
BULETINUL ACADEMIEI DE ŞTIINŢE
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Generating properties of biparabolic invertible

polynomial maps in three variables

Yu. Bodnarchuk

Abstract. Invertible polynomial map of the standard 1-parabolic form xi →

fi(x1, . . . , xn−1), i < n, xn → αxn + hn(x1, . . . , xn−1) is a natural generalization
of a triangular map. To generalize the previous results about triangular and bitrian-
gular maps, it is shown that the group of tame polynomial transformations TGA3 is
generated by an affine group AGL3 and any nonlinear biparabolic map of the form
U0 ·q1 ·U1 ·q2 ·U2, where Ui are linear maps and both qi have the standard 1-parabolic
form.
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All invertible polynomial maps of the affine space An over a field K form the
group GAn (the affine Cremona group). It represents an important example of so
called Ind−groups or ∞−dimensional algebraic groups (an inductive limit of finite
dimensional algebraic varieties, see [1]).The elements of GAn can be represented as
tuples of polynomials

g =< f1(x1, . . . , xn), f2(x1, . . . , xn), ..., fn(x1, . . . , xn) >, (1)

which action on the volume form dx1 ∧ · · · ∧ dxn is a multiplication it by a constant.
It leads to the Jacobian condition

det

(

∂fi

∂xj

)

= const; (2)

const 6= 0. Remember that Lie(GAn) = gan consists of linear differential operators
of the form

n
∑

i=1

ai(x1, . . . , xn)
∂

∂xi

, (3)

where ai are polynomials under the condition
∑n

i=1
∂ai

∂xi
= const ∈ K It is well known

(see [2]) that gan is a graded irreducible transitive algebra of a polynomial growth:

gan = ⊕∞

k=−1ga
(k)
n , where homogeneous components ga

(k)
n consist of the operators

(3) for which deg ai = k + 1.
There are important subgroups of GAn:

(i) the affine group AGLn = GLn ⋉ A+
n : deg fi = 1, i = 1, 2, . . . , n;
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(ii) Bn is a subgroup of triangular maps which elements have the form (1), where
fi = fi(x1, . . . , xi), i = 1, . . . , n;

(iii) GA
(0)
n is a stabilizer of zero and has a chain of normal subgroups GA

(0)
n ⊲

GA
(1)
n ⊲ GA

(2)
n ⊲ . . . ⊲ GA

(k)
n ⊲ . . ., which members GA

(k)
n consist of the

maps (1) of the type fi = xi+φi(x1, . . . , xn)+. . . , where φi− are homogeneous

k + 1− forms and . . . means items of higher degrees, by the way, GA
(0)
n =

GLn(K) ⋉ GA
(1)
n ;

(iv) the subgroup of tame maps TGAn which are generated by the elementary
transformations: fi = xi, i 6= j, fj = xj + hj(x1, . . . , xj−1, xj+1, . . . , xn) and
AGLn.

As was shown in [3], Lie(AGLn) is a maximal subalgebra of the gan. The direct
application of Shafarevich’s theorem (see [1]) about the connection between Lie al-
gebras and correspondent ∞− dimensional algebraic groups leads to the conclusion:
AGLn is a maximal closed subgroup of GAn. The subgroup Bn (Jonquièar’s group)
is a maximal solvable subgroup of GAn and so can be considered as an analog of
a Borel’s subgroup. Remark that tuples of the form (1), which coordinates are
formal power series without constant terms form a group with the composition of
tuples as a group operation. It contains GA0

n as a subgroup. Moreover, the factors

GA
(0)
n /GA

(k)
n are finite dimensional algebraic groups.

Tame maps give most simple examples of nonlinear invertible polynomial maps.
It is easy to see that TGAn =< AGLn, Bn > . As is well known, GA2 has the
structure of the amalgamated product: GA2 = AGL2 ∗ B2 and so GA2 = TGA2

. In the dimension n = 3, I. Shestakov and U. Umurbaev in [4] have proved that
Nagata’s automorphism is wild, so TGA3 is a proper subgroup of GA3. Remark
that if this automorphism is extended in a natural way to an automorphism of
An for some n > 3 then this extension will be tame. As was mentioned above
AGLn is a maximal closed subgroup of GAn. On the other hand, as follows from
[5], a finite affine group nearly always is a maximal subgroup in the correspondent
symmetrical group. So it is natural to investigate intermediate subgroups from
the interval AGLn < TGAn. By using an amalgamated structure of GA2 it isn’t
hard to construct such subgroups in the dimension n = 2. For example the groups

Qm =< AGL2, σ
(m) >, where σ(m) =< x1, x2 + xm+1

1 >∈ GA
(m)
2 ∩ B2 form an

ascending chain AGL2 = Q0 < Q1 < . . . Qm < Qm+1, . . . and GA2 = ∪mQm. From
the uniqueness of element’s decomposition in amalgamated products it follows that
all maps σ(k), k > m don’t belong to Qm. As is well known, GA3 has not such
structure and to point out an intermediate subgroup isn’t a simple task. It is easy
to see that TGAn can be defined also in such a manner TGAn =< Bn, AGLn > .
In fact more strong result holds

Theorem 1. ([6]) Let t be an arbitrary nonlinear triangular map from Bn then

TGAn =< t,AGLn > .
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This theorem may be generalized so called standard 1-parabolic transformations.

Definition 1. The transformation q of the form (1) is called standard 1-parabolic
if there is an affine map A such that

qA =< f1(x1, . . . , xn−1), . . . , fn−1(x1, . . . , xn−1), xn + fn(x1, . . . , xn−1) > . (4)

Theorem 2. Let q be an arbitrary nonlinear standard 1-parabolic transformation
then

TGAn =< q,AGLn > .

Proof. The result is a direct corollary of Theorem 1. Really, without lost of
generality one can suppose that q has the form (4). Let q−1 =< g1, . . . , gn−1, xn −

hn(x1, . . . , xn−1) >, then

gi(f1, . . . , fn−1) ≡ xi, fn + hn(f1, . . . , fn−1) ≡ 0. (5)

If all gi are linear then the map q has the form U · t, U ∈ AGLn, t ∈ Bn. Otherwise,
for number i such that gi is nonlinear polynomial let us use the transvection An,i =
< x1, . . . , xn−1, xn+xi >∈ AGLn and get the element qAn,i ·q−1 =< x1, . . . , xn−1, xn−

xi + gi > which is nonlinear triangular. �

Definition 2. A map q ∈ GAn is called biparabolic if it can be represented as a
composition of two standard 1-parabolic maps.

In particular bitriangular maps, which were defined in [6] as maps of the kind
C0 · t1 · C1 · t2 · C2, t1, t2 ∈ Bn, Ck ∈ AGLn, form a subclass of biparabolic ones.
Let G =< AGLn, q >, where q is a biparabolic map. Without lost of generality one
can suppose that q ∈ G has the form q = q1 · q

A
2 , A ∈ GLn. It is clear that standard

1- parabolic maps are permutable with the translations along the last coordinate
cn : xi → xi, i < n, xn → xn + 1, 1 ∈ K. This fact could be used for proving the
same result (G = TGAn) for biparabolic maps q. Really, the map qA

2 is permutable
with the translation c = cA

n ∈ A+
n , so we can get the standard 1-parabolic map

qc · q−1 = qc
1q

−1
1 ∈ G. Thus for most biparabolic maps the result can be deduced

from Theorem 2. But it may happen that q3 will be a linear map and the application
of this theorem is impossible. In [7] (theorem 3) this situation was considered for
bitriangular maps in the dimension n = 3. Next theorem is a generalization of that
result.

Theorem 3. Let q be an arbitrary nonlinear biparabolic transformation then

TGA3 =< q,AGL3 > .

Proof. Let G =< q,AGL3 > As was mentioned above, we can suppose that q =

p1 · p
A
2 , where p1, p2 ∈ GA

(1)
n (without linear parts). If A = B1 · W · B2 is a Brua

decomposition, where W is a permutation matrix and B1, B2 are lower triangular

matrices then we have B2qB
−1
2 = p

B−1
2

1 · (p2)
B1·W ∈ G. Since the maps p

B−1
2

1 , (p2)
B1
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are standard 1-parabolic transformations also without linear parts, then without lost

of generality one can suppose that q = p1 · p
W
2 . Moreover, the maps p

(1,2)
i , i = 1, 2,

are standard 1- parabolic ones and so one can suppose that there is an element q ∈ G
of the form

q = p · p
(1,3)
1 . (6)

Let p =< f1(x1, x2), f2(x1, x2), x3 + f3(x1, x2) > and p−1 =< g1(x1, x2),
g2(x1, x2), x3 + g3(x1, x2) > and identities (5) hold. If degx1

f2 < degx1
f1 then

one can remove the map q by (1, 2) · q, where (1, 2) =< x2, x1, x3 > is a transpo-
sition. So we can suppose that degx1

f2 ≥ degx1
f1. On the other hand, if p has a

decomposition p = p′g, where g =< x1 + h(x2), x2, x3 >, and p′ has the form (4)
then we can rewrite the map q in such a manner q = p′ · (g(1,3) · p1)

(1,3). Since g(1,3)

is a triangular map then g(1,3) · p1 is a 1-parabolic map. Hence, we can suppose also
that p doesn’t admit such decomposition p = p′ · g, where h 6≡ 0.

Since the second factor of (6) is permutable with translation c1 =< x1 +
1, x2, x3 >, one can get an element q3 = qc1 · q−1 = pc1

1 · p−1
1 ∈ G. As was men-

tioned above, the map q3 has the form (4) and if it isn’t a linear one then the result
follows from Theorem 2. Let us investigate the situation when q3 = Λ·x+z ∈ AGLn,
here Λ = (λi,j), i, j = 1, 2, 3, z = (z1, z2, z3). The equality pc1

1 · p−1
1 = q3 leads to the

coordinate equalities

fi(g1 + 1, g2) = λi1x1 + λi2x2 + λi3x3 + zi, i = 1, 2;

x3 + g3(x1, x2) + f3(g1 + 1, g2) = λ31x1 + λ32x2 + λ33x3 + z3.

By comparing the coefficients of x3 we can obtain λi3 = 0, λ33 = 1. If we take in
account the identities (5) and act on the previous equalities by p we get

f1(x1 + 1, x2) = λ11f1 + λ12f2 + z1; (7)

f2(x1 + 1, x2) = λ21f1 + λ22f2 + z2; (8)

f3(x1 + 1, x2) = λ31f1 + λ32f2 + f3 + z3.

Let us represent the coordinates of p in the form

fi =

Mi
∑

s=0

φi
s(x2)x

s
1,

φi
Mi

6≡ 0, i = 1, 2, 3. If M1 = M2 = M then M > 0 and by comparing the coefficients

of xM
1 in (7),(8) one can get

φi
M = λi1φ

1
M + λi2φ

2
M , i = 1, 2.

If φ1
M , φ2

M are linear independent polynomials over K then λi,j = δi,j (Kroneker’s
symbol). Comparing of the coefficients of xM−1

1 leads to the equality Mφi
M +φi

M−1 =
φi

M−1 which implies the contradiction φi
M ≡ 0, i = 1, 2. So φ2

M (x2) = µφ1
M (x2) for

some µ ∈ K. Let us use the transvection U =< x1 − µx2, x2, x3 > and replace
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q → U · q. In such a manner we get a map of the form (6) with φ1
M1

≡ 0 in p i.e.

for this map M = M2 > M1. Comparing the coefficients of xM
1 in identities (7),(8)

leads to the equalities 0 = λ12φ
2
M , φ2

M = λ22φ
2
M which imply that λ12 = 0, λ22 = 1.

Let us compare the coefficients of xM1−1
1 :

φ1
M−1 = λ11φ

1
M−1, Mφ2

M + φ2
M−1 = λ21φ

1
M−1 + φ2

M−1.

It follows that φ1
M−1 6≡ 0 (M1 = M − 1) and λ11 = 1. It is clear that the highest

degree of x1 which can be present by jacobian of the pair(f1, f2) does not exceed
2M − 2. With regard to the equality Mφ2

M = λ21φ
1
M−1, the jacobian condition (2)

leads to the identity φ2
M ·

dφ2
M

dx2
= 0, hence, φ2

M = const. If M > 2 then comparing the

coefficients of xM−2
1 in (7) leads to the contradiction (M −1)φ1

M−1 +φ1
M−2 = φ1

M−2,
i.e.φ1

M−1 = 0. Hence, M = 2 or M = 1. In the first case from (7) we have φ1
1 = z1.

The equalization of monomials without x1 in (8) leads to the equality

M(M − 1)

2
φ2

2 + (M − 1)φ2
1 + φ2

0 = λ21φ
1
0 + φ2

0 + z2,

which under M = 2 implies φ2
1 = µφ1

0 + const, µ ∈ K. After all we obtain that

f1 = z1x1 + φ1
0(x2), f2 = φ2

2x
2
1 +

(

µφ1
0(x2) + const

)

x1 + φ2
0(x2).

This implies that p can be decomposed in such a manner

p =< z1x1, φ
2
2(x1−(z1)

−1φ1
0(x2))

2+
(

µφ1
0(x2) + const

)

(x1−(z1)
−1φ1

0(x2))+φ2
0(x2),

x3 + f3(x1 − (z1)
−1φ1

0(x2), x2) > · < x1 + (z1)
−1φ1

0(x2), x2, x3 > .

But, as was mentioned above, the map p doesn’t admit such decomposition and so
φ1

0(x2) ≡ 0. Thus p =< z1x1, φ
2
2x

2
1+constx1+φ2

0(x2), x3+f3(x1, x2) > is a triangular
map. In the case M = 1 it is evident that the map (1, 2) · t is a triangular one. On
the other hand, we can repeat our reasoning for the map q̂ = q−(1,3) = p−1

1 · p−(1,3)

and conclude that p1 is also triangular. This means that in fact, the situation when
q3 = qc1 · q−1, q4 = q̂c1 · q̂−1 ∈ AGLn, can be realized when both elements owe
triangular ones i.e. when q is bitriangular. So the result follows from Theorem 3
from [7]. �

References

[1] Shafarevich I. On some Infinite Dimensional Groups II. Izv. AN USSR, Ser. math., 1981,
45, p. 214–226.

[2] Kac V. Simple irreducible graded Lie algebrais of finite growth. Izv. AN USSR, Ser. math.,
1969, 32, p. 1923–1967.

[3] Bodnarchuk Yu. Some extreme properties of the affine group as an automorphism group of

the affine space. Contribution to General Algebra, 2001, 13, p. 15–29.



GENERATING PROPERTIES OF BIPARABOLIC INVERTIBLE . . . 39

[4] Shestakov I., Umirbaev U. The tame and the wild automorphisms of polynomial rings in

three variables. Preprint São Paulo University, 2002, 1, p. 1–35.

[5] Mortimer B. Permutation Groups containing Affine Groups of the same degree. J. of London
Math. Soc., 1977, 15, p. 445–455.

[6] Bodnarchuk Yu. Generating properties of triangular and bitriangular birational automor-

phisms of an affine space. Dopovidi NAN Ukraine, 2002, 11, p. 7–22.

[7] Bodnarchuk Yu. On affine-split tame invertible polynomial maps in three variables. Buletinul
A. Ş. a R. M., Matematika, 2002, 2(39), p. 37–43.

University ”Kiev Mohyla Academy”
str. Scovoroda 2, Kyiv 40070
Ukraine
E-mail:yubod@ukma.kiev.ua

Received September 23, 2003


