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Invariant conditions for the dimensions of the

GL(2, R)-orbits for one differential cubic system

E.V. Starus

Abstract. A two-dimensional system of two autonomous polynomial equations with
homogeneities of the zero and third orders is considered concerning to the group of
center-affine transformations GL(2, R). The problem of the classification of GL(2, R)-
orbit’s dimensions is solved completely for the given system with the help of Lie
algebra of operators corresponding to the GL(2, R) group, and algebra of invariants
and comitants for the indicated system is built. The theorem on invariant division
of all coefficient’s set of the considered system to nonintersecting GL(2, R)-invariant
sets is obtained.
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Consider the differential system

dx

dτ
= a + px3 + 3qx2y + 3rxy2 + sy3,

dy

dτ
= b + tx3 + 3ux2y + 3vxy2 + wy3, (1)

where the coefficients and variables take values from the field of real numbers R.

Let A = (a, b, p, q, r, s, t, u, v, w) ∈ E(A), where E(A) is the Euclidean space of
the coefficients of right-hand sides of the system (1).

Will denote by A(T ) the point from E(A) that belongs to the system, obtained
from the system (1) with coefficients A by transformation T ∈ GL(2, R).

Definition 1. The set O(A) = {A(T );T ∈ GL(2, R)} is called GL(2, R)–orbit of
the point A for the system (1).

Definition 2. Call the set M ⊆ E(A) GL(2, R)-invariant if for any point A ∈ M
its orbit O(A) ⊆ M .

It is known (see, for instance, [1]), that

dimRO(A) = rankM1,

where M1 is the matrix is constructed on the coordinate vectors of the Lie algebra
operators obtained as a result of the representation of the GL(2, R) group in the
space E(A) of the system (1).
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With the help of [1] it is possible to find that the matrix M1 has the form

M =









−a 0 2p q 0 −s 3t 2u v 0
−b 0 −t p − u 2q − v 3r − w 0 t 2u 3v
0 −a 3q 2r s 0 3u − p 2v − q w − r −s
0 −b 0 q 2r 3s −t 0 v 2w









.

(2)
Consider the invariants and comitants of the system (1) with respect to the group

GL(2, R), found in [2-3], which will be used further. With this purpose we rewrite
the system (1) in the tensor form according to [4]

dxj

dt
= aj + aj

αβγxαxβxγ , (j, α, β, γ = 1, 2), (3)

where coefficient tensor aj
αβγ is symmetrical in lower indexes, in which the com-

plete convolution takes place. Note that among the coefficients and variables of the
systems (1) and (3) there are equalities

x1 = x, a1 = a, a1
111 = p, a1

112 = q, a1
122 = r, a1

222 = s

x2 = y, a2 = b, a2
111 = t, a2

112 = u, a2
122 = v, a2

222 = w. (4)

Then needed by us comitants and invariants of the system (3), and, consequently,
of the system (1), take the form

P1 = aα
αβγxβxγ , P2 = ap

αβγxαxβxγxqǫpq, P3 = aα
pαβaβ

qγδx
γxδǫpq,

P4 = aα
αβγaβ

δµθx
γxδxµxθ, P5 = aα

βγδa
β
αµθx

γxδxµxθ,

p2 = ap
αβγaαxβxγxqǫpq, p9 = aα

βγδa
β
αµνaγxδxµxν , p27 = apxqǫpq

J1 = aα
αpra

β
βqsǫ

pqǫrs, J2 = aα
βpra

β
αqsǫ

pqǫrs, J4 = aα
pruaβ

γqsa
γ
αβvǫ

pqǫrsǫuv, (5)

where εpq(ε11 = ε22 = 0, ε12 = −ε21 = 1 and εpq(ε11 = ε22 = 0, ε12 = −ε21 = 1)
are unit bivectors.

Considering (4) and (5) it is easy to establish the following
Remark 1. The condition p27 ≡ 0 for the system (1) is equivalent to the

equalities
a = b = 0. (6)

Taking into account Remark 1, Theorem 1.44 and Lemma 1.44 from [1] it is easy
to obtain

Lemma 1. If p27 ≡ 0 the rank of matrix (2) is equal to
4 for P1P2(3P1P3 − 2J1P2) 6≡ 0, or

50 P1 ≡ 0, P2(J2P5 − J4P2) 6≡ 0;
3 for P1P2 6≡ 0, 3P1P3 − 2J1P2 ≡ 0, or

P2P5 6≡ 0, P1 ≡ J2P5 − J4P2 ≡ 0, or
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P2 ≡ 0, J1 6= 0;
2 for P2 6≡ 0, P1 ≡ J2P5 − J4P2 ≡ P5 ≡ 0, or

P2 ≡ 0, J1 = 0, P1 6≡ 0;
0 for P1 ≡ P2 ≡ 0,

where P1, P2, P3, P5, J1, J2, J4 are taken from (5).

Let us prove

Lemma 2. If P2 ≡ 0 the rank of matrix (2) is equal to
4 for J1p27 6≡ 0; (7)
3 for P1 6≡ 0, p27J1 ≡ 0, p27 + J1 6≡ 0; (8)
2 for P1 6≡ 0, p27 ≡ 0, J1 = 0, orP1 ≡ 0, p27 6≡ 0; (9)
0 for P1 ≡ p27 ≡ 0, (10)

where P1, P2, p27, J1 are taken from (5).

Proof. Consider two cases: 1) If p27 ≡ 0, owing to the fact that J1 6= 0 implies that
P1 6≡ 0 (see [1]), we obtain that the corresponding cases of Lemma 2 coincide with
the corresponding cases of Lemma 1, and, hence, its truth is evident.

2) Let p27 6≡ 0, i.e., according to (4)-(5), we have

a2 + b2 6= 0. (11)

Since P2 ≡ 0 from (4)-(5) we obtain for the system (1)

t = 0, p = 3u, q = v, w = 3r, s = 0. (12)

Because of (12), removing the zero columns matrix (2) takes the form

M
(1)
1 =









−a 0 0 2u v
−b 0 v 0 2u
0 −a 0 v 2r
0 −b 2r 0 v









. (13)

Consider the following subcases:
a) Denote by the ∆ijkl (1 ≤ i, j, k, l ≤ 5) every possible minors of the fourth order

of the matrix M
(1)
1 constructed on its columns with the numbers i, j, k, l. There is

no difficulty to see that the following minors will be different from zero

8∆1234 = −abJ1, 8∆1235 = a2J1, 8∆1245 = −b2J1,

8∆1345 = (av + 2br)J1, 8∆2345 = −(bv + 2au)J1, (14)

where J1 is invariant from (5), having in this case for the system (1) the form

J1 = −8(v2 − 4ur). (15)

Taking into account (11) and (14) we note that the rank of matrix M
(1)
1 is equal to

4 if and only if the condition (7) takes place.
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b) Due to (14) and (15) we can say that if with p27 6≡ 0 takes place the condition

J1 = 0 (v2 = 4ur), (16)

then all minors of the fourth order of the matrix (11) are equal to zero and, hence,

rankM
(1)
1 < 4.

There is no difficulty to check that from 40 different minors of the third order of
the matrix (13) the following will be different from zero if (16) takes place:

∆123
123 = −a2v, ∆123

124 = 2abu, ∆123
125 = abv − 2a2u, ∆123

245 = −4au2,

∆123
145 = ∆123

234 = ∆134
245 = 2auv, ∆124

124 = 2b2u, ∆124
125 = b2v − 2abu,

∆124
134 = −4bur, ∆124

135 = −∆234
134 = ∆234

235 = −2bvr, ∆124
245 = −4bu2,

∆134
123 = 2a2r, ∆134

125 = a2v − 2abr, ∆134
135 = 4ar2, ∆134

234 = −4aru,

∆234
123 = 2abr, ∆234

124 = −b2v, ∆234
125 = abv − 2b2r, ∆234

135 = 4br2,

∆123
134 = −∆123

235 = ∆134
145 = −av2, ∆123

135 = −∆134
134 = ∆134

235 = −2arv,

∆124
123 = ∆134

124 = −abv, ∆124
235 = −∆234

145 = −∆234
234 = bv2,

∆124
145 = ∆124

234 = ∆234
245 = 2buv, (17)

where ∆ijk
lmn (1 ≤ i, j, k ≤ 4; 1 ≤ l,m, n ≤ 5) are indicated minors of the matrix M

(1)
1

constructed on lines i, j, k and columns l,m, n.
As with the help of (4)-(5) and (12) for P1 we obtain

P1 = 4ux2 + 4vxy + 4ry2, (18)

then with (11) we have that at least one of minors (17) is different from zero if and
only if P1p27 6≡ 0 in this subcase. Therefore (8) is true. Let us note that J1 = 0
does not contradict to P1 6≡ 0.

c) It follows from (17) and (18) that if with p27 6≡ 0 the equality

P1 ≡ 0 (u = v = r = 0) (19)

takes place then all minors of the third order of matrix (13) are equal to zero and

hence rankM
(1)
1 < 3.

Let form all possible unzero minors of the second order of matrix (13), which
will denote by ∆ij

kl(1 ≤ i, j ≤ 4; 1 ≤ k, l ≤ 2). It is not difficult to see that they are
the following:

∆13
12 = a2, ∆14

12 = ∆23
12 = ab, ∆24

12 = b2. (20)

With (11) at least one of minors (20) is different from zero and hence the rank of
matrix (13) is equal to 2. And this provides the fulfillment of the second condition
from (9).

The case (10) is evident. Lemma 2 is proved.
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Lemma 3. If P1P2 6≡ 0 the rank of matrix (2) is equal to 4 if and only if

2P2(3P1P3 − 2J1P2) + W1 6≡ 0, (21)

where
W1 = 3P2(P3p27 + 2p9) + 2P5(P1p27 − 4p2), (22)

and P1, P2, P3, P5, p2, p9, p27, J1 are taken from (5).

Proof. Necessity. Similarly to the proof of Lemma 2.44 from [1] we consider 3 cases.
1) The discriminant D(P1) > 0. Then, taking into consideration the expression

for P1 from (4)-(5) it is easy to check that by the center-affine transformation [1] we
obtain

P1 = 2(q + v)xy, p = −u, r = −w, (23)

where
q + v 6= 0. (24)

Let assume that the condition (21) is not necessary, i.e. that 2P2(3P1P3 − 2J1P2) +
W1 ≡ 0. Since the expressions 2P2(3P1P3−2J1P2) and W1 have 8th and 7th degrees,
respectively, concerning variables x, y, then the last identity is equivalent to the
system

2P2(3P1P3 − 2J1P2) ≡ 0, (25)

W1 ≡ 0. (26)

Taking into consideration the expression for P1 from (4)-(5), conditions (23),
(25), we obtain the following values for the coefficients of the system (1)

p = r = s = t = u = w = 0. (27)

With these coefficients the comitant P2 and the identity (26) take the form

P2 = 3(q − v)x2y2,

W1 = −6b(q − v)(−q2 + qv + 5v2)x4y3 + 6a(q − v)(−5q2 − qv + v2)x3y4 ≡ 0.

From the last identity with P2 6≡ 0 we obtain for the coefficients of the system (1)
as real values that a = b = 0. In this case removing the zero columns matrix (2)
takes the form

M
(2)
1 =









0 q 0 0 v 0
0 0 2q − v 0 0 3v
3q 0 0 2v − q 0 0
0 q 0 0 v 0









.

There is no difficulty to see that all the minors of the fourth order of the matrix

M
(2)
1 are equal to zero, i.e. rankM

(2)
1 < 4.

Obtained contradictions prove the necessity of the condition (21).
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2) The discriminant D(P1) = 0. Then, taking into consideration the expression
for P1 from (4)-(5) it is easy to check that by the center-affine transformation [1] we
obtain

P1 = (p + u)x2, q = −v, r = −w, (28)

where

p + u 6= 0. (29)

Let assume that the condition (21) is not necessary, i.e. let consider (25)-(26).
Taking into account (25), (28), (29), we obtain the following values for the coefficients
of the system (1):

q = r = s = v = w = 0. (30)

With these coefficients the comitant P2 and the identity (26) take the form

P2 = −tx4 + (p − 3u)x3y,

W1 = 2(p2 + u2)(at − bp + 3bu)x7 ≡ 0.

From the last identity with (29) and P2 6≡ 0 we obtain the following real values for
the coefficients of the system (1):

a) a = b(p−3u)
t

, (t 6= 0). In this case removing zero columns the matrix (2) takes
the form

M
(3)
1 =











b(3u−p)
t

0 2p 0 3t 2u 0
−b 0 −t p − u 0 t 2u

0 b(3u−p)
t

0 0 3u − p 0 0
0 −b 0 0 −t 0 0











.

There is no difficulty to see that all the minors of the fourth order of the matrix

M
(3)
1 are equal to zero, i.e. rankM

(3)
1 < 4, that proves the necessity of the conditions

(21).

b) b = t = 0. In this case removing zero columns the matrix (2) takes the form

M
(4)
1 =









−a 0 2p 0 0 2u 0
0 0 0 p − u 0 0 2u
0 −a 0 0 3p − u 0 0
0 0 0 0 0 0 0









.

There is no difficulty to see that all the minors of the fourth order of the matrix

M
(4)
1 are equal to zero, i.e. rankM

(3)
1 < 4, that proves the necessity of the conditions

(21).

3) The discriminant D(P1) < 0. Then, taking into consideration the expression
for P1 from (4)-(5) it is easy to check that by the center-affine transformation [1] we
obtain

P1 = A(x2 + y2) 6≡ 0, A = p + u = r + w. (31)
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Let assume that the condition (21) is not necessary, i.e. let consider (25)-(26).
Taking into account (25) and (31), we obtain the following values for the coefficients
of the system (1):

p = w = 3A/4, q = −v, r = u = A/4, s = −t = −3v.

With these coefficients the comitant P2 and the identity (26) take the form

P2 = −3v(x2 + y2)2;

W1 = −
3v

4
[(48av2 + 48bvA − 5aA2)x + (48bv2 − 48avA − 5bA2)y](x2 + y2)3 ≡ 0.

Taking into consideration the last identity with P2 6≡ 0 we obtain the following
values for the coefficients of the system (1):

a = b = 0, (v 6= 0).

In this case removing zero columns the matrix (2) takes the form

M
(5)
1 =









3A
2 −v 0 3v 9v A

2 v 0

−3v A
2 −3v 0 0 3v A

2 3v

−3v A
2 −3v 0 0 3v A

2 3v

0 −v A
2 −9v −3v 0 v 3A

2









.

Note that the second and third lines of the matrix M
(5)
1 coincide, hence rankM

(5)
1 <

4, that proves the necessity of the conditions (21).
The necessity of the conditions (21) is proved completely.
Sufficiency of the conditions (21) with P1P2 6≡ 0 follows from the expression

2P2(3P1P3 − 2J1P2) written by the minors of the matrix (2), see [1], p.164; and the
expression

W1 = (−2∆1378 +∆2347−∆2379−∆2478)x
7 +(6∆1347−3∆1379−14∆1478−18∆1789−

−7∆2348 + 10∆2357 + ∆23710 − 12∆2389 − 11∆2479 + 4∆2578 − 5∆27810)x
6y+

+(−5∆1348−29∆1357−4∆13710+23∆1479−13∆1578+18∆17810+16∆2349+10∆2358−

−21∆2367 − 15∆2457 + ∆24710 + 33∆2489 − 7∆2579 − 22∆2678 + 10∆27910)x
5y2+

+(−37∆1349−10∆1358 +8∆1367 +24∆1457−96∆1489 +13∆1579 +9∆1678−14∆17910−

−15∆2345 +∆23410−37∆2359 +31∆2368 −10∆23910 −48∆2458 +27∆2467 −38∆24810−

−9∆25710 − 33∆2589 + 25∆2679 − 6∆28910)x
4y3 + (−6∆1345 − 10∆13410 − 38∆1359−

−9∆1368 + ∆13910 − 33∆1458 + 25∆1467 − 37∆14810 + 31∆15710 − 48∆1589 + 27∆1679−

−15∆18910−14∆2346−96∆2459 +13∆2468−37∆24910 +9∆2567−10∆25810 +8∆26710+

+24∆2689)x
3y4 + (10∆1346 + ∆1369 + 33∆1459 − 7∆1468 + 16∆14910 − 22∆1567+
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+10∆15810−21∆16710−15∆1689 +18∆2356−4∆23610 +23∆2469−13∆2568−5∆25910−

−29∆26810)x
2y5 + (−5∆1356 + ∆13610 − 12∆14510 − 11∆1469 + 4∆1568 − 7∆15910+

+10∆16810−18∆2456−3∆24610−14∆2569+6∆26910)xy6+(−∆14610−∆1569+∆16910−

−2∆25610)y
7, (32)

where ∆ijkl (1 ≤ i, j, k, l ≤ 10) is the minor of the fourth order of the matrix (2)
constructed on its columns with the numbers i, j, k, l. Lemma 3 is proved.

Lemma 4. If P1 ≡ 0, P2 6≡ 0 the rank of the matrix (2) is equal to 4 if and only if

J2P5 − J4P2 + W1 + W2 6≡ 0, (33)

where W1 is taken from (22), and

W2 = p2
27(P

2
1 + 6P4 − 9P5) + 2p2

2, (34)

where P1, P2, P4, P5, p2, p27, J2, J4 are taken from (5).

Proof. Necessity. From P1 ≡ 0 we obtain the following values for the coefficients
of the system (1):

p = −u, q = −v, r = −w. (35)

With coefficients (35) comitants P2,W1 and W2 take the form

P2 = −tx4 − 4ux3y − 6vx2y2 − 4wxy3 + sy4, (36)

W1 = (−4at2v + 4atu2 + 6bt2w − 22btuv + 16bu3)x7 + (−14at2w + 14atuv − 6bst2+

+4btuw − 66btv2 + 56bu2v)x6y + (10ast2 − 44atuw + 54atv2 − 26bstu − 126btvw+

+64bu2w + 36buv2)x5y2 + (50astu + 70atvw− 80au2w + 60auv2 + 16bstv− 56bsu2−

−84btw2 + 8buvw + 36bv3)x4y3 + (16astv + 84asu2 + 56atw2 + 8auvw + 36av3+

+50bstw − 70bsuv − 80buw2 + 60bv2w)x3y4 + (−26astw + 126asuv + 64auw2+

+36av2w − 10bs2t + 44bsuw − 54bsv2)x2y5 + (6as2t − 4asuw + 66asv2 + 56avw2−

−14bs2u − 14bsvw)xy6 + (6as2u + 22asvw + 16aw3 − 4bs2v − 4bsw2)y7, (37)

and

W2 = (2a2t2 + 4abtu + 18b2tv − 16b2u2)x6 + (12a2tu − 24abtv + 48abu2 + 36b2tw−

−24b2uv)x5y + (30a2tv − 60abtw + 120abuv − 18b2st + 48b2uw − 36b2v2)x4y2+

+(40a2tw + 32abst − 32abuw + 144abv2 − 40b2su)x3y3 + (−18a2st + 48a2uw−

−36a2v2 + 60absu + 120abvw − 30b2sv)x2y4 + (−36a2su − 24a2vw + 24absv+

+48abw2 − 12b2sw)xy5 + (−18a2sv − 16a2w2 − 4absw + 2b2s2)y6. (38)
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Let assume that the condition (33) is not necessary i.e. that if J2P5 − J4P2 + W1 +
W2 ≡ 0, than there are some minors of the fourth order of the matrix (2) which
are different from zero. As the expressions J2P5 − J4P2, W1 and W2 have 4th,
7th and 6th degrees, respectively, concerning variables x, y, then the last identity is
equivalent to the system

J2P5 − J4P2 ≡ W1 ≡ W2 ≡ 0. (39)

With (35) from the first identity from (39) we obtain the system of the polynomial
equations of the fourth degree concerning coefficients of the system (1). Solving
indicated system (see [1], ? 171), we obtain the following four real solutions:

1) p = q = r = s = t = u = v = w = 0. (40)

With these coefficients P2 ≡ 0, what contradicts to the condition of Lemma 4.

2) p = q = t = u = v = 0, r = −w. (41)

With these equalities unzero minors of the fourth order of the matrix (2) will be the
following

∆16910 = ∆1569 = ∆14610 = ∆1456 = −2∆1269 = −2∆1246 = 4w2(4aw − bs),

∆12610 = ∆1256 = 8a2w2 + 2absw − b2s2. (42)

And expressions W1 and W2 take the form

W1 = 4w2(4aw − bs)y7,

W2 = 12bw(4aw − bs)xy5 + 2(−8a2w2 − 2absw + b2s2)y6. (43)

Taking into consideration the last equalities from (39) and the obtained with the
help (42)-(43) contradiction we find the necessity of the conditions (33) in this case,
too.

3) p = t = u = 0, q = −v, r = −w, 3sv = −2w2. (44)

Let substitute these coefficients into W1 and W2:

W1 = 36bv3x4y3 + (60bv2w + 36av3)x3y4 + (36av2w + 36bvw2)x2y5 + (12avw2+

+
28

3
bw3)xy6 + (

4

3
aw3 −

4

3
bsw2)y7;

W2 = 36b2v2x4y2 + 144abv2x3y3 + (−36a2v2 + 120abvw + 20b2w2)x2y4+

+(−24a2vw + 32abw2 − 12b2sw)xy5 + (−4a2w2 − 4absw + 2b2s2)y6.

From W1 ≡ W2 ≡ 0 with the last equalities we obtain:
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a) a = b = 0, (v 6= 0). Matrix (2) takes the form

M
(6)
1 =









0 0 0 −v 0 −s 0 0 v 0
0 0 0 0 −3v −4w 0 0 0 3v
0 0 −3v −2w s 0 0 3v 2w −s
0 0 0 −v −2w 3s 0 0 v 2w









.

There is no difficulty to see that all the minors of the fourth order of this matrix

are equal to zero, i.e. rankM
(6)
1 < 4. Therefore the conditions (33) are necessary in

this case.
b) With v = 0 from (44) we obtain p = q = r = t = u = v = w = 0. With these

equalities the following minors of the fourth order of the matrix (2) will be different
from zero

∆1256 = ∆12610 = −b2s2, (45)

and the expressions W1 and W2 take the form

W1 ≡ 0, W2 = 2b2s2y6. (46)

If we demand that the equality W2 ≡ 0 from (46) takes place, then with the help of
(45) we obtain that in this subcase all the minors of the fourth order of the matrix
(2) are equal to zero. This contradiction proves the necessity of the condition (33).

4) t = 0, 4uw = 3v2, 2su2 = −v3. (47)

Let substitute these coefficients into W1 and W2:

W1 = 16bu3x7 + 56bu2vx6y + 112bu2wx5y2 + (−128bsu2 + 8buvw)x4y3 + (12asu2+

+8auvw − 70bsuv)x3y4 + (126asuv + 84av2w − 28bsuw)x2y5 + (63asv2 + 56avw2−

−14bs2u − 14bsvw)xy6 + (6as2u + 22asvw + 16aw3 − 4bs2v − 4bsw2)y7;

W2 = −16b2u2x6 +(48abu2−24b2uv)x5y+120abuvx4y2 +(160abuw−40b2su)x3y3+

+(60absu + 120abvw − 30b2sv)x2y4 + (−36a2su − 24a2vw + 24absv + 48abw2−

−12b2sw)xy5 + (−18a2sv − 16a2w2 − 4absw + 2b2s2)y6.

From W1 ≡ W2 ≡ 0 with the last equalities we obtain bu = bv = 0.
If b 6= 0, then we come to the case 1) from the proof of the necessity in Lemma

4.
If b = 0 then we have:

W1 = 4au(2vw + 3su)x3y4 + 42av(2vw + 3su)x2y5 + 7av(9sv + 8w2)xy6 + 2a(3s2u+

+11svw + 8w3)y7;

W2 = −12a2(2vw + 3su)xy5 − 2a2(8w2 + 9sv)y6.

From W1 ≡ W2 ≡ 0 we obtain the following subcases:
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a) a = 0. This subcase is considered in ([1], ?.173).
b) a 6= 0, s 6= 0, p = q = r = u = v = w = 0. Taking into account the case 3) b)

from the proof of the necessity in Lemma 4 we conclude that all the minors of the
fourth order are equal to zero here, that proves the necessity of the condition (33).

c) a 6= 0, u 6= 0, q = r = s = v = w = 0. The matrix (2) in this case takes the
form

M
(7)
1 =









−a 0 −2u 0 0 0 0 2u 0 0
0 0 0 −2u 0 0 0 0 2u 0
0 −a 0 0 0 0 4u 0 0 0
0 0 0 0 0 0 0 0 0 0









.

There is no difficulty to see that all the minors of the fourth order of the matrix

M
(7)
1 are equal to zero, i.a. rankM1(7) < 4. Hence the condition (33) is necessary

in this subcase.
d) a 6= 0, v 6= 0, w 6= 0, u = 3v2

4w
, s = −8w2

9v
. Matrix (2) takes the form in this case

M
(8)
1 =











−a 0 −3v2

2w
−v 0 8w2

9v
0 3v2

2w
v 0

0 0 0 −3v2

2w
−3v −4w 0 0 3v2

2w
3v

0 −a −3v −2w −8w2

9v
0 3v2

w
3v 2w 8w2

9v

0 0 0 −v −2w −8w2

3v
0 0 v 2w











.

There is no difficulty to see that all the minors of the fourth order of the matrix

M
(8)
1 are equal to zero, i.a. rankM1(8) < 4. Hence the condition (33) is necessary

in this subcase.
The necessity of the condition (33) is proved completely.
Sufficiency of the condition (33) with P1 ≡ 0, P2 6≡ 0 follows from the expression

J2P5−J4P2 written by the minors of the matrix (2), see [1], p.169, and the expression

W2 = (−∆1237 − ∆1278)x
6 + (−2∆1238 − 4∆1247 − 2∆1279)x

5y + (−∆1234 − ∆1239−

−9∆1248 −5∆1257 −∆12710 −3∆1289)x
4y2 +(−2∆1235 −6∆1249 −12∆1258 −2∆1267−

−2∆12810)x
3y3 + (−∆1236 − 3∆1245 − ∆12410 − 9∆1259 − 5∆1268 − ∆12910)x

2y4+

+(−2∆1246 − ∆12510 − 4∆1269)xy5 + (−∆1256 − ∆12610)y
6,

where ∆ijkl, (1 ≤ i, j, k, l ≤ 10)- is the minor of the fourth order of the matrix (2),
constructed on its columns with the numbers i, j, k, l. Lemma 4 is proved.

Lemma 5. If P1P2 6≡ 0 the rank of the matrix (2) is equal to 3 if and only if

2P2(3P1P3 − 2J1P2) + W1 ≡ 0, (48)

where P1, P2, P3, J1 are taken from (5), and W1 from (22).

Proof. Necessity of the conditions (48) follows from Lemma 3.
Sufficiency of the conditions (48) can be proved similarly to the first part of the

proof of the sufficiency of Lemma 3.44 from [1]. Lemma 5 is proved.
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Lemma 6. If P1 ≡ 0, P2 6≡ 0 the rank of the matrix (2) is equal to 3 if and only if

J2P5 − J4P2 + W1 + W2 ≡ 0, P5 6≡ 0, (49)

where P1, P2, P5, J2, J4 are taken from (5), W1 from (22), and W2 from (34).

Proof. The necessity of the identity (49) follows from Lemma 4. The necessity of
the inequality from (49) can be proved similarly to the second part of the proof of
the necessity and sufficiency of Lemma 3.44 from [1].

Sufficiency of the conditions (49) can be proved similarly to the second part
of the proof of the necessity and sufficiency of Lemma 3.44 from [1]. Lemma 6 is
proved.

Lemma 7. If P2 6≡ 0 the rank of the matrix (2) is equal to 2 if and only if

P1 ≡ P5 ≡ J2P5 − J4P2 + W1 + W2 ≡ 0, (50)

where P1, P2, P5, J2, J4 are taken from (5), W1 from (22), and W2 from (34).

Proof. Necessity of the condition (50) follows from Lemma 6.
Let prove the sufficiency. If the conditions of Lemma 7 take place, than in every

case 1)-10) from the proof of the sufficiency of Lemma 6, where we do not have any
contradictions, we obtain P2 = sy4, and a = b = p = q = r = t = u = v = w = 0.
With these equalities from P2 6≡ 0 follows s 6= 0 and the rank of matrix (2) is equal
to 2, since the minors of the second order 3∆13

56 = 3∆13
610 = ∆34

56 = ∆34
610 = 3s2 are

different from zero. Lemma 7 is proved.

Theorem 1. GL(2, R)-orbit of the system (1) has the dimension
4 for P1P2 6≡ 0, 3P1P3 − 2J1P2 + W1 6≡ 0, or

p27 ≡ 0, P1P2(3P1P3 − 2J1P2) 6≡ 0, or
50 p27 ≡ 0, P1 ≡ 0, P2(J2P5 − J4P2) 6≡ 0, or
P1 ≡ 0, P2 6≡ 0, J2P5 − J4P2 + W1 + W2 6≡ 0, or
50 P2 ≡ 0, J1p27 6≡ 0;

3 for P1P2 6≡ 0, 3P1P3 − 2J1P2 + W1 ≡ 0, or
P1P2 6≡ 0, p27 ≡ 0, 3P1P3 − 2J1P2 ≡ 0, or
50 P2P5 6≡ 0, P1 ≡ J2P5 − J4P2 + W1 + W2 ≡ 0, or
50 P2 ≡ 0, P1 6≡ 0, J1 + p27 6≡ 0, J1p27 ≡ 0;

2 for P2 6≡ 0, P1 ≡ P5 ≡ J2P5 − J4P2 + W1 + W2 ≡ 0, or
P2 ≡ p27 ≡ 0, P1 6≡ 0, J1 = 0, or
P1 ≡ P2 ≡ 0, p27 6≡ 0;

0 for P1 ≡ P2 ≡ p27 ≡ 0,
where P1, P2, P3, P5, p27, J1, J2, J4 are taken from (5), W1 is taken from (22),

and W2 - from (34).
Let introduce the following designations:

M1 = M1(P1P2 6≡ 0, 3P1P3 − 2J1P2 + W1 6≡ 0);

M2 = M2(p27 ≡ 0, P1P2(3P1P3 − 2J1P2) 6≡ 0);
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M3 = M3(p27 ≡ 0, P1 ≡ 0, P2(J2P5 − J4P2) 6≡ 0);

M4 = M4(P1 ≡ 0, P2 6≡ 0, J2P5 − J4P2 + W1 + W2 6≡ 0);

M5 = M5(P2 ≡ 0, J1p27 6≡ 0);

M6 = M6(P1P2 6≡ 0, 3P1P3 − 2J1P2 + W1 ≡ 0);

M7 = M7(P1P2 6≡ 0, p27 ≡ 0, 3P1P3 − 2J1P2 ≡ 0);

M8 = M8(P2P5 6≡ 0, P1 ≡ J2P5 − J4P2 + W1 + W2 ≡ 0);

M9 = M9(P2 ≡ 0, P1 6≡ 0, J1 + p27 6≡ 0, J1p27 ≡ 0);

M10 = M10(P2 6≡ 0, P1 ≡ P5 ≡ J2P5 − J4P2 + W1 + W2 ≡ 0);

M11 = M11(P2 ≡ p27 ≡ 0, P1 6≡ 0, J1 = 0);

M12 = M12(P1 ≡ P2 ≡ 0, p27 6≡ 0);

M13 = M13(P1 ≡ P2 ≡ p27 ≡ 0). (51)

According to Definitions 1 and 2 from Theorem 1 follows

Theorem 2. Sets Mi (1 ≤ i ≤ 13) from (51) form GL(2, R)-invariant division of
the set E(A) of the coefficient of the system (1), i.a.

13
⋃

i=1

Mi = E(A), Mi ∩i6=j Mj = ⊘,

where each Mi is GL(2, R)-invariant.
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