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On Riemann extension of the Schwarzschild metric
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Abstract. The properties of the Riemann extension of the Schwarzschild metric are
studied.
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1 Introduction

The notice of the Riemann extension of nonriemannian spaces was first intro-
duced in ([1]). Main idea of this theory is application of the methods of Riemann
geometry for studying of the properties of nonriemannian spaces.

For example the system differential equations in form

d?z* L Azt dd
ds? Y ds ds

=0 (1)

with arbitrary coefficients Hfj(acl) can be considered as the system of geodesic equa-
tions of affinely connected space with local coordinates z*.

For the n-dimensional Riemannian spaces with the metrics
nds? = gijdmid:nj

the system of geodesic equations looks same but the coefficients Hfj (') now have
very special form and depends from the choice of the metric g;;.

. 1
I, =T} = §glm(9mk,l + Gmi ke — Gkl,m)

In order that the methods of Riemann geometry can be applied for studying of
the properties of the spaces with equations (1) the construction of 2n-dimensional
extension of the space with local coordinates z' was introduced .

The metric of extended space constructs with help of coefficients of equation (1)
and looks as follows

nds® = 20T}, (') Uda'da’ + 24T dz* (2)

where ¥, are the coordinates of additional space.
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The important property of such type metric is that the geodesic equations of
metric (2) consist from the two parts

i+ Thi'd =0, (3)
and )
W + RL]-Z-JIJJI \I’l = 0, (4)
where _
oV dVy I dx?
—_— = I, U, —.
ds ds k=1 0s

The first part (3) of complete system is the system of equations for geodesics of
basic space with local coordinates z* and they does not contains the coordinates ¥y.
The second part (4) of system of geodesic equations has the form of linear 4 x 4
matrix system of second order ODE’s for coordinates Wy
- -
% + A(S)Z—f + B(s)¥ = 0. (5)

From this point of view we get the case of geodesical extension of basic space in
local coordinates (z°).

It is important to note that the geometry of extended space is connected with
geometry of basic space. For example the property of this space to be Ricci-flat
keeps also for the extended space.

This fact give us the possibility to use the linear system of equation (5) for
studying of the properties of basic space.

In particular the invariants of the 4 x 4 matrix-function

under change of the coordinates ¥y can be used for that.

The first applications of the notice of extended spaces the studying of nonlinear
second order differential equations connected with nonlinear dynamical systems was
done in works of author ([2—4]).

Here we consider the properties of extended spaces for the Einstein-spaces in
General Relativity.

2 The Schwarzschild space-time and geodesic equation

The line element of standard metric of the Schwarzschild space-time in coordinate
system x, 8, ¢,t has the form

1

ds® = - (1— 2M/z)

da?® — 2 (d6* + sin® 0d¢?) + (1 — 2M /z)dt>. (6)
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The geodesic equations of this type of the metric are

d? M (disx(s))2

2
Egﬂ@__@tzjﬂzﬁﬂ—x+2M)<£ﬂ@0 - (7)

ds

2 ) (ot + AN,
g;W$+2(%“f2%“@—ﬂmWN%W>&%W$>2ZQ (8)
L )2 (& ©) £9(s) , , os(0) (dir(jgei) £06) _ g )

j_;as) oM ;%;A(j”_dé;“) o (10)

The symbols of Christoffel of the metric (6) looks as

M
Th= o=y Th=CM-2). Th=(CM-z)sn’,
M(2M — x) 1 .
rh,=—""" " 12 =~ T2 = _sinfcosd
44 3 ) 12 ' 33 smuo cosv,
3  cosd 4 M 3 1

== S B
37 sing’ M c(2M —z)" BT g

The equations of geodesic (7)—(10) have the first integrals

(%:E(S) = h\/l - <1 —2 %) (h—2 + %) (11)
(o) = (- )
) = 12)

g n(i-220) "

where a dot denotes differentiation with respect to parameter s and (C, B, h) are
the constants of motion.
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3 The Riemann extension of the Schwarzschild metric

Now with help of the formulae (2) we construct the eight-dimensional extension
of basic metric (6)

2M 2 2
t - _Ppds? - = —2(2M — x)Pdo* — =
ds TOM — 1) dz xQdazd@ ( x)Pdf dedeS—l—
to— M st — 25 Uasds — 2((2M — 2)sin? 0P — sin cos 0Q)de*+
22M —z) " sin 6 )8 ST Cos
+2WPdt2 + 2dxzdP + 2dAdQ + 2dpdU + 2dtdV, (13)

where (P,Q,U, V) are the additional coordinates of extension.

The metrics of a given type are the metrics with vanishing curvature invariants.
They play an important role in general theory of Riemannian spaces. In particular
the metrics for pp-waves in General Relativity belong to this class.

The eight-dimensional space in local coordinates (x, 6, ¢,t, P,Q,U, V') with this
type of metric is also the Einstein space with condition on the Ricci tensor

SR = 0.

The complete system of geodesic equations for the metric (??) decomposes into
two groups of equations.

The first group coincides with the equations (7-10) on the coordinates (z, 0, ¢, t)
and second part forms the linear system of equations for coordinates P,Q,U, V.

They are defined as

. oM . 2.. 2.. oM ..
P+a:(x—2M)xP_;9Q_E¢U_x(a:—QM)tV_
2M 5, (v —2M),,  sin?0(z—2M) ., 2M(x —2M) .,
— t°| P
<x2(a:—2M)$ * x b x o xt *
4 . 2cosf ., 4 . 4cosf ;. 4M? L
+ (Paz@— . o) > Q + <F$¢+ —xsin00¢> U+ (7952(95 — 2m)2azt> V =0,
O+ 2z — 2m)0P — 230 — 20080 1y 2w —AM) sp
x sin @ x

2(x —3M) 5, 2(x—2M) ., (v—4Msin?6) ., 2M(x—2M) ,
<x2(x—2M)x x o x o xt e+
. 2 . .

N <4c?89j:¢+ 4?02 99¢> U=o
xsinf sin“ 0

o P—

. . . . ) in2 _
U+2sin? 0(x—2M)pP+2sin b cos OpQ— <200899 + 2 > U—2SH{1 Oz — 4M)

sin 6 z T
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<4SIHZCOSH¢¢+29¢> 0+

0+

@
22(x — 2m) xsin 0 rsin? 6

<2(3:—3M)_2 4(3089:%- 2($COS29—|—2MSiH29)H-2>_

B (2(3: — 2M sin? 9)(}-52) U =0

x
- 2M(x —2m) ;. 2M .. AM(x—2M) ..
V—-— 2P - 174 tP
a3 x(a:—2M):E * x? S
2M(2x —3M) ., 2M ., 2Msin?6 ., 2M? ,
Sl L t* |V =0.
<$2($—2M)2$ x x o+ x?
So we get the linear matrix-second order ODE for the coordinates U, V, P, Q
d>v d¥v
— + A(x,6 — +B U = 14
d82 + (x7 7¢7 t) ds + (;U? 07 ¢7 ) 07 ( )
where
P(s)
_ | Qs)
E =1 vs)
Vi(s)

and A, B are some 4 x 4 matrix-functions depending from the coordinates x%(s) and

their derivatives.
We shall study this system of equations at the condition 6 = /2.
In this case we get the system for the coordinates of basic space

2
&2 o M (Lx(s)) @M - x(s)) <i¢(3)>2_

=2 e M=) ds
M (2M - a(s)) (Lt(s))°
(a(s))° ’
j—;qb(s) e (i)()s)d%(b(s) =0,
d? M (f(s)) 4t(s) _

') T 5 aM = 20)

and the system of equations for the supplementary coordinates

(2 M (La(s))” (=2 M + z(s)) (%¢(s))2> P+

(2M —a(s)) ((s))* z(s)

M (2M — (s)) (d%t(s))2> s
! (2 ) o
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M (3M —2x(s)) (d%:n(

(_2

(2(s))* (2 M —(s))*

M (La(s)) LV (s)

+2

In this case the matrix A takes the form

(%x(s))M

2 S oM r=)

0

—2 (=2 M + z(s)) d%(ﬁ(s)

(-2 M+x(s))(§i%t(s))M

2 (z(s))

and matrix B has an elements

By =

x(s) (2M — x(s)
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_ (06)° @(s)! (a(s) ~ 4M) +4 M (0(5))" (2(5))° +2 M (1(5))” (2(5))°
(~2M +(s)) (x(5))"

2 M (a(5)° (2(5)* (-2 M + 2(s) (2(5))* — 8 M2 (:(5))”

(=2 M + a(s)) (x(s))"

Bi2 =0, Biz = —4 (Z()) disﬁb(s)7 Bis— —4 M2 (La(s)) Li(s)
(2(5)* (4242 = (s

N x(s) +8 M3 (%t(s))z7

(a(s))”

~—
—
8
—
V)
~—
~—
[\
N——

Bg1 =0, By =

—8 M3 (Lt(s))” + (L(5))” ((s)” + 8 M2 (£L(5))” (2(5))® — 2 (La(s))* (a(s))®
(—2 M + a(s)) (2(s))*

2M (i1())" (2(5)) ((5) + 4 M) + 6 M (ir(s)” (2(5))° ~ 6 M (0 (s)
(~2M +2(s)) (x(s))’
Bos =0, Bgy =0,

B3y = (zls) = 4 M) (%$(8)) %qb(s)’ B3z =0,

x(s)
B33 =

M (4M (40(5))" (2(s)" +2 (£(5)” (@(5)> + M (£:()* (2M — 2(5))?)
(z(s))* (4 M2 — 42(s)M + (ac(s))z)

Now we will integrate our system.
Remark that the equation for the coordinate @Q(s) is independent from others
equations and can be reduced after the substitution
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to the equation for the function F(s)
d? M C?h2M
— F(s) + ( +3 ) F(s)=0. (15)
ds? (@(s)”  (x(s))°

To integrate the equations for the coordinates P(s), U(s), V(s) we use the rela-
tion

(5)) P+ (5500) Qo)+ (500 UGs) + () ) Vo)
~1/2s—p =0 (16)

which is consequence of the well known first integral of geodesic equations of arbi-

trary Riemann space

dx’(s) dz*(s)
ds ds

= const.

ik

In our case it takes the form

d d d
<Ex(s)> P(s) + <E¢(S)> U(s) + (Et(s)> V(s)—1/2s—p=0.
Solving this equation with respect the function V(s)

%w(s)) P(s)+2 (%(b(s)) U(s)—s—2pu
Lt (s)

and substituting this expression into the last two equations of the system we get the
following two equations for coordinates U (s)

(17)

Vis)=-1/2 2 (

d_zU( . (—2 Ch(z(s))* M + Ch (x(s))4) %P(s)+
ds? =7 (2(s))°
) \/ (2(3)* 12 — (2(s))* = C2h2a(s) + 2 M (a(s))> + 20%h2M
(2(s))* b

(P40 ()™ = 120 (alo))* (1M~ 2(6) P(s) (0(6)) ) -

(3 M (2())2 — (2(s))® + (2(s)) h% — 2C2R2(s) + 5 C2h2M) U(s)
(x(s))°

d_2 4 Mh (z(s)) (W2 = 1) — C2h2x(s) 4+ 2 M (x(s))* + 2C2h2M "
(x(5))* h?
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XgP( )__( (z(s))>Ch+6 (z ())QChM) d%U(S)_
ds (2())° (—2 M + (s))

(2 (2(s))° M(1 = 212) = ((5)) B2C2(x(s) — 8M) — 6 (a(s))* M?) P(s)
. (2(3))° (~2M +2(s)) .
_ 14h*C*MPP(s)
((5))” (2 M + x(s))

\/ (2())° 12 = (a(s))* = C?W2a(s) +2 M (a(s))’ +2C?W2M

((3)P 12
(4 (z(s))? h2C — 12 w(s)h2CM) U(s) M
(@(3)° (20 1 2(3)) " 2(s) (20 + 2(9))

So we have showed that every motion on orbit in usual space corresponds the
motion in additional space.

Let us consider some examples.

According to ([5]) in the Schwarzshild space-time exists the cyclic orbit

x(s) = 6M
which is the solution of the geodesic equations at the condition
h=1, C=3@2)M
In this case our system takes the form

d? 24U(s) 19 P(s)

9 gy VegYls) 19 Ps) -1 _
T3 P(s) —1/48 2 i VMM =0, (18)
and ) (5)
d 1 U(s
Z2U(s )+2/3f PGs) = 56 (19)
The simplest solution of this system looks as
36 1 v3+3iv303s
P — M+ Asin | —————— 2
(8) = =g M+ Asi <72 M ) (20)
and
1 3+ 32v303 1
U(s) = A (39 +v/303) V2M cos T OIVIS (21)
72 M 3+ 3iv/303

where A is arbitrary parameter.
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The equation for coordinate Q(s) after substitution
x(s)=6M, h=1, C=3(2)M

takes a form

d? 1 Q(s)
@Q(S) + m M2
and its solution is
Q(s) = C; cos <1/18 %) + (5 sin (1/18 %) . (22)

At last the expression for coordinate V(s) in considered case can be found from
the relation (?7).
It has the form

1 V3130V |
V(s)=—-1/94 (39 + i\/303) cos [ o Y3 30V303s +
72 M 3+ 3iv/303

+1/35+2/3 4. (23)

So the formulaes (??7,7?7,7?7,77) describe the relation between the properties of
motion of the test particle on the orbit xz(s) = 6M in basic physical space with
coordinates (z, 0, ¢, t) and its map into additional space with coordinates (P, Q,U, V')

The solution of the equation (?7?) relatively parameter s is

UV'3+ 3iv303v/2 1
2AM((39 +iv/303) | \/3+3iv/303

The substitution of this value into the formulae for the coordinate P(s) give us
the quadric

s = 72 M arccos (

95iU2/3034-2071 U?—184832 A% M?+184832 P> M>?+700416 PM3+663552 M* = 0.
In the case of radial motion C' =0, h =1 we get
x(s) = 1/222/33%3 /M %3, (24)

and
d 82/3

—t(s) = . 2

The system of equations for additional coordinates takes the form

d2
ds?

P(s) + 4 MV L P(s) (2(3)) > —— (-2 M +a(5)) " -

z(s)
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2(s) (-2 M + 2(s)) 0,
@ gy LB EO) —2M (§2(0) (0))) Q0

75290 (—2M + z(s)) (z(s))* N
(M ()" @(s) ~2MP — (F2(9)" (o))" (als) ~30D) Q)
(=2M + () (a(s)" o
;—;U(s) 4 4/3 US(;) —4/3 %Z(s) —0,
and

ix S §)—8—
Vis) + 172 2B ));58 2n _
ds

After substitution here the relations (??,7?) we find the solutions
SaYIY3 (305 + s VTSNS
—3V/Ms2/3+2M V23
Q(s) = C3 s+ Cy s*/3,
U(s) = Cp s + Cy 513,

P(s) =1/2

and o
5
V(s) =s/2+ 275
The linear system of geodesics for additional coordinates (??) may be used for
the studying of the properties of a basic space. In particular the sequence of the

matrixes

where aB(s) 1
S
Es, = —[A(s), E(s
o= S S AG), B(s))
and their invariants are important characteristic of a basic space.
Remark that for a given example the matrix F(s) has a property

Det(E(s)) =0, Trace(E(s)) =0.

More detail consideration leads to conclusion that in general case for the matrix
E(s) the condition .
Trace(E(s)) = Rija'd’

is obeyed, where R;; is the Ricci tensor of the basic space.
The generalization and the interpretation of these results will be done later.
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