The classification of $G L(2, R)$-orbits' dimensions for system $s(0,2)$ and the factorsystem $s(0,1,2) / G L(2, R)$ *

E.V. Starus

Abstract

Two-dimensional systems of two autonomous polynomial differential equations with homogeneities of the zero, first and second orders are considered with respect to the group of center-affine transformations $G L(2, R)$. The problem of the classification of $G L(2, R)$-orbits' dimensions is solved completely for system $s(0,2)$ with the help of Lie algebra of operators corresponding to $G L(2, R)$ group, and algebras of invariants and comitants. A factorsystem $s(0,1,2) / G L(2, R)$ for system $s(0,1,2)$ is built and with its help two invariant $G L(2, R)$-integrals are obtained for the system $s(1,2)$ in some necessary conditions for the existence of singular point of the type "center".

Mathematics subject classification: 34C14, 34C05.
Keywords and phrases: Differential system, $G L(2, R)$-orbit, factorsystem, invariant integral.

Consider the real system of differential equations

$$
\begin{equation*}
\frac{d x^{j}}{d t}=a^{j}+a_{\alpha}^{j} x^{\alpha}+a_{\alpha \beta}^{j} x^{\alpha} x^{\beta}, \quad(j, \alpha, \beta=1,2), \tag{1}
\end{equation*}
$$

which will be denoted by $s(0,1,2)$, where the coefficient tensor $a_{\alpha \beta}^{j}$ is symmetrical in lower indexes, in which the complete convolution takes place, and the group of center-affine transformations $G L(2, R)$, given by the equalities $\bar{x}^{r}=q_{j}^{r} x^{j}, \Delta_{q}=$ $=\operatorname{det}\left(q_{j}^{r}\right) \neq 0,(r, j=1,2)$.

Consider the invariants and comitants of the system (1) with respect to the group $G L(2, R)$, found in [1], which will be used further:

$$
\begin{gathered}
K_{1}=a_{\alpha \beta}^{\alpha} x^{\beta}, K_{2}=a_{\alpha}^{p} x^{\alpha} x^{q} \varepsilon_{p q}, K_{5}=a_{\alpha \beta}^{p} x^{\alpha} x^{\beta} x^{q} \varepsilon_{p q}, K_{6}=a_{\alpha \beta}^{\alpha} a_{\gamma \delta}^{\beta} x^{\gamma} x^{\delta} \\
K_{7}=a_{\beta \gamma}^{\alpha} a_{\alpha \delta}^{\beta} x^{\gamma} x^{\delta}, K_{9}=a_{p \alpha}^{\alpha} a_{q \gamma}^{\beta} a_{\beta \delta}^{\gamma} x^{\delta} \varepsilon^{p q}, K_{21}=a^{p} x^{q} \varepsilon_{p q}, K_{23}=a^{p} a_{\alpha \beta}^{q} x^{\alpha} x^{\beta} \varepsilon_{p q}, \\
K_{25}=a^{\alpha} a^{\beta} a_{\alpha \beta}^{p} x^{q} \varepsilon_{p q}, I_{1}=a_{\alpha}^{\alpha}, I_{2}=a_{\beta}^{\alpha} a_{\alpha}^{\beta}, I_{4}=a_{p}^{\alpha} a_{\beta q}^{\beta} a_{\alpha \gamma}^{\gamma} \varepsilon^{p q}, I_{5}=a_{p}^{\alpha} a_{\gamma q}^{\beta} a_{\alpha \beta}^{\gamma} \varepsilon^{p q} \\
I_{6}=a_{p}^{\alpha} a_{\gamma}^{\beta} a_{\alpha q}^{\gamma} a_{\beta \delta}^{\delta} \varepsilon^{p q}, I_{7}=a_{p r}^{\alpha} a_{q \alpha}^{\beta} a_{s \beta}^{\gamma} a_{\gamma \delta}^{\delta} \varepsilon^{p q} \varepsilon^{r s}, I_{8}=a_{p r}^{\alpha} a_{q \alpha}^{\beta} a_{s \delta}^{\gamma} a_{\beta \gamma}^{\delta} \varepsilon^{p q} \varepsilon^{r s} \\
I_{9}=a_{p r}^{\alpha} a_{q \beta}^{\beta} a_{s \gamma}^{\gamma} a_{\alpha \delta}^{\delta} \varepsilon^{p q} \varepsilon^{r s}, I_{13}=a_{p}^{\alpha} a_{q r}^{\beta} a_{\gamma s}^{\gamma} a_{\alpha \beta}^{\delta} a_{\delta \mu}^{\mu} \varepsilon^{p q} \varepsilon^{r s}
\end{gathered}
$$

[^0]\[

$$
\begin{equation*}
I_{15}=a_{p r}^{\alpha} a_{q k}^{\beta} a_{\alpha s}^{\gamma} a_{\delta l}^{\delta} a_{\beta \gamma}^{\mu} a_{\mu \nu}^{\nu} \varepsilon^{p q} \varepsilon^{r s} \varepsilon^{k l}, I_{17}=a^{\alpha} a_{\alpha \beta}^{\beta}, I_{25}=a^{\alpha} a_{\beta p}^{\beta} a_{\delta q}^{\gamma} a_{\alpha \gamma}^{\delta} \varepsilon^{p q} . \tag{2}
\end{equation*}
$$

\]

where $\varepsilon^{p q}$ and $\varepsilon_{p q}$ are unit bivectors $\left(\varepsilon^{11}=\varepsilon^{22}=0, \varepsilon^{12}=-\varepsilon^{21}=1, \varepsilon_{11}=\varepsilon_{22}=0\right.$, $\left.\varepsilon_{12}=-\varepsilon_{21}=1\right)$.

Remark 1. For $I_{1}=0, K_{2} \equiv 0$ the system (1) takes the form (it will be denoted by $s(0,2)$ further $)$

$$
\begin{equation*}
\frac{d x^{j}}{d t}=a^{j}+a_{\alpha \beta}^{j} x^{\alpha} x^{\beta}, \quad(j, \alpha, \beta=1,2) . \tag{3}
\end{equation*}
$$

I. The proof of the next theorem is based on the classification of $G L(2, R)$-orbits' dimensions for system $s(2)$ from [2]:

Theorem 1. If $I_{1}=0, K_{2} \equiv 0$, the $G L(2, R)$-orbit of the system (3) has the dimension

4 for $K_{1} K_{5} \not \equiv 0, F_{1}+K_{9}+\beta \not \equiv 0$, or

$$
K_{5} \not \equiv 0, K_{1} \equiv 0, F_{2}+K_{9}+\beta \not \equiv 0
$$

3 for $K_{1} K_{5} \not \equiv 0, F_{1}+K_{9}+\beta \equiv 0$, or

$$
K_{5} \not \equiv 0, K_{1} \equiv 0, F_{2}+K_{9}+\beta \equiv 0, K_{7}+K_{21} \not \equiv 0, \text { or }
$$

$$
K_{5} \equiv 0, K_{1} K_{21} \not \equiv 0
$$

2 for $\quad K_{21} \equiv 0, K_{1}+K_{5} \not \equiv 0, K_{5}\left(K_{1}+K_{7}\right) \equiv 0$, or

$$
K_{5} \equiv 0, K_{1} K_{21} \equiv 0, K_{1}^{2}+K_{21}^{2} \not \equiv 0
$$

$0 \quad$ for $\quad K_{1} \equiv K_{5} \equiv K_{21} \equiv 0$,
where $\beta=27 I_{8}-I_{9}-18 I_{7}, F_{1}=K_{5}\left[-2 I_{17} K_{5}+K_{1}\left(2 K_{1} K_{21}-3 K_{23}\right)\right]$,
$F_{2}=K_{21}^{2}\left(3 K_{1}^{2}-2 K_{6}-3 K_{7}\right)+2 K_{5} K_{25}$, and $K_{1}, K_{5}, K_{6}, K_{7}, K_{9}, K_{21}, K_{23}, I_{7}$, I_{8}, I_{9}, I_{17} are taken from (2).

For the system $s(0,3)$ the similar problem was considered in [3]. Remark that in (51) only the sets $M_{1}, M_{4}-M_{6}, M_{8}-M_{13}$ should be considered as $G L(2, R)$-invariant nonintersecting sets.
II. According to [4] the classification of $G L(2, R)$-orbits' dimensions could be considered as a division of the set $E^{14}(x, a)$ of the coefficients and variables of the system (1) into invariant manifolds, and the maximal dimension orbit is a nonsingular invariant manifold of the $G L(2, R)$ group.
Remark 2. The condition $K_{1} K_{5} K_{9} \not \equiv 0$ follows from the condition $I_{9}\left(I_{9}-I_{7}\right) \neq 0$, both of them define nonsingular invariant manifolds (see definition in [4]).

The proof is based on the facts that $\operatorname{Rez}\left(K_{1}, K_{5}\right)=I_{9}$ and $\operatorname{Rez}\left(K_{1}, K_{9}\right)=I_{9}-I_{7}$.
Theorem 2. On the nonsingular invariant manifold $I_{9}\left(I_{9}-I_{7}\right) \neq 0$ the system (1) has the following factorsystem (see [4]) $s(0,1,2) / G L(2, R)$

$$
\dot{\bar{x}}=I_{17}+\left[\frac{1}{2} I_{1}+\frac{-I_{1} I_{7}-2 I_{13}}{2 I_{9}}-\frac{I_{4} I_{15}}{I_{9}\left(I_{9}-I_{7}\right)}\right] \bar{x}-\frac{I_{4}}{\left|I_{9}-I_{7}\right|^{1 / 2}} \bar{y}+
$$

$$
\begin{align*}
& +\left[\frac{I_{7}+I_{9}}{2 I_{9}}+\frac{I_{15}^{2}}{I_{9}\left(I_{9}-I_{7}\right)^{2}}\right] \bar{x}^{2}+2 \frac{I_{15}}{\left|I_{9}-I_{7}\right|^{3 / 2}} \bar{x} \bar{y}+\frac{I_{9}}{\left(I_{9}-I_{7}\right)} \bar{y}^{2}, \\
\dot{\bar{y}}= & \frac{I_{25}}{\left|I_{9}-I_{7}\right|^{1 / 2}}+\frac{1}{\left|I_{9}-I_{7}\right|^{1 / 2}}\left[\frac{I_{4} I_{15}^{2}}{I_{9}^{2}\left|I_{9}-I_{7}\right|^{2}}-\frac{I_{4}\left(I_{7}^{2}+I_{9}^{2}\right)}{2 I_{9}^{2}}+I_{5}\right] \bar{x}+ \\
& +\left[\frac{1}{2} I_{1}+\frac{I_{1} I_{7}+2 I_{13}}{2 I_{9}}+\frac{I_{4} I_{15}}{I_{9}\left(I_{9}-I_{7}\right)}\right] \bar{y}-\frac{I_{15}\left(I_{7}+I_{9}\right)}{2 I_{9}^{2}\left|I_{9}-I_{7}\right|^{1 / 2}} \bar{x}^{2}- \\
- & \frac{I_{15}^{3}}{I_{9}^{2}\left|I_{9}-I_{7}\right|^{3 / 2}} \bar{x}^{2}+2\left[\frac{I_{9}-I_{7}}{2 I_{9}}-\frac{I_{15}^{2}}{I_{9}\left(I_{9}-I_{7}\right)^{2}}\right] \bar{x} \bar{y}-\frac{I_{15}}{\left|I_{9}-I_{7}\right|^{3 / 2}} \bar{y}^{2}, \tag{4}
\end{align*}
$$

for which $K_{1}=\bar{x}, K_{9}=\bar{y}$, and $K_{1}, K_{9}, I_{1}, I_{4}, I_{5}, I_{7}, I_{9}, I_{13}, I_{15}, I_{17}, I_{25}$ are taken from (2).
III. Consider the center conditions from [5] for the system (1) with $a^{j}=0$ $(j=1,2)$:

$$
\begin{equation*}
I_{2}<0, I_{1}=I_{6}=I_{13}=0, I_{4} \neq 0 \tag{5}
\end{equation*}
$$

Taking into account the last four conditions from (5) and $I_{17}=I_{25}=0$, and the syzygies from [6], we conclude that the factorsystem (4) will take the form

$$
\begin{gather*}
\dot{\bar{x}}=-\frac{I_{4}}{\left|I_{9}-I_{7}\right|^{1 / 2}} \bar{y}+\frac{I_{7}+I_{9}}{2 I_{9}} \bar{x}^{2}+\frac{I_{9}}{I_{9}-I_{7}} \bar{y}^{2}, \\
\dot{\bar{y}}=\frac{1}{\left|I_{9}-I_{7}\right|^{1 / 2}}\left[I_{9}-\frac{I_{4}\left(I_{7}^{2}+I_{9}^{2}\right)}{2 I_{9}^{2}}\right] \bar{x}+\frac{I_{9}-I_{7}}{I_{9}} \bar{x} \bar{y}, \tag{6}
\end{gather*}
$$

for which $I_{9}\left(I_{9}-I_{7}\right) \neq 0$. We obtain with the help of (6)
Proposition 1. The system (1) has the following two invariant $G L(2, R)$-integrals on the nonsingular invariant $G L(2, R)$-manifold $I_{9}\left(I_{9}-I_{7}\right) \neq 0$ for $I_{17}=I_{25}=0$ and for necessary center conditions $I_{1}=I_{6}=I_{13}=0, I_{4} \neq 0$

$$
\begin{gathered}
\mathcal{F}_{1} \equiv 2 I_{5} I_{9}^{2}-I_{4}\left(I_{7}^{2}+I_{9}^{2}\right)+2 I_{9}\left(I_{9}-I_{7}\right) K_{9}=0 \\
\mathcal{F}_{2} \equiv I_{7}\left(I_{9}+I_{7}\right)\left[\left(I_{9}-I_{7}\right)^{2}\left(I_{9}-3 I_{7}\right) K_{1}^{2}-2 I_{9}^{2} K_{9}^{2}\right]+\left[I_{5} I_{9}^{2}+I_{4} I_{7}\left(-2 I_{9}+I_{7}\right)\right] \\
\cdot\left[-2 I_{5} I_{9}^{2}+I_{4}\left(I_{7}^{2}+I_{9}^{2}\right)-2 I_{9}\left(I_{9}+I_{7}\right) K_{9}\right]=0
\end{gathered}
$$

Acknowledgements. The author is thankful to M.N.Popa for given idea of factorsystems.

References

[1] Boularas D., Calin Iu.F., Timochouk L.A., Vulpe N.I. T-comitants of quadratic systems: a study via the translation invariants. Report 96-90 Delft, University of Technology, The Netherlands, 1996.
[2] Popa M.N. Applications of algebras to differential systems. Academy of Sciences of Moldova, Chisinau, 2001 (In Russian).
[3] Starus E.V. Invariant conditions for the dimensions of the $G L(2, R)$-orbits for one differential cubic system. Buletinul Academiei de S̆tiinte a Republicii Moldova, Matematica, 2003, No. 3(43), p. 58-70.
[4] Ovsyannikov L.V. Group analysis of the differential equations. Moscow, Nauka, 1978 (In Russian, published in English in 1982).
[5] Sibirsky K.S., Lunkevichi V.A. Integrals of common quadratic differential system in the centers' cases. Differential Equations, 1982, 18, no. 5, p. 786-792 (In Russian).
[6] Sibirsky K.S. Introduction to the Algebraic Theory of Invariants of Differential Equations. Kishinev, Shtiintsa, 1982 (In Russian, published in English in 1988).

Institute of Mathematics and Computer Science Received March 03, 2004
5 Academiei str.
Chişinău, MD-2028 Moldova.
E-mail: helen@from.md

[^0]: c E.V. Starus, 2004
 *This work is partially supported by the Grant no. 31.004C (23.01.2003) of the Supreme Council on Science and Technological Development of the Republic of Moldova

