
BULETINUL ACADEMIEI DE ŞTIINŢE
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The following isomorphism theorem is often used in algebra:

If R is a group (a ring), I its normal subgroup (ideal) and A is a subgroup
(subring) in R, then the groups (rings) A/(A ∩ I) and (A + I)/I are isomorphic.

The similar theorem is not valid for topological groups (topological rings), but
the following one is:

If (R, τ) is a topological group (topological ring), 1 I is a normal subgroup (ideal)
in R and A is a subgroup (subring) in R then the canonical isomorphism which maps
the topological group (topological ring) (A, τ |A)/(A ∩ I) to the topological group
(topological ring) (A + I, τ |A+I)/I is continuous.

It follows from Theorem 1 that the assertion on the continuity of the canonical
isomorphism has no generalization.

The case when A is a normal subgroup in the group R, respectively, ideal in the
ring R is often considered in the theory of group and the theory of rings, especially
in the radical theory of groups and rings. The canonical isomorphism possesses
additional properties in this case. The notion of the semitopological isomorphism of
topological groups is introduced in the article for their study (see Definition 2).

The notion of semitopological isomorphism and the study of its properties for
topological rings were given in [1].

The semitopological isomorphism can be considered not only in the class of
all topological groups but also in its subclasses, (in particular, for the class of all
Hausdorff topological groups and other classes).

Theorem 4 is a criterion for a continuous isomorphism to be semitopological and
is the main result of the article. It is proved that the property of an isomorphism to
be semitopological is kept by operations of taking subgroups (Theorem 7), quotient
groups (Theorem 8) and direct products (Theorem 9).

1 Theorem. If ξ : (G, τ) → (G, τ) is a continuous isomorphism of topological
groups (topological rings) (G, τ) and (G, τ), then there exists a topological group

c© V.I. Arnautov, 2004
1A topological group (topological ring) is not supposed to be Hausdorff.
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(topological ring) (Ĝ, τ̂) 2 and a topological (i.e. open and continuous) homomor-
phism ξ̂ : (Ĝ, τ̂) → (G, τ), such that the following assertions hold:

τ̂ |G= τ , i.e. (G, τ) is a subgroup (subring) of the topological group (topological
ring) (Ĝ, τ̂);

ξ̂ |G= ξ, i.e. the homomorphism ξ̂ is an extension of the isomorphism ξ.

Proof. Consider a topological group (topological ring) (Ĝ, τ̂) which is equal to the
direct product of topological groups (topological rings) (G, τ) and (G, τ).

If G′ = {
(
g, ξ(g)

)
| g ∈ G}, then G′ is a subgroup (subring) of the group

(ring) Ĝ.
Define a mapping ξ′ : G → G′ as follows: ξ′(g) = (g, ξ(g)).
Prove that ξ′ : (G, τ) → (G′, τ̂ |G′) is a topological isomorphism of topological

groups (topological rings).
Indeed, since ξ : G → G is an isomorphism, then so is ξ′.
If U is an arbitrary neighbourhood of the identity (zero) in (G′, τ̂ |G′), then

there exist neighbourhoods of the identities (zeroes) V and V in topological groups
(topological rings) (G, τ) and (G, τ) respectively such that {(g, g) | g ∈ V, g ∈
V } ∩ G′ ⊆ U . Since ξ : (G, τ) → (G, τ) is a continuous isomorphism then there
exists a neighbourhood of the identity (zero) V1 in (G, τ) such that V1 ⊆ V and
ξ(V1) ⊆ V . Hence

ξ′(V1) = {
(
g, ξ(g)

)
| g ∈ V1} ⊆ {(g, g) | g ∈ V, g ∈ V } ∩ G′ ⊆ U,

and therefore ξ′ : (G, τ) → (G′, τ̂G′) is a continuous isomorphism.
If now V is an arbitrary neighbourhood of the identity (zero) in (G, τ) then

W = {(g, g) | g ∈ V, g ∈ G} is a neighbourhood of the identity (zero) in (Ĝ, τ̂),
and hence W ∩ G′ is a neighbourhood of the identity (zero) in (G′, τ̂ |G′). Since

ξ′(V ) = {
(
g, ξ(g)

)
| g ∈ V } ⊇ W ∩ G′,

then ξ′(V ) is a neighbourhood of the identity (zero) in (G′, τ̂ |G′). Hence ξ′ :
(G, τ) → (G′, τ̂G′) is proved to be an open isomorphism and therefore ξ′ is a
topological isomorphism.

When identifying the element g ∈ G with the element
(
g, ξ(g)

)
∈ G′ we obtain

that the topological group (topological ring) (G, τ) is a subgroup (subring) of the
topological group (topological ring) (Ĝ, τ̂) and ξ(g) = ξ

(
g, ξ(g)

)
.

It remains to prove that there exists a topological homomorphism ξ̂ : (Ĝ, τ̂) →
(G, τ) which is an extension of the isomorphism ξ.

Define a mapping ξ̂ : (Ĝ, τ̂) → (G, τ) as follows: ξ̂(g, g) = g. Then it is a
topological homomorphism.

Since ξ̂(g, ξ(g)) = ξ(g) then ξ̂ is a topological homomorphism extending the
isomorphism ξ, that completes the proof. �

2It is clear that if the topological group (topological ring) (G, τ) is Hausdorff then so is (G, τ ).

In this case without loss of generality ( bG, bτ) is also assumed to be so, otherwise ( bG, bτ ) is replaced

by ( bG, bτ )/bI, where bI = [{e}]( bG, bτ).
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2 Definition. A continuous isomorphism ξ : (G, τ) → (G, τ) of topological groups
is said to be a semitopological isomorphism if there exists a topological group 3 (Ĝ, τ̂ )
and a topological (i.e. open and continuous) homomorphism ξ̂ : (Ĝ, τ̂) → (G, τ )
such that the following assertions hold:

G is a normal subgroup in the group Ĝ;

τ̂ |G= τ , i.e (G, τ) is a subgroup of the topological group (Ĝ, τ̂);

ξ̂ |G= ξ, i.e. the homomorphism ξ̂ is an extension of the isomorphism ξ.

3 Proposition. Let (G, τ) and (G, τ) be topological groups and ξ : (G, τ) → (G, τ )
be a semitopological isomorphism. If (Ĝ, τ̂) is a topological group and ξ̂ a topological
homomorphism mentioned in Definition 2, then the following assertions hold:

1) G ∩ ker ξ̂ = {e};

2) for every ĝ ∈ Ĝ there exist the only pair of elements g ∈ G and b ∈ ker ξ̂ such
that ĝ = g · b;

3) c · h · c−1 = h for every c ∈ ker ξ̂ and h ∈ G.

Proof. Since ξ is an isomorphism and ξ̂ |G= ξ then ker ξ̂ ∩ G = ker ξ = {e}, that
proves the assertion 1.

2) Let ĝ ∈ Ĝ and g = ξ̂(ĝ) ∈ G. Since ξ : G → G is a bijection then there exists
the only element g ∈ G such that ξ(g) = g. Consider the element b = g−1 · ĝ. Hence
g · b = ĝ and

ξ̂(b) = ξ̂(g−1 · ĝ) = ξ̂(g−1) · ξ̂(ĝ) = g−1 · g = e,

i.e. b ∈ ker ξ̂. That completes the proof of the assertion 2.

3) Let c ∈ ker ξ̂ and h ∈ G. Since G is a normal subgroup of Ĝ then c ·g ·c−1 ∈ G.
Hence

ξ(c · h · c−1) = ξ̂(c · h · c−1) = ξ̂(c) · ξ̂(h) · ξ̂(c−1) = e · ξ̂(h) · e = ξ̂(h) = ξ(h).

Since ξ is an isomorphism then c · h · c−1 = h, that completes the proof of the
proposition. �

4 Theorem. If ξ : (G, τ) → (G, τ) is a continuous isomorphism of topological
groups (G, τ) and (G, τ), then the isomorphism ξ is semitopological iff the following
two conditions hold:

1. For every neighbourhood V0 of the identity of the topological group (G, τ) there
exist neighbourhoods V 1 and V1 of the identity in (G, τ) and (G, τ), respectively,
such that v · V1 · v

−1 ⊆ V0 for every v ∈ ξ−1(V 1);

2. For every neighbourhood V0 of the identity in the topological group (G, τ) and
every element g ∈ G there exists a neighbourhood V 1 of the identity in (G, τ) such
that g · v · g−1 · v−1 ∈ V0 for every v ∈ ξ−1(V 1).

3It is clear that if the topological group (topological ring) (G, τ) is Hausdorff then so is (G, τ ).

In this case without loss of generality ( bG, bτ) is also assumed to be so, otherwise ( bG, bτ ) is replaced

by ( bG, bτ )/bI, where bI = [{e}]( bG, bτ).
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Proof. The necessity.
1. Let (Ĝ, τ̂) be a topological group and ξ̂ : (Ĝ, τ̂) → (G, τ) be the topolo-

gical homomorphism, mentioned in Definition 2. Since (G, τ) is a subgroup of the
topological group (Ĝ, τ̂) then there exists a neighbourhood V̂0 of the identity in the
topological group (Ĝ, τ̂) such that V0 = G∩ V̂0. Since (Ĝ, τ̂) is a topological group
then there exists a neighbourhood of the identity V̂1 such that V̂1 · V̂1 · V̂ −1

1 ⊆ V̂0.

Hence V 1 = ξ̂(V̂ ) is a neighbourhood of the identity in (G, τ) and V1 = V̂1 ∩G is a
neighbourhood of the identity in (G, τ).

Check that the assertion 1 holds for the neighbourhood V 1 of the identity in
(G, τ) and neighbourhood V1 of the identity in (G, τ).

Indeed, if v is an arbitrary element from ξ−1(V 1) = ξ−1(ξ̂(V̂1)) ⊆ ξ̂−1(ξ̂(V̂1)) =
V̂1 · ker ξ̂, then there exist elements ĝ ∈ V̂1 and b ∈ ker ξ̂ such that v = ĝ · b. Hence
we obtain taking into account the assertion 3 of Proposition 3 that for every element
g ∈ ξ−1(V 1) ⊆ G holds the equality

v · g · v−1 = (ĝ · b) · g · (ĝ · b)−1 = ĝ · (b · g · b−1) · ĝ−1 =

ĝ · g · ĝ−1 ∈ V̂1 · V1 · V̂
−1
1 ⊆ V̂1 · V̂1 · V̂

−1
1 ⊆ V̂0.

Except that, since G is a normal subgroup in Ĝ then v · g · v−1 ∈ v ·G · v−1 ⊆ G and
therefore v · g · v−1 ∈ V̂0 ∩ G = V0. So the assertion 1 holds since elements g and v
are supposed to be arbitrary elements.

2. Suppose V0 to be an arbitrary neighbourhood of the identity in the group
(G, τ) and g ∈ G. If (Ĝ, τ̂) is a topological group and ξ̂ : (Ĝ, τ̂) → (G, τ )
is a topological homomorphism mentioned in the definition 2 then there exists a
neighbourhood V̂0 of the identity in the topological group (Ĝ, τ̂) such that V0 =
G∩ V̂0. Since (Ĝ, τ̂) is a topological group then there exists a neighbourhood of the
identity V̂1 in (Ĝ, τ̂) such that g · V̂1 · g

−1 · V̂ −1
1 ⊆ V̂0 and since ξ̂ : (Ĝ, τ̂) → (G, τ )

is a topological homomorphism then V 1 = ξ̂(V̂ ) is a neighbourhood of the identity
in (G, τ).

Prove that the assertion 2 holds for the neighbourhood of the identity V 1.
Indeed, let v ∈ ξ−1(V 1) ⊆ ξ̂−1(ξ̂(V̂1)) = V̂1 · ker ξ̂. Then there exist elements

ĝ ∈ V̂1 and b ∈ ker ξ̂ such that v = ĝ · b. We get, taking into account the assertion 3
of the Proposition 3, that

g · v · g−1 · v−1 = g · (ĝ · b) · g−1 · (ĝ · b)−1 = g · ĝ · (b · g−1 · b−1) · ĝ−1 =

g · ĝ · g−1 · ĝ−1 ∈ g · V̂1 · g
−1 · V̂ −1

1 ⊆ V̂0.

Since g · v · g−1 · v−1 ∈ G then g · v · g−1 · v−1 ∈ G ∩ V̂0 = V0.
The necessity is completely proved.

The sufficiency.
Let (G, τ) and (G, τ) be topological groups and ξ : (G, τ) → (G, τ) be a

continuous isomorphism satisfying the assertions 1 and 2.



SEMITOPOLOGICAL ISOMORPHISM OF TOPOLOGICAL GROUPS 19

Write Ĝ for the direct product of groups G and G, i.e.
Ĝ = {(g, g) | g ∈ G, g ∈ G}. Define a basis of neighbourhoods of the identity B̂
on Ĝ as follows: write B and B for the sets of all neighbourhoods of the identity in
topological groups (G, τ) and (G, τ) respectively. Consider the set B̂ = {W (V, V ) |
V ∈ B, V ∈ B} of subsets W (V, V ) = {

(
g · ξ−1(g), g

)
| g ∈ V, g ∈ (V )} of the

group Ĝ.
Check the set B̂ to be a basis of a certain filter satisfying the assertions (GVI),

(GVII), (GVIII) ( see [2], p. 14, proposition 1) i.e. that the set B̂ is a basis of
neighbourhoods of zero in a certain group topology τ̂ on Ĝ.

Since (e, e) =
(
e · ξ−1(e), e

)
∈ W (V, V ) for every V ∈ B and V ∈ B, then

W (V, V ) 6= ∅, i.e. ∅ /∈ B̂. Except that if V, U ∈ B and V , U ∈ B then V ∩ U ∈ B,
V ∩U ∈ B and W (V ∩U, V ∩U) ⊆ W (V, V )∩W (U, U). Hence the set B̂ is a basis
of a certain filter.

Let W (V1, V 1) ∈ B̂. Since (G, τ) and (G, τ) are topological groups then there
exists V2 ∈ B and V 2 ∈ B such that V2 ·V2 ⊆ V1 and V 2 ·V 2 ⊆ V 1. By the assertion
1 there exists V3 ∈ B and V 3 ∈ B, such that v · V3 · v−1 ⊆ V2 for every element
v ∈ ξ−1(V 3). Without loss of generality, assume that V3 ⊆ V2 and V 3 ⊆ V 2.

Prove that W (V3, V 3) · W (V3, V 3) ⊆ W (V1, V 1).
Indeed, let

(
a · ξ−1(a), a

)
∈ W (V3, V 3) and

(
b · ξ−1(b), b

)
∈ W (V3, V 3). Hence:

(
a · ξ−1(a), a

)
·
(
b · ξ−1(b), b

)
=

(
a · ξ−1(a) · b · ξ−1(b), a · b

)
,

where a · b ∈ V 3 · V 3 ⊆ V 2 · V 2 ⊆ V 1 and

a · ξ−1(a) · b · ξ−1(b) = a · ξ−1(a) · b ·
(
ξ−1(a)

)
−1

· ξ−1(a) · ξ−1(b) =

a ·
(
·ξ−1(a) · b · ξ−1(a))−1

)
· ξ−1(a · b) ∈ V3 · V2 · ξ

−1(a) · b)
)
⊆ V1 · ξ

−1(ab).

Therefore
(
a · ξ−1(a), a

)
·
(
b · ξ−1(b), b

)
∈ W (V1, V 1). Since

(
a · ξ−1(a), a

)
and(

b · ξ−1(b), b
)

are arbitrary elements then W (V3, V 3) · W (V3, V 3) ⊆ W (V1, V 1),
i.e. the assertion (GVI) is satisfied.

Let W (V1, V 1) ∈ B̂. By the assertion 1 there exists V2 ∈ B and V 2 ∈ B such
that v ·V2 · v

−1 ⊆ V1 for every v ∈ ξ−1(V 2). Since (G, τ) and (G, τ) are topological

groups then there exist V3 ∈ B and V 3 ∈ B such that V −1
3 ⊆ V2 and V

−1

3 ⊆ V 1∩V 2.

Prove that
(
W (V3, V 3)

)
−1

⊆ W (V1, V 1).

Indeed, if
(
b·ξ−1(b), b

)
∈ W (V3V 3) then

(
b·ξ−1(b), b

)
−1

=
(
(ξ−1(b))−1 ·b−1, b

−1)

and b
−1

∈ V
−1

3 ⊆ V 1. Since ξ−1(b
−1

) ∈ ξ−1(V
−1

3 ) ⊆ ξ−1(V 2) and b−1 ∈ V −1
3 ⊆ V2

then

(
ξ−1(b)

)
−1

· b−1 =
(
ξ−1(b)

)
−1

· b−1 · ξ−1(b) ·
(
ξ−1(b)

)
−1

=
(
ξ−1(b

−1
) · b−1 · (ξ−1(b

−1
))−1

)
· ξ−1(b

−1
) ∈ V1 · ξ

−1(b
−1

).

Hence
(
b · ξ−1(b), b

)
−1

∈ W (V1, V 1).
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Since
(
b · ξ−1(b), b

)
is an arbitrary element then

(
W (V3, V 3)

)
−1

⊆ W (V1, V 1),

i.e. the assertion (GVII) is satisfied.
Let W (V1, V 1) ∈ B̂ and (g, g) ∈ Ĝ.
Since (G, τ) and (G, τ) are topological groups and ξ is an isomorphism, then

there exists V2 ∈ B and V 2 ∈ B such that g · V 2 · g
−1 ⊆ V 1. and

(g · V2 · g
−1) · V2 ·

(
ξ−1(g−1) · V2 ·

(
ξ−1(g−1)

)
−1

)
⊆ V1.

By the condition 2 for the neighbourhood V2 ∈ B and elements g and ξ−1(g−1) ∈

G there exists a neighbourhood V 3 ∈ B such that g · h · g−1h
−1

∈ V2 and

ξ−1(g−1) · h ·
(
ξ−1(g−1)

)
−1

· h−1 ∈ V2

for every element h ∈ ξ−1(V 3). Without loss of generality assume V
−1

3 = V 3 ⊆ V 2.
Prove that

(g, g) · W (V2, V 3) · (g, g)−1 ⊆ W (V1, V 1).

Indeed, if
(
v · ξ−1(v), v

)
∈ W (V2, V 3), then v ∈ V2 and v ∈ V 3. Hence

(g, g) ·
(
v · ξ−1(v), v

)
· (g, g)−1 =

(
g · v · ξ−1(v) · g−1, g · v · g−1

)
=

((
g · v · ξ−1(v) · g−1

)
·
(
ξ−1(g · v−1 · g−1)

)
·
(
ξ−1(g · v−1 · g−1)

)
−1

, g · v · g−1
)

=
((

g · v · ξ−1(v) · g−1
)
·
(
ξ−1(g · v−1 · g−1)

)
·
(
ξ−1(g · v · g−1)

)
, g · v · g−1

)
where

g · v · g−1 ∈ g · V 3 · g
−1 ⊆ g · V 2 · g

−1 ⊆ V 1 and
(
g · v · ξ−1(v) · g−1

)
·
(
ξ−1(g · v−1 · g−1)

)
=

(
g · v · g−1 · g · ξ−1(v) · g−1

)
·
(
ξ−1(v))−1 · ξ−1(v) · ξ−1(g) · ξ−1(v−1) · ξ−1(g−1)

)
∈

(g · V2 · g
−1) ·

(
g · ξ−1(v) · g−1 · (ξ−1(v))−1

)
×

(
ξ−1(v) · ξ−1(g) · ξ−1(v−1) · ξ−1(g−1)

)
⊆

(g · V2 · g
−1) · V2 ·

(
ξ−1(g) · ξ−1(g−1) · ξ−1(v) · ξ−1(g) · ξ−1(v−1) · ξ−1(g−1)

)
=

(g · V2 · g
−1) · V2 ·

(
ξ−1(g) ·

(
ξ−1(g−1) · ξ−1(v) · ξ−1(g)

)
· (ξ−1(v))−1) · ξ−1(g−1)

)
⊆

(g · V2 · g
−1) · V2 ·

(
ξ−1(g) · V2 · ξ

−1(g−1)
)
⊆ V1,

since ξ−1(v) ∈ ξ−1(V 3) (see the definition of the neighbourhood V 3). Hence

(g, g) · (v · ξ−1(v), v) · (g, g)−1 =
((

g · v · ξ−1(v) · g−1
)
·
(
ξ−1(g · v−1 · g−1)

)
·
(
ξ−1(g · v·g−1)

)
, g · v · g−1

)
∈ W (V1, V 1).

Since (v · ξ−1(v), v) is an arbitrary element then

(g, g) · W (V2, V 3) · (g, g)−1 ⊆ W (V1, V 1),
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i.e. the assertion (GVIII) holds.

Therefore the set B̂ is a basis of neighbourhoods of the identity in a certain group
topology τ̂ on the group Ĝ. Prove that the topological group (Ĝ, τ̂) is the desired
one.

One can easily see that G′ = {(g, e) | g ∈ G} is a normal subgroup in Ĝ and,
since W (V, V ) ∩ G′ = {(g, e) | g ∈ V }, then the mapping ξ′ : (G, τ) → (G′, τ̂ |G′)
which puts in correspondence the element (g, e) ∈ G′ to the element g ∈ G is a
topological isomorphism.

Identify the topological group (G, τ) with a subgroup (G′, τ̂ |G′) of a topological
group (Ĝ, τ̂) with respect to the mapping ξ′.

Note that G′ is a normal subgroup in Ĝ. Hence taking into account the identifica-
tion given above we get that ξ(g, e) = ξ(g) and hence the homomorphism ξ̂ : Ĝ → G
putting ξ̂(g, g) in correspondence to ξ(g) is an extension of the isomorphism ξ. It
remains to check only the homomorphism ξ̂ : (Ĝ, τ̂) → (G, τ) to be topological, i.e.
to be continuous and open.

Let V ∈ B. Since (G, τ) is a topological group then there exists a neighbourhood
V 1 ∈ B such that V 1·V 1 ⊆ V . Since ξ : (G, τ) → (G, τ) is a continuous isomorphism
then there exists a neighbourhood V1 ∈ B, such that ξ(V1) ⊆ V 1. Hence

ξ̂(W (V1, V 1)) = {ξ̂
(
g · ξ−1(g), g

)
| g ∈ V1, g ∈ V 1} =

{ξ̂
(
g · ξ−1(g)

)
| g ∈ V1, g ∈ V 1} =

{ξ(g) · g) | g ∈ V1, g ∈ V 1} = ξ(V1) · V 1 ⊆ V 1 · V 1 ⊆ V ,

and hence ξ̂ : (Ĝ, τ̂) → (G, τ) is a continuous homomorphism.

Since

ξ̂(W (V, V )) = {ξ̂
(
g · ξ−1(g), g

)
| g ∈ V, g ∈ V } =

{ξ̂
(
g · ξ−1(g)

)
| g ∈ V, g ∈ V } ⊇ {ξ(e) · g) | g ∈ V } = V

for every neighbourhood V ∈ B then ξ̂ : (Ĝ, τ̂) → (G, τ) is an open homomorphism,
that completes the proof of Theorem. �

5 Corollary. Let (G, τ) be a group equipped with the discrete topology, (G, τ )
be a topological group and ξ : (G, τ) → (G, τ) be a continuous isomorphism.
The isomorphism ξ is semitopological iff for every element g ∈ G there exists a
neighbourhood V of the identity in (G, τ) such that g ·

(
ξ−1(v)

)
=

(
ξ−1(v)

)
· g for

every v ∈ V .

Proof. Necessity. Indeed, since the topology τ is discrete, then V0 = {e} is a
neighbourhood of the identity in (G, τ). If V 1 is a neighbourhood of the identity in
(G, τ) such that its elements satisfy the condition 2 of Theorem 4 for the element g ∈
G and neighbourhood of the identity V0 in (G, τ), then g ·ξ−1(v)·(ξ−1(v))−1 ·g−1 = e
for every element v ∈ V , which is equivalent to the assertion g · ξ−1(v) = ξ−1(v) · g
for every element v ∈ V .
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Sufficiency. Let V be an arbitrary neighbourhood of the identity in (G, τ). Since
{e} a neighbourhood of the identity in (G, τ) and ξ−1(ḡ) · e · (ξ−1ḡ)−1 = e ∈ V for
every element ḡ ∈ Ḡ then the condition 1 of Theorem 4 holds.

Except that since for every element ḡ ∈ Ḡ there exists a neighbourhood V̄1

of the identity in (Ḡ, τ̄) such that g · ξ−1(v̄) = ξ−1(v̄) · g for every v̄ ∈ V̄1 then
g ·ξ−1(v̄) ·g−1 · (ξ−1(v̄))−1 = e ∈ V for every v̄ ∈ V̄1. Hence the condition 2 Theorem
4 holds. �

6 Corollary. Let G and Ḡ be groups and f : G → Ḡ be a certain group isomorphism.
If {τγ | γ ∈ Γ} and {τ̄γ | γ ∈ Γ} are such families of group topologies on G and
Ḡ, respectively, that for every γ ∈ Γ the isomorphism f : (G, τγ) → (Ḡ, τ̄γ) is
semitopological where τ = sup{τγ | γ ∈ Γ} and τ̄ = sup{τ̄γ | γ ∈ Γ}, then so is the
isomorphism f : (G, τ) → (Ḡ, τ̄).

The corollary follows from Theorem 4 and from the outlook of neighbourhoods
of the identity in sup{τγ | γ ∈ Γ} (see 1.2.22 in [3]).

7 Theorem. Let (G, τ), (G, τ) be topological groups and ξ : (G, τ) → (G, τ) be a
semitopological isomorphism. If A is a subgroup of the group G and A = ξ(A), then
ξ |A: (A, τ |A) → (A, τ |A) is a semitopological isomorphism.

Proof. If U is a neighbourhood of the identity in (A, τ |A) then U = V ∩ A for
a certain neighbourhood V of the identity in (G, τ). Since ξ : (G, τ) → (G, τ )
is a semitopological isomorphism then there exist neighbourhoods V and V1 of the
identity in (G, τ) and (G, τ) respectively such that v · V1 · v−1 ⊆ V for every
element v ∈ ξ−1(V ). Hence (V1 ∩ A) and A ∩ V are neighbourhoods of identities in
(A, τ |A) and (A, τ |A) respectively. Note that since ξ : G → G is an isomorphism,
then ξ−1(A) = ξ−1(ξ(A)) = A and hence v · (V1 ∩ A) · v−1 ⊆ V ∩ A = U for
every v ∈ ξ−1

(
A ∩ V

)
. It means that the assertion 1 of Theorem 4 holds for the

isomorphism ξ |A: (A, τ |A) → (A, τ |A).
Let g ∈ A and U be a neighbourhood of the identity in (A, τ |A). Hence

U = V ∩ A for a certain neighbourhood V of the identity in (G, τ). Since ξ :
(G, τ) → (G, τ) is a semitopological isomorphism then for a neighbourhood V of
the identity in topological group (G, τ) and for the element g ∈ A ⊆ G there exists
a neighbourhood V 1 of the identity in (G, τ) such that g · v · g−1 · v−1 ∈ V for every
v ∈ ξ−1(V 1). Since ξ−1(A) = ξ−1(ξ(A)) = A then g · v · g−1 · v−1 ∈ V ∩ A = U for
every v ∈ ξ−1(V 1 ∩ A), i.e. the assertion 2 of Theorem 4 holds for the isomorphism
ξ |A: (A, τ |A) → (A, τ |A) . Hence ξ |A: (A, τ |A) → (A, τ |A) is a semitopological
isomorphism. �

8 Theorem. Let (G, τ) and (G, τ) be topological groups and ξ : (G, τ) → (G, τ )
be a semitopological isomorphism. If A is a normal subgroup of the group G and

G
ξ

−−−−→ G

η

y
yη

G/A
bξ

−−−−→ G/ξ(A)
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where:

η : G → G/A is the canonical homomorphism (i.e. η(g) = g · A);

η : G → G/(ξ(A)) is the canonical homomorphism (i.e. η(g) = g · ξ(A));

ξ̂ : G/A → G/(ξ(A)) is the canonical isomorphism (i.e. ξ̂(g · A) = ξ(g) · ξ(A)).
Hence ξ̂ : (G, τ)/A → (G, τ)/(ξ(A)) is a semitopological isomorphism.

Proof. If V̂0 is a neighbourhood of the identity in (G, τ)/A then V0 = η−1(V̂0) is
a neighbourhood of the identity in (G, τ). By the assertion 1 of Theorem 4 there
exist neighbourhoods V1 and V 1 of the identity in (G, τ) and (G, τ) respectively

such that v · V1 · v
−1 ⊆ V0 for every v ∈ ξ−1(V 1). Hence V̂1 = η(V1) and Ṽ1 = η(V 1)

are neighbourhoods of the identity in (G, τ)/A and (G, τ)/ξ(A), respectively.

Note that ξ̂
(
η(ξ−1(V 1))

)
= η(V 1) = Ṽ1. Hence if v̂ ∈ ξ̂−1(Ṽ1) then there exists

an element v ∈ ξ−1(V 1) such that η(v) = v̂. Hence

v̂ · V̂1 · v̂
−1 = η(v) · η(V1) · (η(v))−1 = η(v · V1 · v

−1) ⊆ η(V0) = η
(
η−1(V̂0)

)
= V̂0.

Hence the assertion 1 of Theorem 4 holds for the isomorphism
ξ̂ : (G, τ)/A → (G, τ)/(ξ(A)).

Check the assertion 2 of Theorem 4 to hold for the isomorphism
ξ̂ : (G, τ)/A → (G, τ)/(ξ(A)).

Let g̃ ∈ (G, τ)/(ξ(A)) and V̂ be a neighbourhood of the identity in (G, τ)/A.
Hence V = η−1(V̂ ) is a neighbourhood of the identity in (G, τ) and there exists
an element g ∈ G such that ĝ = η(g). Since the assertion 2 of Theorem 4 holds for
the homomorphism ξ : (G, τ) → (G, τ), then there exists such a neighbourhood
V 1 of the identity in (G, τ) that g · v · g−1 · v−1 ∈ V for every v ∈ ξ−1(V 1).

Hence Ṽ1 = η(V 1) is a neighbourhood of the identity in (G, τ)/(ξ(A)). Note that
η
(
ξ−1(V 1)

)
= ξ̂−1(η(V 1)) = ξ̂−1(Ṽ1).

If v̂ ∈ ξ̂−1(Ṽ1)), then there exists an element v ∈ ξ−1(V 1) such that η(v) = v̂.
Hence

ĝ · v̂ · ĝ−1 · v̂−1 = η(g) · η(v) ·
(
η(g)

)
−1

·
(
η(v)

)
−1

= η(g · v · g−1 · v−1) ∈ η(V ) = V̂ ,

i.e. the assertion 2 of Theorem 4 holds for the isomorphism
ξ̂ : (G, τ)/A → (G, τ)/(ξ(A)). The theorem is completely proved. �

9 Theorem. Let {(Gγ , τγ) | γ ∈ Γ} and {(Gγ , τ γ) | γ ∈ Γ} be two families of
topological groups and for every γ ∈ Γ there exists a semitopological isomorphism
ξγ : (Gγ , τγ) → (Gγ , τγ). If (Ĝ, τ̂) =

∏
γ∈Γ

(Gγ , τγ) and (G̃, τ̃) =
∏

γ∈Γ

(Gγ , τγ)

are direct products of these families equipped with the Tychonoff topology and ξ̂ :
Ĝ → G̃ is a canonical isomorphism (i.e. ξγ(prγ(ĝ)) = prγ ξ̂(ĝ)) for any γ ∈ Γ, then

ξ̂ : (Ĝ, τ̂) → (G̃, τ̃) is a semitopological isomorphism.

Proof. If V̂ is a neighbourhood of the identity in (Ĝ, τ̂), then there exists a finite
subset S ⊆ Γ such that for every γ ∈ S there exists a neighbourhood Vγ in (Gγ , τγ)
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such that
⋂

γ∈S

prγ
−1(Vγ) ⊆ V̂ . Since for every γ ∈ Γ the mapping ξγ : (Gγ , τγ) →

(Gγ , τγ) is a semitopological isomorphism then there exist neighbourhoods V γ and
Uγ of the identity in (Gγ , τγ) and (Gγ , τγ), respectively such that vγ ·Uγ ·v

−1
γ ⊆ Vγ

for every elements vγ ∈ ξ−1(V γ). Hence Ṽ =
⋂

γ∈S

pr−1
γ (Vγ) and Û =

⋂
γ∈S

pr−1
γ (Uγ)

are neighbourhoods of the identity in (G̃, τ̃) and (Ĝ, τ̂) respectively.
If v̂ ∈ ξ̂−1(Ṽ ) then prγ(v̂) ∈ ξ−1

γ (V γ) and therefore prγ(v̂) · Uγ · (prγ(v̂))−1 ⊆ Vγ

for every γ ∈ S. Hence v̂ · Û · v̂−1 ⊆ V̂ , i.e. the condition 1 of Theorem 4 holds for
the isomorphism ξ̂ : (Ĝ, τ̂) → (G̃, τ̃ ).

If ĝ ∈ Ĝ and V̂ is a neighbourhood of the identity in (Ĝ, τ̂), then there exists a
finite set S ⊆ Γ and for every γ ∈ S there exists a neighbourhood Vγ of the identity

in (Gγ , τγ) such that
⋂

γ∈S

pr−1
γ (Vγ) ⊆ V̂ . Since for every γ ∈ Γ the mapping ξγ :

(Gγ , τγ) → (Gγ , τγ) is a semitopological isomorphism then for the neighbourhood
Vγ of the identity in the topological group (Gγ , τγ) and for the element gγ = prγ(ĝ)

there exists a neighbourhood V γ of the identity in (Gγ , τγ) such that gγ ·vγ ·g
−1
γ ·v−1

γ ∈

Vγ for every vγ ∈ ξ−1
γ (V γ). Hence Ṽ =

⋂
γ∈S

prγ
−1(V γ) is a neighbourhood of the

identity in (G̃, τ̃) and if v̂ ∈ ξ̂−1(Ṽ ) then vγ = prγ(v̂) ∈ ξ−1
γ (prγ(Ṽ )) = ξ−1

γ (prγ(V γ))

for any γ ∈ S. Hence ĝ · v̂ · ĝ−1 · v̂−1 ∈
⋂

γ∈S

pr−1
γ (Vγ) ⊆ V̂ , i.e. the assertion 2 of

Theorem 4 holds for the isomorphism ξ̂ : (Ĝ, τ̂) → (G̃, τ̃).
Hence ξ̂ : (Ĝ, τ̂) → (G̃, τ̃) is a semitopological isomorphism. �

10 Remark. Theorem 9 remains valid if groups Ĝ =
∏
γ∈Γ

Gγ and G̃ =
∏

γ∈Γ

Gγ are

equipped not with the Tychonoff topology but with the topology of m-product (see [3],
Definition 4.1.3).

11 Remark. The following example proves that the superposition of semitopological
isomorphisms needs not to be semitopological. The topological groups mentioned in
it are not Hausdorff. An example with Hausdorff topological groups can be obtained
by an easy modification of the given one.

12 Example. Let G be a nilpotent group of index 2 (i.e. G a noncommutative
group such that its quotient group G/Z by its center Z is commutative). Consider
the following three group topologies on the group G:

τ0 is the discrete topology, i.e. the set {{e}} is a basis of neighbourhoods of the
identity in (G, τ0);

τ1 is the topology such that the set {Z} is a basis of neighbourhoods of the identity
in (G, τ1);

τ2 is the antidiscrete topology, i.e. the set {G} is a basis of neighbourhoods of
the identity in (G, τ2);

Let ξ : G → G be an identity mapping. One can easily see that assertions 1 and
2 of Theorem 4 hold for the continuous isomorphisms ξ : (G, τ0) → (G, τ1) and
ξ : (G, τ1) → (G, τ2) and hence they are semitopological.
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Prove now that the assertion 2 of Theorem 4 does not hold for the isomorphism
ξ : (G, τ0) → (G, τ2), i.e. it is not semitopological.

Suppose the contrary, i.e. the assertion 2 of Theorem 4 holds for the isomorphism
ξ : (G, τ0) → (G, τ2). Since the group G is not a commutative group, then there
exist elements g, v ∈ G such that g · v 6= v · g, i.e. g · v · g−1 · v−1 6= e. Then for an
element g ∈ G and the neighbourhood {e} of the identity in (G, τ0) there exists a
neighbourhood V of the identity in (G, τ2) such that g · u · g−1 · u−1 ∈ {e} for every
element u ∈ ξ−1(V ). Since τ2 is the antidiscrete topology then V = G and hence
we may assume the element u to be equal to v. Hence g · v · v−1 · g−1 ∈ {e} that
contradicts to the choice of elements g, v ∈ G.

13 Problem. Given a class K of topological groups (rings) and a group (ring)
G. What is the group (ring) topology τ on G such that (G, τ) ∈ K and every
semitopological homomorphism (G, τ) → (H, µ) is topological, where (H, µ) ∈ K

(so are known to be the topological rings with no generalized zero divisors, see [1],
Theorem 2).

14 Problem. What is the group (ring) G such that for every group (ring) topology
τ on it every semitopological isomorphism (G, τ) → (H, µ) is topological (so are
known to be the rings with an identity).

15 Problem. What are the continuous isomorphisms which are superpositions of
semitopological (note that they need not to be semitopological, see the example 12).

Author does not know whether every continuous isomorphism of topological
groups is so.

16 Problem. Let G and G be groups, f : G → G be an isomorphism, {τγ | γ ∈ Γ}
and {τγ | γ ∈ Γ} be families of group topologies on G and G respectively such that
f : (G, τγ) → (G, τ γ) is a semitopological isomorphism for every γ ∈ Γ. Write τ for
inf{τγ | γ ∈ Γ} and τ for inf{τγ | γ ∈ Γ}. Is the isomorphism f : (G, τ) → (G, τ )
semitopological?
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