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Approximate solution of the Dirichlet problem

in a circle

Alexander Kouleshoff

Abstract. The approaches to the solution of Dirichlet problem in a unit radius circle
are constructed in the manner of rational functions. There were found the estimates of
approaches’ inaccuracies. Assuming that the boundary condition is to be a measurable
bounded function with the finite number of discontinuities. Constructions use the
solution of trigonometric problem of moments.
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1 Introduction

Consider the Dirichlet problem in the unit circle Ω:

∆U = 0, (x, y) ∈ Ω, (1)

U(cos θ, sin θ) = ϕ(θ), θ ∈ [0, 2π]. (2)

The problem (1), (2) can be resolved in a polar coordinate system using the
variables separation method. In this case the solution is written in the following
way:

u(r, φ) = C +

∞
∑

n=1

rn
(

An cos(nφ) +Bn sin(nφ)
)

, (3)

where the coefficients C, {An}∞n=1, {Bn}∞n=1 are calculated according to well-known
formulas. The right-side formula (3) is summed up to the Poisson integral. In some
cases the Poisson integral is simply calculated with the help of the residue theory.
It happens, for example [1], if the function

ϕ(φ) = Φ(cosφ, sinφ),

where Φ

(

z + z−1

2
,
z − z−1

2i

)

is a function, regular in the Γ points and meromorphic

in the Ω circle, and having there only a finite number of poles. In general cases we
make use of approximate solution methods. The choice of various approximate prob-
lem solution methods (1), (2) depends on a boundary condition smoothness ϕ(φ).
It is assumed in the given work, that the real valued function ϕ(φ) is measurable,

c© Alexander Kouleshoff, 2003

83



84 ALEXANDER KOULESHOFF

bounded and having a finite number of discontinuities. In such situation polynomial
approximations on the basis of formula (3) are not valid. For getting some rational
approximations to find the problem’s solution (1), (2) we should use the following
construction. Any real valued, measurable on the closed interval [0, 2π] and bounded
function ψ(φ) can be represented as the following:

ψ(φ) = ψ+(φ) − ψ−(φ), φ ∈ [0, 2π], (4)

where

ψ+(φ) = {ψ(φ), if ψ(φ) ≥ 0 and 0, if ψ(φ) < 0},
ψ−(φ) = {0, if ψ(φ) ≥ 0 and − ψ(φ), if ψ(φ) < 0}.

Moreover, if ψ(φ) is a function of bounded variation, then it can be represented in
the form

ψ(φ) =

θ
∫

0

|ψ′(ξ)| dξ −





θ
∫

0

|ψ′(ξ)| dξ − ψ(φ)



, (5)

that is in the form of two monotone non-decreasing functions.
It follows from the formula (4) (or (5)) that functions ψ+(φ) and ψ−(φ) are

nonnegative, measurable, bounded and with a finite number of discontinuities.
Consider two auxiliary problems:

∆U+ = 0, z ∈ Ω, (6)

U+(eiφ) = ϕ+(φ), φ ∈ [0, 2π] (7)

and

∆U− = 0, z ∈ Ω, (8)

U−(eiφ) = ϕ−(φ), φ ∈ [0, 2π]. (9)

It is known, that the problem (1), (2) has a unique solution concerning the
function ϕ with the help of made suggestions. So the problem (6), (7) and the
problem (8), (9) also has a unique solution. Therefore,

U = U+ − U−.

That is enough to consider the case of ϕ(φ) ≥ 0 with almost all φ ∈ [0, 2π].
Further it is supposed unconditionally, that a boundary condition is a nonnegative
function. In conclusion of the item we should remember the fact, that the sugges-
tion of boundary condition’s insufficiency cannot be omitted, as the theorem of the
problem’s unique solution (1), (2) would be false. The following function can serve
as an example:

V (x, y) =
1 − x2 − y2

(x− 1)2 + y2
.

This function satisfies Laplace equation in the radius 1 circle. It is continuous up
to the circle’s boundary except for point (1.0). The function is identically equal to
zero and it also satisfies all these conditions.
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2 Rational approximations’ building process

We write the solution to the problem (1), (2) according to Shwarz formula:

U(x, y) = Re







1

2πi

∮

|ξ|=1

ϕ(ξ)
(ξ + z)

(ξ − z)

dξ

ξ






,

where z = x+ iy or

U(x, y) = Re





1

2πi

2π
∮

0

U
(

eiθ
)

(

eiθ + z
)

(eiθ − z)
dθ



 .

This formula will be used below.
Denote:

σ(φ) =
1

2π
∫

0

ϕ(ξ) dξ

φ
∫

0

ϕ(ξ) dξ.

For an easier narration we suggest, that the function σ is continuous. Then the
following formula is true:

2π
∫

0

χ(φ) dσ(φ) =

2π
∫

0

χ(φ)ϕ(φ) dφ,

where χ(φ) is a continuous function, and there is Riehmann common integral at the
right side of the formula.

Denote {Pn(z)}∞n=0 as the sequence of orthonormalized polynomials relative to
the positive measure dσ on a radius 1 circle. These polynomials satisfy the following
conditions:

1

2π

2π
∫

0

Pn(eiφ)Pm(eiφ) dσ(φ) =

{

0, n 6= m,

1, n = m.

For making such polynomials we can use the Hilbert-Schmidt orthogonalization
process for a sequence {einφ}∞0 in the Hilbert space Lσ

2 (0, 2π) with the inner product:

〈f, g〉 =
1

2π

2π
∫

0

f(φ)g(φ) dσ(φ).

It is known, that a sequence of orthonormalized polynomials can be built using
the following sequence of moments dσ:

Ck =
1

2π

2π
∫

0

e−ikθ dσ(φ), (±k = 0, 1, 2, . . .).
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The solution of the dσ measure finding problem with a given set of numbers
Ck is called the solution of moments’ trigonometric problem and it comes essen-
tially towards the spectral theory of the second order’s finite differences equation
(P.L. Chebyshev (1858), A.A. Markov (1884), T.J. Stieltjes (1894), H.L. Hamburger
(1920) and others). Extensive reading materials are devoted to the discussion of the
problem field (see, for example, [2, 3]).

Let {αn}∞n=0 be the coefficients at orthogonal polynomials’ highest degrees
{Pn(z)}∞n=0. The numbers

an = −Pn+1(0)

αn+1
, (n = 0, 1, 2, . . .)

play an important role in the theory of orthogonal polynomials in a circle. They are
called circular parameters.

Consider the second order differences equation.

anyn+2 − (an + an+1z)yn+1 + an+1z(1 − |an|2)yn = 0. (10)

We join some boundary conditions to the equation (10):

y0 = 1, y1 = 1 + a0z (11)

or boundary conditions:

y0 = 1, y1 = 1 − a0z. (12)

We denote the problem’s solution (10), (11) as
∗
ψn(z), and the problem’s solution

(10), (12) as
∗
Φn(z).

Suppose

ν =

2π
∫

0

ϕ(ξ) dξ.

It is said, that the Stieltjes positive measure dσ on closed interval [0, 2π], having an
integrable density ϕ(φ) at the Lebesgue measure, satisfies the condition of Szeg̈o, if

2π
∫

0

ln

(

ϕ(φ)

ν

)

dφ > −∞.

We will use standard designations below:

ln+(x) = {ln(x), if x ≥ 1 and 0, if 0 < x < 1},
ln−(x) = {0, if x ≥ 1 and − ln(x), if 0 < x < 1}.
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Theorem 1. Assume, that the dσ measure satisfies the condition of Szeg̈o, then

uniformly on the compacts |z| ≤ ν < 1

lim
n→∞

ν
∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

= Re(Û(z)),

where

Û(z) =
1

2πi

∮

|ξ|=1

ϕ(ξ)
(ξ + z)

(ξ − z)

dξ

ξ
+ iImÛ(0).

Proof. A sequence of polynomials
∗
Φn (z) converges uniformly on the compact

subsets of the unite circle (see, for example, [2, p. 141]) towards the function
D(0)

D(z)
,

where

D(z) = exp





1

4π

2π
∫

0

ln

(

ϕ(φ)

ν

)

(eiθ + z)

(eiθ − z)
dφ



.

Moreover,

ln

(

ϕ(φ)

ν

)

∈ L1(0, 2π),

and the function
D(z) ∈ H2,

where H2 is Hardy space, and is the only thing of the space to satisfy the equality

∣

∣

∣D
(

eiθ
)∣

∣

∣

2
=
ϕ(φ)

ν
. (13)

According to the logarithm definition we get

2 ln
(

D(z)
)

=
1

2π

2π
∫

0

ln

(

ϕ(φ)

ν

)

(eiθ + z)

(eiθ − z)
dφ,

where the logarithm branch is allocated with a condition Im(ln(D(0))) = φ.
Consider the function

νe2 ln(D(z)) = νD2(z).

The equality is true for

Re
(

νe2 ln(D(z))
)

= Re
(

νD2(z)
)

= νRe
(

D2(z)
)

= ν|D(z)|2. (14)

It follows from the formulas (13), (14), that the unit circle harmonic function
Re
(

νD2(z)
)

takes a meaning which is equal to ϕ(φ) at the circle’s boundary, and
therefore has the sought solution of Dirichlet problem (1), (2). In particular,

Û(z) = νe2 ln(D(z)) = νD2(z). (15)



88 ALEXANDER KOULESHOFF

Note, that the function D(z) does not have zeros inside the unit circle and

sup
0≤r<1

1

2π

2π
∫

0

ln+
(∣

∣

∣D
(

reiφ
)∣

∣

∣

)

dϕ < +∞.

Furthermore, the following equality (|z| < 1) is true

1
∣

∣

∣

∗
Φn(z)

∣

∣

∣

2 ≤ α2
n

α2
0

(

1 − |z|2
)

and it is uniform at |z| ≤ r < 1 (see [3], p. 14 and p. 26)

lim
n→∞

ν
∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

= Re(Û(z)). (16)

Equality (16) shows, that the sequence of rational functions

ν
∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

is an approximation to the solution of Dirichlet problem (1), (2). Notice that we
consider the case of nonnegative boundary condition. The theorem has been proved.

We find the convergence speed rating of rational approximations shown in the
theorem 1. Denote:

δn =





1

2π

2π
∫

0

∣

∣

∣

∣

χE(φ)

D (eiφ)
− α2

n

∗
Φn

(

eiφ
)

D(0)

∣

∣

∣

∣

2

dσ(φ)





1
2

,

where χE(φ) is the characteristic function of the set of points E, where exists a finite

and positive derivative
dσ(φ)

dφ
. It is known, that almost everywhere

dσ(φ)

dφ
= ϕ(φ).

If for measure the condition of Szeg̈o is met, then δn → 0 with n→ ∞. In the next
theorem the condition of Szeg̈o is supposed to be met.

Theorem 2. The inequalities are true for all z, |z| < 1:

∣

∣

∣

∣

∣

∣

∣

ν
∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

− Re
[

Û(z)
]

∣

∣

∣

∣

∣

∣

∣

≤ D(0)2νδn
(1 − |z|2)α4

0

(

1
√

1 − |z|
+

D(0)2δn
D(0)2 + α0

)

×

×
(

2α0 +D(0)2δn

(

1
√

1 − |z|
+

D(0)2δn
D(0)2 + α0

))

.
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Proof. For points z lying inside the unit circle we have:

νD2(z) − ν
( ∗
Φn(z)

)2

α2
n

=
ν

( ∗
Φn(z)

)2

(

α2
n

( ∗
Φn(z)

)2

D2(z) − 1

)

=

=
ν

( ∗
Φn(z)

)2

(

2
(

αn

∗
Φn(z)D(z) − 1

)

+
(

αn

∗
Φn(z)D(z) − 1

)2
)

.

(17)

From the formula (17) we get:

∣

∣

∣

∣

∣

∣

∣νD2(z)
∣

∣−
∣

∣

∣

∣

∣

ν
∗
Φn(z)2α2

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

νD2(z) − ν
∗
Φn(z)2α2

n

∣

∣

∣

∣

∣

≤

≤ ν

α2
n

∣

∣

∣

∗
Φn(z)2

∣

∣

∣

(

2
∣

∣

∣αn

∗
Φn(z)D(z) − 1

∣

∣

∣+
∣

∣

∣αn

∗
Φn(z)D(z) − 1

∣

∣

∣

2
)

.

(18)

Estimate the right side of the formula (18). First of all we note, that

ν

α2
n

∣

∣

∣

∗
Φn(z)2

∣

∣

∣

=
ν

α2
n

∣

∣

∣

∗
Φn(z)

∣

∣

∣

2 ≤ ν

α0 (1 − |z|2) . (19)

Secondly, this estimation is true (see [3, p. 108–109]):

∣

∣

∣
αn

∗
Φn(z)D(z) − 1

∣

∣

∣
≤ δnD(0)2

α0

(

1
√

1 − |z|
+

δnD(0)2

D(0)2 + α0

)

. (20)

It follows from (18) – (20):

∣

∣

∣

∣

∣

∣

∣

ν
∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

− Re
[

Û(z)
]

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣νD2(z)
∣

∣−
∣

∣

∣

∣

∣

ν
∗
Φn(z)2α2

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

≤ ν

α2
0 (1 − |z|2)

(

2δnD(0)2

α0

(

1
√

1 − |z|
+

δnD(0)2

D(0)2 + α0

)

+

+
δ2nD(0)4

α2
0

(

1
√

1 − |z|
+

δnD(0)2

D(0)2 + α0

)2


 .

(21)

Transforming the right side of formula (21) we get the sought estimation:

∣

∣

∣

∣

∣

∣

∣

ν
∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

− Re
[

Û(z)
]

∣

∣

∣

∣

∣

∣

∣

≤ D(0)2νδn
(1 − |z|2)α4

0

(

1
√

1 − |z|
+

D(0)2δn
D(0)2 + α0

)

×
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×
(

2α0 +D(0)2δn

(

1
√

1 − |z|
+

D(0)2δn
D(0)2 + α0

))

.

The theorem has been proved.

The rate at which sequence δn decreases with n → ∞ depends on the function
ϕ(φ) properties (see [3, p. 199, table I]).

Consider another more general case, when the function ϕ(φ) cannot satisfy the
term of Szeg̈o.

Theorem 3. Uniformly on the compacts |z| ≤ r < 1

Û(z) = C0ν lim
n→∞

∗
Ψn(z)
∗
Φn(z)

and for the solution of Dirichlet problem
(

Re
(

Û(z)
))

the following estimation of

approximations convergence rate is true:

∣

∣

∣

∣

∣

Re
(

Û(z)
)

− ν

2π
Re

( ∗
Ψn(z)
∗
Φn(z)

)∣

∣

∣

∣

∣

≤
√

2rnν

2π(1 − r)
3
2

.

Proof. It follows directly from [3, p. 16 and p. 160]. The theorem has been proved.
We pay attention to the circumstance, that the equalities:

1

2π
Re

( ∗
Ψn(z)
∗
Φn(z)

)

=
1

∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

are true, in general, at the unit circle boundary only [3, p. 17].

3 Final remarks

So, the rational functions sequence Rn(z) = Re

( ∗
Ψn(z)
∗
Φn(z)

)

(in case of the condi-

tion of Szeg̈o fulfillment Rn(z) =
ν

∣

∣

∣

∗
Φn(z)

∣

∣

∣

2

α2
n

) converges uniformly inside the unit

circle to the solution of Dirichlet problem (1), (2) with nonnegative boundary con-
dition ϕ. In general case we denote the sequence of rational approximations for
the problem (6), (7) via R+

n (z), and for the problem (8), (9) via R−
n (z). The se-

quence of rational functions R+
n (z) = R+

n (z) − R−
n (z) will be converging uniformly

on the compacts inside the unit circle to the solution of the problem (1), (2). The
approximations ratings can be made from the above-proved theorems.
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The calculations of polynomials
∗
Ψn(z) and

∗
Φn(z) are achieved easily. For this

we should use the recurrent equation (10) and notice, that circular parameters can
be found according to formulas:

an =
(−1)n

∆n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

C−1 C−2 . . . , C−n

C−0 C−1 . . . , C−n+1
...

...
...

Cn−2 Cn−3 . . . , C−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where ∆k is Toeplitz matrix determinants

{Cp−q}k
p,q=0. (22)

There exist some special methods for matrix determinant calculation in the view
of (22).

The author has realized the algorithms of rational approximations construction
within the computer technical system Mathematica.
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