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The classification of GL(2, R)-orbits’ dimensions
for system s(0, 2)
and the factorsystem s(0,1,2)/GL(2,R) *

E.V. Starus

Abstract. Two-dimensional systems of two autonomous polynomial differential
equations with homogeneities of the zero, first and second orders are considered with
respect to the group of center-affine transformations GL(2, R). The problem of the
classification of GL(2, R)-orbits’ dimensions is solved completely for system s(0,2)
with the help of Lie algebra of operators corresponding to GL(2, R) group, and al-
gebras of invariants and comitants. A factorsystem s(0,1,2)/GL(2, R) for system
5(0,1,2) is built and with its help two invariant GL(2, R)-integrals are obtained for
the system s(1,2) in some necessary conditions for the existence of singular point of
the type ”center”.
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Consider the real system of differential equations

daxd ) : . .
- = a +alx® + aflﬁxaxﬁ, (J,a, B =1,2), (1)

which will be denoted by s(0,1,2), where the coefficient tensor ag is symmetrical
in lower indexes, in which the complete convolution takes place, and the group of
center-affine transformations GL(2, R), given by the equalities 2" = q;ij s Ay =
= det(qj) # 0,(r,j = 1,2).

Consider the invariants and comitants of the system (1) with respect to the group
GL(2,R), found in [1], which will be used further:
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where eP? and ¢, are unit bivectors (¢!! = ¢ =2l =1, g1] = €90 =0,

£12 = —&91 = 1).

Remark 1. For I; = 0, K3 = 0 the system (1) takes the form (it will be denoted
by s(0,2) further)
dx?

i I o8 ; —
dt _aj—i_aaﬁx X bl (]7a7/8_172)‘ (3)

I. The proof of the next theorem is based on the classification of GL(2, R)-orbits’
dimensions for system s(2) from [2]:

Theorem 1. If I = 0, Ky =0, the GL(2, R)-orbit of the system (3) has the dimen-
sion
4 for K1K57_é0, Fl—l-Kg—l-ﬁy_é0,0’/“
K5 #0, K1 =0, Fo + Kg + 8 Z 0;
8 for KiKs#0, 1+ Kg+3=0, or
Ky 20, K1 =0, b+ Ko+ (=0, Ky + Ko1 Z0, or
K5 =0, K1K31 #0;
2  for Ko =0,K; —|—K5$0,K5(K1—|—K7) =0, or
Ks=0,K 1Ky =0,K} + K3, #0;
0 for Ki=Ks=Ky =0,
where ﬁ = 27[8 - Ig — 18[7, Fl = K5[—2[17K5 + K1(2K1K21 - 3K23)],
F2 = K221(3K12 - 2K6 - 3K7) +2K5K25, and Kl, K5, Kﬁ, K7, Kg, Kgl, K23, 17,
Ig, Iy, I17 are taken from (2).

For the system s(0, 3) the similar problem was considered in [3]. Remark that in
(51) only the sets My, My— Mg, Mg— M3 should be considered as GL(2, R)-invariant
nonintersecting sets.

IT. According to [4] the classification of GL(2, R)-orbits’ dimensions could be
considered as a division of the set E'4(x,a) of the coefficients and variables of the
system (1) into invariant manifolds, and the maximal dimension orbit is a nonsin-
gular invariant manifold of the GL(2, R) group.

Remark 2. The condition KjK5Kg # 0 follows from the condition Ig(Ig — I7) # 0,
both of them define nonsingular invariant manifolds (see definition in [4]).

The proofis based on the facts that Rez(K, K5) = Ig and Rez(K1, Ky) = Ig—I7.

Theorem 2. On the nonsingular invariant manifold Ig(Ig — I7) # 0 the system (1)
has the following factorsystem (see [4]) s(0,1,2)/GL(2, R)

. 1 —I117 — 2113 1145 _ 1,
B - SR
S a 21y Iy(Iy — Ir) ! |y — Ir
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for which K1 =%, K9 =9, and Ky, Ko, 11, 14, I5, I7, 1y, I13, 115, 117, Io5 are taken
from (2).

III. Consider the center conditions from [5] for the system (1) with @/ = 0
(j=1,2):
IQ<0711:[62113:0,I47§0. (5)

Taking into account the last four conditions from (5) and I17 = Is5 = 0, and the
syzygies from [6], we conclude that the factorsystem (4) will take the form

. 1, I+ 1y, Iy
SR A = TEL T ey A
. 1 I L2413 Iy—1I; ©)
== — X
YA VRN 213 )

for which Ig(Ig — I7) # 0. We obtain with the help of (6)

Proposition 1. The system (1) has the following two invariant GL(2, R)-integrals
on the nonsingular invariant GL(2, R)-manifold Ig(Ig — I7) # 0 for I17 = Is5 = 0
and for mecessary center conditions Iy = I = [13=0, Iy #0

Fi = 20512 — Ii(I? + IZ) 4 2Iy(Ig — I7) Ky = 0,
Fo=I;(Ig + Ip)[(Ig — I7)*(Iy — 3I7) K3 — 212 K32] + [I5I3 + I,I7(—2Iy + I7))-

[=2I503 + I4(I2 + IZ) — 2I9(Ig + I7) Kg) = 0.
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