{\alpha} \cdot P_{i} = 0$ for any $\alpha \neq i$ we obtain $P_{\alpha} \cdot p_{i} = 0$. Besides that, the inclusion $P_{\alpha} \subseteq P \Rightarrow (0:P) \subseteq (0:P_{\alpha}) \Rightarrow p_{i}^{*} \in (0:P_{\alpha}) \Rightarrow p_{i}^{*} P_{\alpha} = 0$ holds for any $i = \overline{1, n}$. Then $P_{\alpha} p_{i}^{*} \cdot P_{\alpha} p_{i}^{*} = 0$, therefore since R is semiprime we have $P_{\alpha} \cdot p_{i}^{*} = 0$. But then $P_{\alpha} (p_{i} + p_{i}^{*}) = 0 \Rightarrow P_{\alpha} \subseteq (0:(p_{i} + p_{i}^{*}))$ for any $i = \overline{1, n}$. This means that $P_{\alpha} \subseteq \bigcap_{i=1}^{n} (0:(p_{i} + p_{i}^{*})) = 0$ and consequentely the considered direct sum is finite: $P = \sum_{i=1}^{n} \oplus P_{i}$. From this it follows that R does not contain any infinite direct sums of ideals. But the latter is equivalent to the decomposability of the ring R in a finite direct sum of SSP-rings.

A pretorsion r of the category R - Mod is called *superhereditary* (*stable*) if the class of r – torsion modules is closed with respect to direct products (essential extensions).

Superhereditarity of the pretorsion r is equivalent to the condition that its filter contains the least ideal P. It is denoted by $r_{(P)}$ and it is easy to verify that $r_{(P)}(M) = M \Leftrightarrow PM = 0.$

Lemma 2. The following conditions are equivalent:

(1) All superhereditary pretorsions of R – Mod are stable.

- (2) All left ideals of the ring R are idempotent.
- (3) $(0:M) = (0:\hat{M})$ for any module $M \in R$ Mod.

Proof. Equivalence of (1) and (2) is proved in [2].

 $(1)\Rightarrow(3)$. Let M be an arbitrary module M for which $(0:M) \neq 0$ because otherwise the equality $(0:M) = (0:\hat{M})$ is obvions. Then the superhereditary pretorsion $r_{((0:M))}$ is stable. Since $r_{((0:M))}(M) = M$, we obtain $r_{((0:M))}(\hat{M}) = \hat{M}$, i.e. $(0:M)\cdot\hat{M} = 0$ therefore $(0:M) \subseteq (0:\hat{M})$. Now from the inclusion $(0:\hat{M}) \subseteq (0:M)$ we obtain $(0:M) = (0:\hat{M})$.

 $(3) \Rightarrow (1)$. Let $r_{(P)}$ be an arbitrary superhereditary pretorsion. If $r_{(P)}(M) = M$

then PM = 0, therefore $P \subseteq (0:M) = (0:\hat{M})$. It means $P\hat{M} = 0$ that is equivalent to the equality $r_{(P)}(\hat{M}) = \hat{M}$. Therefore $r_{(P)}$ is a stable pretorsion. \Box **Corollary 3.** Every indecomposable SSP-ring over which all left ideals are idempotent is simple.

Indeed, let us consider an arbitrary essential ideal P of ring R and the torsion $\tau = r_{R/P}^{\wedge}$. Then $\tau(R) = \left(0: R/P\right) = (0: R/P) = P$ (Lemma 2). Since z(R) = 0 it follows that $z < z \lor \tau$ and therefore $\tau(R) \subseteq (z \lor \tau)(R) \subseteq R$. From the stability of the torsion $z \lor \tau$ (Statement 8) we obtain $(z \lor \tau)(\hat{R}) = (z + \tau)(\hat{R}) = z(\hat{R}) + \tau(\hat{R}) = \tau(\hat{R}) = \hat{R}$, therefore $\tau(R) = R$, i.e. $\tau = \varepsilon$. But then from the relations $\tau(R) = P = R$ it follows that the ring R does not contain any proper essential ideal. Let us now show that R is a simple rings. If K is a nonzero ideal of the ring R, then from its semiprimeness (R is an SSP-ring) it follows that the ideal $K \oplus (0: K) \subseteq R$. According to those proved earlier the ring $R = K \oplus (0: K)$ and its indecomposability implies that K = R. In this way R is a simple ring. \Box

Corollary 4. Any SSP-ring left ideals of which are indepotent is a finite direct sum of simple rings.

Indeed, if R is a finite direct sum of rings R_{α} , then R is a SSP-ring left ideals of which are idempotent if in only if each direct summand R_{α} satisfies the same property. It remains us to use Proposition 1 and Corollary 3.

Corollary 5. If all preradicals of R – Mod category are torsions then the ring R is a finite direct sum of simple rings with the same property.

It is sufficient to show that the ring R satisfies the conditions of the previous Corollary 4.

Let us remark that R is a SSP-ring (Statement 08). Besides that, from the equality $r_M = r_{\hat{M}}$ it follows that any simple module is injective. Consequently, R is a left V-ring and therefore all its left ideals are idempotent ([2], prop. I.11.7). \Box

Corollary 6. (Faith theorem). Any semiprime Goldie left V-ring is simple.

This result follows directly from Corollary 3.

Corollary 7. Any Goldie left V-ring is a finite direct sum of simple rings.

It obviously follows from Corollary 4.

Lemma 8. If all preradicals $r \ge r_R$ over ring R are radicals, then R is left strongly semiprime.

Proof. We prove that any proper pretorsion r generates a proper torsion \bar{r} . Indeed, if $r \neq \varepsilon$ and $\bar{r} = \varepsilon$ then $r(R) \subseteq 'R$. Consider the preradical $t = z + r_R + r$. Obviously, $t > r_R$ and t > z. By hypothesis, the preradical t is a radical and therefore t(R/t(R)) = t(R/(z+r)(R)) = 0. On the other hand, since the preradical t > z and $t(R) = (z+r)(R) \subseteq 'R$ we have t(R/t(R)) = t(R/(z+r)(R)) = t(R/(z+r)(R)) = t(R/(z+r)(R)) = t(R/(z+r)(R)) = t(R/(z+r)(R)) = t(R/(z+r)(R))

R/(z+r)(R). For the equality t(R/t(R)) = R/t(R) = 0 it follows that R = t(R) = (z+r)(R) = z(R) + r(R). Then 1 = x + y where $x \in z(R)$ and $y \in r(R)$. But then $(0:x) \cap (0:y) \subseteq (0:(x+y)) = 0$. From this and from $(0:x) \subseteq R$ we have $(0:y) = 0 \in F(r)$ where F(r) is the filter of pretorsion r. Consequently $r = \varepsilon$. The obtained contradiction shows that R is a SSP-ring.

Lemma 9. The following rings are simple:

- (1) Indecomposable ring R over which all preradicals $r \ge r_R$ are radicals.
- (2) Indecomposable self injective SSP rings.

Prof. (1) Let P be a nonzero ideal of an indecomposable ring R over which all preradicals $r \geq r_R$ are radicals. By Lemma 8, R is a semiprime ring and therefore $P \oplus (0:P) \subseteq R$. Consider the preradical $\tau = r_{R/P} + r_P$. Then $z = r_{\hat{R}} < r_R \leq r_P \leq \tau$ and $\tau(R) = (r_{R/P} + r_P)(R) = r_{R/P}(R) + r_P(R) = (0:R/P) + (0:P) = P \oplus (0:P) \subseteq R$. Since τ is radical $(\tau > r_R)$ we have $\tau(R/\tau(R)) = 0$. On the other hand, the relation $z \leq \tau$ and the inclusion $\tau(R) \subseteq R$ imply $\tau(R/\tau(R)) = R/\tau(R)$. Then, from the last two equalities $\tau(R/\tau(R)) = 0 = R/\tau(R)$ we obtain that $R = \tau(R) = P \oplus (0:P)$, therefore, P = R (the ring R is indecomposable). Consequently, R is a simple ring.

(2) Repeating proof of item (1) we have $\tau(R) = P \oplus (0:P) \subseteq R$. According to the construction, we have $\tau \geq z$. Then, from the hypothesis (R is SSP-ring) and Statement 08, it follows that $h(\tau)$ is a stable torsion and therefore $h(\tau)(R) = R$. Self-injectivity of the ring R implies $h(\tau)(R) = \tau(R) = R = P \oplus (0:P)$, but its indecomposability implies that P = R. In this way, R is a simple ring.

Theorem 10. For self-injective ringR the following statements are equivalent:

- (1) All preradicals $r \geq z$ are torsions.
- (2) All preradicals $r \geq z$ are radicals.
- (3) All pretorsions $r \geq z$ are torsions.
- (4) The ring R is a finite direct sum of simple rings.
- (5) The ring R is a finite direct sum of SP-rings.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ are obvious.

 $(3) \Rightarrow (4)$. According to Statement 08, R is a SSP-ring and, from Proposition 1, $R = \sum_{\alpha=1}^{n} \oplus R_{\alpha}$, where R_{α} are indecomposable SSP-rings. Moreover, the rings R_{α} are self-injective because R itself is self-injective. Then by Lemma 9 item (2) R_{α} are simple rings, $\alpha = \overline{1, n}$.

 $(5)\Rightarrow(1)$. By the hypothesis $R = \sum_{\alpha=1}^{n} \oplus R_{\alpha}$ where R_{α} are self-injective SP - rings. Let K be one of these rings R_{α} . Consider an arbitrary proper preradical r of the category R - Mod with the property $r \ge z$. Since K is a self-injective SP-ring, we have r(K) = h(r)(K) = 0 and, therefore $r \le h(r) \le r_K = z \le r$, i.e. r = z is a torsion. In this way over any direct summand R_{α} of the ring R every preradical $r \ge z$ is a torsion. Then R itself satisfies this property (Statement 09). **Theorem 11.** The following conditions are equivalent:

(1) All preradicals $r \ge r_R$ of R - Mod are radicals.

(2) The ring R is a finite direct sum of simple rings.

Proof. (1) \Rightarrow (2). By Lemma 8, the ring R is a SSP-ring, and in according to Proposition 1 $R = \sum_{\alpha=1}^{n} \oplus R_{\alpha}$, where R_{α} are indecomposable SSP-rings for any $\alpha = \overline{1, n}$. Besides that, by hypothesis and Statement 09, over each direct summand R_{α} all preradicals $r \geq r_{R_{\alpha}}$ are radicals. Then, according to Lemma 9 item(1), R_{α} are simple rings.

The implication $(2) \Rightarrow (1)$ follows from Statement 09, because over any simple ring R all preradicals $r \ge r_R$ are radicals.

Theorem 12. The following conditions are equivalent:

- (1) All preradicals $r \ge z$ of R Mod are torsions.
- (2) The ring R is a finite direct sum of pseudoinjective simple rings.

Proof. (1) \Rightarrow (2). By assumption and by Theorem 11, the ring R is a finite sum of simple rings. Let us show that each direct summand K of the ring R is a pseudoinjective ring i.e. we prove that $r_K = r_{\hat{K}}$. Indeed, since z is a torsions we have $z = r_{\hat{K}} \leq r_K$. From hypothesis, the radical r_K is also a torsion. Then, according to the Statement 06, $r_K = r_{\hat{K}}$ and therefore, K is a pseudoinjective ring.

 $(2) \Rightarrow (1)$. Let r be an arbitrary preradical of the pseudoinjective simple ring K. Then $r_K = r_{\hat{K}}$ (Statement 06) and every preradical r on the category K - Modwith property $r \ge z$ is a torsion because the equality r(K) = 0 implies $r \le r_K =$ $r_{\hat{K}} = z \le r$, therefore r = z. But then, by Statement 09 overing R, all preradicals $r \ge z$ also are torsions.

References

- [1] KASHU A.I. Radicals and torsions in modules. Kishinev, Stiinta, 1983 (In Russian).
- [2] BICAN L., KEPKA T., NEMEC P. Rings, modules and preradicals. Marcel Dekker, 1982.
- [3] KASHU A.I. When the radical associated to a module is a torsion? Mat. Zametki, 1974, 16, p. 41–48 (In Russian).
- [4] HANDELMAN D.E. Strongly semiprime rings. Pacif. J. Math., 1975, 60(1), p. 115–122.
- [5] KUTAMI M., OSHIRO K. Strongly semiprime rings and nonsingular quasi-injective modules. Osaka J. Math., 1980, 17, p. 41–50.
- BUNU I.D. On the strongly semiprime rings. Bulet. A.Ş. R.M., Matematica, 1997, no. 1(23), p. 78–83.
- [7] VAN DEN BERG J.E. Primeness Described in the Language of Torsion Preradicals. Semigroup Forum, 2002, 64, p. 425–442.

ASEM str. Bănulescu Bodoni, 59 Chişinău, MD-2005 Moldova E-mail: *ibunu@yahoo.com* Received January 30, 2004