Generating properties of biparabolic invertible polynomial maps in three variables

Yu. Bodnarchuk

Abstract

Invertible polynomial map of the standard 1-parabolic form $x_{i} \rightarrow$ $f_{i}\left(x_{1}, \ldots, x_{n-1}\right), \quad i<n, x_{n} \rightarrow \alpha x_{n}+h_{n}\left(x_{1}, \ldots, x_{n-1}\right)$ is a natural generalization of a triangular map. To generalize the previous results about triangular and bitriangular maps, it is shown that the group of tame polynomial transformations $T G A_{3}$ is generated by an affine group $A G L_{3}$ and any nonlinear biparabolic map of the form $U_{0} \cdot q_{1} \cdot U_{1} \cdot q_{2} \cdot U_{2}$, where U_{i} are linear maps and both q_{i} have the standard 1-parabolic form.

Mathematics subject classification: 14E07.
Keywords and phrases: Invertible polynomial map, tame map, affine group, affine Cremona group.

All invertible polynomial maps of the affine space A_{n} over a field K form the group $G A_{n}$ (the affine Cremona group). It represents an important example of so called Ind-groups or ∞-dimensional algebraic groups (an inductive limit of finite dimensional algebraic varieties, see [1]). The elements of $G A_{n}$ can be represented as tuples of polynomials

$$
\begin{equation*}
g=<f_{1}\left(x_{1}, \ldots, x_{n}\right), f_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)>, \tag{1}
\end{equation*}
$$

which action on the volume form $d x_{1} \wedge \cdots \wedge d x_{n}$ is a multiplication it by a constant. It leads to the Jacobian condition

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)=\text { const } \tag{2}
\end{equation*}
$$

const $\neq 0$. Remember that $\operatorname{Lie}\left(G A_{n}\right)=g a_{n}$ consists of linear differential operators of the form

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{i}}, \tag{3}
\end{equation*}
$$

where a_{i} are polynomials under the condition $\sum_{i=1}^{n} \frac{\partial a_{i}}{\partial x_{i}}=$ const $\in K$ It is well known (see [2]) that $g a_{n}$ is a graded irreducible transitive algebra of a polynomial growth: $g a_{n}=\oplus_{k=-1}^{\infty} g a_{n}^{(k)}$, where homogeneous components $g a_{n}^{(k)}$ consist of the operators (3) for which $\operatorname{deg} a_{i}=k+1$.

There are important subgroups of $G A_{n}$:
(i) the affine group $A G L_{n}=G L_{n} \ltimes A_{n}^{+}$: $\operatorname{deg} f_{i}=1, i=1,2, \ldots, n$;
(c) Yu. Bodnarchuk, 2004
(ii) B_{n} is a subgroup of triangular maps which elements have the form (1), where $f_{i}=f_{i}\left(x_{1}, \ldots, x_{i}\right), i=1, \ldots, n ;$
(iii) $G A_{n}^{(0)}$ is a stabilizer of zero and has a chain of normal subgroups $G A_{n}^{(0)} \triangleright$ $G A_{n}^{(1)} \triangleright G A_{n}^{(2)} \triangleright \ldots \triangleright G A_{n}^{(k)} \triangleright \ldots$, which members $G A_{n}^{(k)}$ consist of the maps (1) of the type $f_{i}=x_{i}+\phi_{i}\left(x_{1}, \ldots, x_{n}\right)+\ldots$, where $\phi_{i}-$ are homogeneous $k+1-$ forms and \ldots means items of higher degrees, by the way, $G A_{n}^{(0)}=$ $G L_{n}(K) \ltimes G A_{n}^{(1)} ;$
(iv) the subgroup of tame maps $T G A_{n}$ which are generated by the elementary transformations: $f_{i}=x_{i}, i \neq j, \quad f_{j}=x_{j}+h_{j}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$ and $A G L_{n}$.

As was shown in [3], $\operatorname{Lie}\left(A G L_{n}\right)$ is a maximal subalgebra of the $g a_{n}$. The direct application of Shafarevich's theorem (see [1]) about the connection between Lie algebras and correspondent ∞ - dimensional algebraic groups leads to the conclusion: $A G L_{n}$ is a maximal closed subgroup of $G A_{n}$. The subgroup B_{n} (Jonquièar's group) is a maximal solvable subgroup of $G A_{n}$ and so can be considered as an analog of a Borel's subgroup. Remark that tuples of the form (1), which coordinates are formal power series without constant terms form a group with the composition of tuples as a group operation. It contains $G A_{n}^{0}$ as a subgroup. Moreover, the factors $G A_{n}^{(0)} / G A_{n}^{(k)}$ are finite dimensional algebraic groups.

Tame maps give most simple examples of nonlinear invertible polynomial maps. It is easy to see that $T G A_{n}=<A G L_{n}, B_{n}>$. As is well known, $G A_{2}$ has the structure of the amalgamated product: $G A_{2}=A G L_{2} * B_{2}$ and so $G A_{2}=T G A_{2}$. In the dimension $n=3$, I. Shestakov and U. Umurbaev in [4] have proved that Nagata's automorphism is wild, so $T G A_{3}$ is a proper subgroup of $G A_{3}$. Remark that if this automorphism is extended in a natural way to an automorphism of A_{n} for some $n>3$ then this extension will be tame. As was mentioned above $A G L_{n}$ is a maximal closed subgroup of $G A_{n}$. On the other hand, as follows from [5], a finite affine group nearly always is a maximal subgroup in the correspondent symmetrical group. So it is natural to investigate intermediate subgroups from the interval $A G L_{n}<T G A_{n}$. By using an amalgamated structure of $G A_{2}$ it isn't hard to construct such subgroups in the dimension $n=2$. For example the groups $Q_{m}=<A G L_{2}, \sigma^{(m)}>$, where $\sigma^{(m)}=<x_{1}, x_{2}+x_{1}^{m+1}>\in G A_{2}^{(m)} \cap B_{2}$ form an ascending chain $A G L_{2}=Q_{0}<Q_{1}<\ldots Q_{m}<Q_{m+1}, \ldots$ and $G A_{2}=\cup_{m} Q_{m}$. From the uniqueness of element's decomposition in amalgamated products it follows that all maps $\sigma^{(k)}, k>m$ don't belong to Q_{m}. As is well known, $G A_{3}$ has not such structure and to point out an intermediate subgroup isn't a simple task. It is easy to see that $T G A_{n}$ can be defined also in such a manner $T G A_{n}=<B_{n}, A G L_{n}>$. In fact more strong result holds

Theorem 1. ([6]) Let t be an arbitrary nonlinear triangular map from B_{n} then

$$
T G A_{n}=<t, A G L_{n}>
$$

This theorem may be generalized so called standard 1-parabolic transformations.
Definition 1. The transformation q of the form (1) is called standard 1-parabolic if there is an affine map A such that

$$
\begin{equation*}
q^{A}=<f_{1}\left(x_{1}, \ldots, x_{n-1}\right), \ldots, f_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), x_{n}+f_{n}\left(x_{1}, \ldots, x_{n-1}\right)> \tag{4}
\end{equation*}
$$

Theorem 2. Let q be an arbitrary nonlinear standard 1-parabolic transformation then

$$
T G A_{n}=<q, A G L_{n}>
$$

Proof. The result is a direct corollary of Theorem 1. Really, without lost of generality one can suppose that q has the form (4). Let $q^{-1}=<g_{1}, \ldots, g_{n-1}, x_{n}$ $h_{n}\left(x_{1}, \ldots, x_{n-1}\right)>$, then

$$
\begin{equation*}
g_{i}\left(f_{1}, \ldots, f_{n-1}\right) \equiv x_{i}, f_{n}+h_{n}\left(f_{1}, \ldots, f_{n-1}\right) \equiv 0 \tag{5}
\end{equation*}
$$

If all g_{i} are linear then the map q has the form $U \cdot t, U \in A G L_{n}, t \in B_{n}$. Otherwise, for number i such that g_{i} is nonlinear polynomial let us use the transvection $A_{n, i}=$ $<x_{1}, \ldots, x_{n-1}, x_{n}+x_{i}>\in A G L_{n}$ and get the element $q^{A_{n, i} \cdot q^{-1}}=<x_{1}, \ldots, x_{n-1}, x_{n}-$ $x_{i}+g_{i}>$ which is nonlinear triangular.

Definition 2. A map $q \in G A_{n}$ is called biparabolic if it can be represented as a composition of two standard 1-parabolic maps.

In particular bitriangular maps, which were defined in [6] as maps of the kind $C_{0} \cdot t_{1} \cdot C_{1} \cdot t_{2} \cdot C_{2}, \quad t_{1}, t_{2} \in B_{n}, C_{k} \in A G L_{n}$, form a subclass of biparabolic ones. Let $G=<A G L_{n}, q>$, where q is a biparabolic map. Without lost of generality one can suppose that $q \in G$ has the form $q=q_{1} \cdot q_{2}^{A}, A \in G L_{n}$. It is clear that standard 1- parabolic maps are permutable with the translations along the last coordinate $c_{n}: x_{i} \rightarrow x_{i}, i<n, x_{n} \rightarrow x_{n}+1,1 \in K$. This fact could be used for proving the same result ($G=T G A_{n}$) for biparabolic maps q. Really, the map q_{2}^{A} is permutable with the translation $c=c_{n}^{A} \in A_{n}^{+}$, so we can get the standard 1-parabolic map $q^{c} \cdot q^{-1}=q_{1}^{c} q_{1}^{-1} \in G$. Thus for most biparabolic maps the result can be deduced from Theorem 2. But it may happen that q_{3} will be a linear map and the application of this theorem is impossible. In [7] (theorem 3) this situation was considered for bitriangular maps in the dimension $n=3$. Next theorem is a generalization of that result.

Theorem 3. Let q be an arbitrary nonlinear biparabolic transformation then

$$
T G A_{3}=<q, A G L_{3}>
$$

Proof. Let $G=<q, A G L_{3}>$ As was mentioned above, we can suppose that $q=$ $p_{1} \cdot p_{2}^{A}$, where $p_{1}, p_{2} \in G A_{n}^{(1)}$ (without linear parts). If $A=B_{1} \cdot W \cdot B_{2}$ is a Brua decomposition, where W is a permutation matrix and B_{1}, B_{2} are lower triangular matrices then we have $B_{2} q B_{2}^{-1}=p_{1}^{B_{2}^{-1}} \cdot\left(p_{2}\right)^{B_{1} \cdot W} \in G$. Since the maps $p_{1}^{B_{2}^{-1}},\left(p_{2}\right)^{B_{1}}$
are standard 1-parabolic transformations also without linear parts, then without lost of generality one can suppose that $q=p_{1} \cdot p_{2}^{W}$. Moreover, the maps $p_{i}^{(1,2)}, i=1,2$, are standard 1- parabolic ones and so one can suppose that there is an element $q \in G$ of the form

$$
\begin{equation*}
q=p \cdot p_{1}^{(1,3)} \tag{6}
\end{equation*}
$$

Let $p=<f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right), x_{3}+f_{3}\left(x_{1}, x_{2}\right)>$ and $p^{-1}=<g_{1}\left(x_{1}, x_{2}\right)$, $g_{2}\left(x_{1}, x_{2}\right), x_{3}+g_{3}\left(x_{1}, x_{2}\right)>$ and identities (5) hold. If $\operatorname{deg}_{x_{1}} f_{2}<\operatorname{deg}_{x_{1}} f_{1}$ then one can remove the map q by $(1,2) \cdot q$, where $(1,2)=<x_{2}, x_{1}, x_{3}>$ is a transposition. So we can suppose that $\operatorname{deg}_{x_{1}} f_{2} \geq \operatorname{deg}_{x_{1}} f_{1}$. On the other hand, if p has a decomposition $p=p^{\prime} g$, where $g=<x_{1}+h\left(x_{2}\right), x_{2}, x_{3}>$, and p^{\prime} has the form (4) then we can rewrite the map q in such a manner $q=p^{\prime} \cdot\left(g^{(1,3)} \cdot p_{1}\right)^{(1,3)}$. Since $g^{(1,3)}$ is a triangular map then $g^{(1,3)} \cdot p_{1}$ is a 1-parabolic map. Hence, we can suppose also that p doesn't admit such decomposition $p=p^{\prime} \cdot g$, where $h \not \equiv 0$.

Since the second factor of (6) is permutable with translation $c_{1}=<x_{1}+$ $1, x_{2}, x_{3}>$, one can get an element $q_{3}=q^{c_{1}} \cdot q^{-1}=p_{1}^{c_{1}} \cdot p_{1}^{-1} \in G$. As was mentioned above, the map q_{3} has the form (4) and if it isn't a linear one then the result follows from Theorem 2. Let us investigate the situation when $q_{3}=\Lambda \cdot x+z \in A G L_{n}$, here $\Lambda=\left(\lambda_{i, j}\right), i, j=1,2,3, z=\left(z_{1}, z_{2}, z_{3}\right)$. The equality $p_{1}^{c_{1}} \cdot p_{1}^{-1}=q_{3}$ leads to the coordinate equalities

$$
\begin{array}{r}
f_{i}\left(g_{1}+1, g_{2}\right)=\lambda_{i 1} x_{1}+\lambda_{i 2} x_{2}+\lambda_{i 3} x_{3}+z_{i}, i=1,2 ; \\
x_{3}+g_{3}\left(x_{1}, x_{2}\right)+f_{3}\left(g_{1}+1, g_{2}\right)=\lambda_{31} x_{1}+\lambda_{32} x_{2}+\lambda_{33} x_{3}+z_{3} .
\end{array}
$$

By comparing the coefficients of x_{3} we can obtain $\lambda_{i 3}=0, \lambda_{33}=1$. If we take in account the identities (5) and act on the previous equalities by p we get

$$
\begin{gather*}
f_{1}\left(x_{1}+1, x_{2}\right)=\lambda_{11} f_{1}+\lambda_{12} f_{2}+z_{1} \tag{7}\\
f_{2}\left(x_{1}+1, x_{2}\right)=\lambda_{21} f_{1}+\lambda_{22} f_{2}+z_{2} \tag{8}\\
f_{3}\left(x_{1}+1, x_{2}\right)=\lambda_{31} f_{1}+\lambda_{32} f_{2}+f_{3}+z_{3}
\end{gather*}
$$

Let us represent the coordinates of p in the form

$$
f_{i}=\sum_{s=0}^{M_{i}} \phi_{s}^{i}\left(x_{2}\right) x_{1}^{s},
$$

$\phi_{M_{i}}^{i} \not \equiv 0, i=1,2,3$. If $M_{1}=M_{2}=M$ then $M>0$ and by comparing the coefficients of x_{1}^{M} in (7),(8) one can get

$$
\phi_{M}^{i}=\lambda_{i 1} \phi_{M}^{1}+\lambda_{i 2} \phi_{M}^{2}, \quad i=1,2 .
$$

If $\phi_{M}^{1}, \phi_{M}^{2}$ are linear independent polynomials over K then $\lambda_{i, j}=\delta_{i, j}$ (Kroneker's symbol). Comparing of the coefficients of x_{1}^{M-1} leads to the equality $M \phi_{M}^{i}+\phi_{M-1}^{i}=$ ϕ_{M-1}^{i} which implies the contradiction $\phi_{M}^{i} \equiv 0, i=1,2$. So $\phi_{M}^{2}\left(x_{2}\right)=\mu \phi_{M}^{1}\left(x_{2}\right)$ for some $\mu \in K$. Let us use the transvection $U=<x_{1}-\mu x_{2}, x_{2}, x_{3}>$ and replace
$q \rightarrow U \cdot q$. In such a manner we get a map of the form (6) with $\phi_{M_{1}}^{1} \equiv 0$ in p i.e. for this map $M=M_{2}>M_{1}$. Comparing the coefficients of x_{1}^{M} in identities (7),(8) leads to the equalities $0=\lambda_{12} \phi_{M}^{2}, \phi_{M}^{2}=\lambda_{22} \phi_{M}^{2}$ which imply that $\lambda_{12}=0, \lambda_{22}=1$. Let us compare the coefficients of $x_{1}^{M_{1}-1}$:

$$
\phi_{M-1}^{1}=\lambda_{11} \phi_{M-1}^{1}, \quad M \phi_{M}^{2}+\phi_{M-1}^{2}=\lambda_{21} \phi_{M-1}^{1}+\phi_{M-1}^{2} .
$$

It follows that $\phi_{M-1}^{1} \not \equiv 0\left(M_{1}=M-1\right)$ and $\lambda_{11}=1$. It is clear that the highest degree of x_{1} which can be present by jacobian of the pair $\left(f_{1}, f_{2}\right)$ does not exceed $2 M-2$. With regard to the equality $M \phi_{M}^{2}=\lambda_{21} \phi_{M-1}^{1}$, the jacobian condition (2) leads to the identity $\phi_{M}^{2} \cdot \frac{d \phi_{M}^{2}}{d x_{2}}=0$, hence, $\phi_{M}^{2}=$ const. If $M>2$ then comparing the coefficients of x_{1}^{M-2} in (7) leads to the contradiction $(M-1) \phi_{M-1}^{1}+\phi_{M-2}^{1}=\phi_{M-2}^{1}$, i.e. $\phi_{M-1}^{1}=0$. Hence, $M=2$ or $M=1$. In the first case from (7) we have $\phi_{1}^{1}=z_{1}$. The equalization of monomials without x_{1} in (8) leads to the equality

$$
\frac{M(M-1)}{2} \phi_{2}^{2}+(M-1) \phi_{1}^{2}+\phi_{0}^{2}=\lambda_{21} \phi_{0}^{1}+\phi_{0}^{2}+z_{2},
$$

which under $M=2$ implies $\phi_{1}^{2}=\mu \phi_{0}^{1}+$ const, $\mu \in K$. After all we obtain that

$$
f_{1}=z_{1} x_{1}+\phi_{0}^{1}\left(x_{2}\right), \quad f_{2}=\phi_{2}^{2} x_{1}^{2}+\left(\mu \phi_{0}^{1}\left(x_{2}\right)+\text { const }\right) x_{1}+\phi_{0}^{2}\left(x_{2}\right) .
$$

This implies that p can be decomposed in such a manner

$$
\begin{gathered}
p=<z_{1} x_{1}, \phi_{2}^{2}\left(x_{1}-\left(z_{1}\right)^{-1} \phi_{0}^{1}\left(x_{2}\right)\right)^{2}+\left(\mu \phi_{0}^{1}\left(x_{2}\right)+\text { const }\right)\left(x_{1}-\left(z_{1}\right)^{-1} \phi_{0}^{1}\left(x_{2}\right)\right)+\phi_{0}^{2}\left(x_{2}\right), \\
x_{3}+f_{3}\left(x_{1}-\left(z_{1}\right)^{-1} \phi_{0}^{1}\left(x_{2}\right), x_{2}\right)>\cdot<x_{1}+\left(z_{1}\right)^{-1} \phi_{0}^{1}\left(x_{2}\right), x_{2}, x_{3}>.
\end{gathered}
$$

But, as was mentioned above, the map p doesn't admit such decomposition and so $\phi_{0}^{1}\left(x_{2}\right) \equiv 0$. Thus $p=<z_{1} x_{1}, \phi_{2}^{2} x_{1}^{2}+$ const $x_{1}+\phi_{0}^{2}\left(x_{2}\right), x_{3}+f_{3}\left(x_{1}, x_{2}\right)>$ is a triangular map. In the case $M=1$ it is evident that the map (1,2) t is a triangular one. On the other hand, we can repeat our reasoning for the map $\hat{q}=q^{-(1,3)}=p_{1}^{-1} \cdot p^{-(1,3)}$ and conclude that p_{1} is also triangular. This means that in fact, the situation when $q_{3}=q^{c_{1}} \cdot q^{-1}, q_{4}=\hat{q}^{c_{1}} \cdot \hat{q}^{-1} \in A G L_{n}$, can be realized when both elements owe triangular ones i.e. when q is bitriangular. So the result follows from Theorem 3 from [7].

References

[1] Shafarevich I. On some Infinite Dimensional Groups II. Izv. AN USSR, Ser. math., 1981, 45, p. 214-226.
[2] Kac V. Simple irreducible graded Lie algebrais of finite growth. Izv. AN USSR, Ser. math., 1969, 32, p. 1923-1967.
[3] Bodnarchuk Yu. Some extreme properties of the affine group as an automorphism group of the affine space. Contribution to General Algebra, 2001, 13, p. 15-29.
[4] Shestakov I., Umirbaev U. The tame and the wild automorphisms of polynomial rings in three variables. Preprint São Paulo University, 2002, 1, p. 1-35.
[5] Mortimer B. Permutation Groups containing Affine Groups of the same degree. J. of London Math. Soc., 1977, 15, p. 445-455.
[6] Bodnarchuk Yu. Generating properties of triangular and bitriangular birational automorphisms of an affine space. Dopovidi NAN Ukraine, 2002, 11, p. 7-22.
[7] Bodnarchuk Yu. On affine-split tame invertible polynomial maps in three variables. Buletinul A. Ş. a R. M., Matematika, 2002, 2(39), p. 37-43.

University "Kiev Mohyla Academy"
Received September 23, 2003
str. Scovoroda 2, Kyiv 40070
Ukraine
E-mail:yubod@ukma.kiev.ua

