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Weak convergence of the distributions of Markovian

random evolutions in two and three dimensions

A.D. Kolesnik

Abstract. We consider Markovian random evolutions performed by a particle mov-
ing in R2 and R3 with some finite constant speed v randomly changing its directions
at Poisson-paced time instants of intensity λ > 0 uniformly on the S2 and S3-spheres,
respectively. We prove that under the Kac condition

v → ∞, λ → ∞,
v2

λ
→ c, c > 0

the transition laws of the motions weakly converge in an appropriate Banach space
to the transition law of the two- and three-dimensional Wiener process, respectively,
with explicitly given generators.
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1 Introduction

The processes of random evolution in some phase space are being described by
the equality

∂f

∂t
= Af + Λf, (1)

which, in a certain sense, can be referred to as Kolmogorov equation for the random
evolution. In this equation (1) A is some purely spacial operator of a special form
acting in an appropriate Banach space, namely, some sort of diagonal matrix dif-
ferential operator acting in the space of sufficiently smooth functions, and Λ is the
infinitesimal operator of a stochastic process governing the evolution. The particu-
lar form of equation (1) is determined by the type of the evolution space and kind
of the controlling stochastic process. For instance, if the evolution is driven by a
continuous-time Markov chain with a finite number of states n, n ≥ 2, then equation
(1) takes the form of a system of n first-order PDEs, A is some diagonal (n × n)-
matrix differential operator acting in the space of differentiable vector-functions and
Λ is a scalar infinitesimal (n× n)-matrix of the embedded Markov chain.

The operator A is responsible for the propagation velocity of the evolution and Λ
deals with the intensity of the switching stochastic process. Therefore, it is natural
to represent these operators in the form A = ε1A, Λ = ε2Q, where the parameters
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42 A.D. KOLESNIK

ε1 and ε2 have the sense of the velocity of the evolution and the intensity of the
governing stochastic process, respectively, and the operators A and Q do not depend
on ε1 and ε2.

The systems of the form

∂f

∂t
= ε1Af + ε2Qf (2)

have become the subject of a great deal of researches, among which the problem of
diffusion approximation of random evolutions was of a special interest. It is clear
that in order the evolution to have a diffusion limit, its velocity and rate of switches
must satisfy some sort of equilibrium condition. In other words, the parameters ε1
and ε2 in (2) must be connected between themselves by that or another relationship.

In the case a random evolution is controlled by a continuous-time homogeneous
Markov chain with n states, the limit behaviour of a process governed by the system
(2) with ε1 = ε, ε2 = ε2, A is some diagonal (n × n)-matrix differential operator,
Q is a (n × n)-matrix of infinitesimal parameters, has been examined by Pinsky
[12], Griego and Hersh [1], Hersh and Papanicolaou [3], who have given the diffusion
approximation theorems as ε → ∞. A system of the form (2) has thoroughly been
studied by Hersh and Pinsky [4] and a limit theorem has been given as the ratio
(ε1/ε2) → 0. An abstract version of these diffusion approximation theorems has been
given by Kurtz [9] for arbitrary evolution space and kind of the controlling Markov
process. The reader interested in more details on the subject should address to the
survey article by Hersh [2] and, especially, to the monographs by Pinsky [14] and by
Korolyuk and Swishchuk [8].

The most interesting case of random evolution performed by a particle moving in
Rm,m ≥ 1, at some finite constant speed v subject to the control of a homogeneous
Poisson process of rate λ > 0 (so-called transport process), is being described by
an equation of the form (2) with ε1 = v and ε2 = λ. It is known that in many
such cases the limiting diffusion process arises if v and λ satisfy the following Kac
condition

v → ∞, λ→ ∞,
v2

λ
→ c, c > 0 (3)

and the transition functions of the evolution (as a two-parameter family of dis-
tributions depending on v and λ) weakly converge to the transition function of a
corresponding Brownian motion. Moreover, in all the cases (a very few ones) when
the transition laws were obtained in an explicit form (see, for instance, Orsingher
[10], theorem 1, for the transition law of the Goldstein-Kac telegraph process in R1,
and Orsingher [11], theorem 3.1, for the transition law of a random evolution with
four directions in R2), the condition (3) provided the pointwise convergence of the
transition functions of the motion to the transition function of the Wiener process.

A Markovian random evolution with an arbitrary number of directions n, n ≥ 2,
in R2 has been studied by Kolesnik and Turbin [7], and a nth order hyperbolic
equation with constant coefficients governing the transition law of the motion has
been obtained. It was also shown that under the Kac condition (3) the governing
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hyperbolic operator turns into the classical parabolic diffusion operator in R2 with
the generator

Gn =
c(n− 1)

2n
∆, n ≥ 3 (4)

where ∆ is the two-dimensional Laplacian. A diffusion approximation theorem
proved in Kolesnik [6] also stated that under the Kac condition (3) the transi-
tion laws of the evolution weakly converge in a suitably chosen Banach space to the
transition law of the Wiener process in R2 with generator (4).

One should note that in both these works it was supposed that under each change
of direction the particle took on any new one uniformly with probability 1/(n− 1),
that is, it could not preserve its current direction. However, if we suppose that
every new direction can be taken on uniformly with equal probabilities 1/n (i.e. the
transition probabilities of the embedded Markov chain are pij = 1/n for any i and
j), then replacing everywhere 1/(n− 1) for 1/n we obtain that the generator of the
limiting Wiener process for any n ≥ 3 is

Gn =
c

2
∆, (5)

and there is not the number of directions n in the right-hand side of (5). In other
words, under the full symmetry of the motion the limiting Wiener process does not
depend on the number of directions n. It is worth to note that generator (5) also
arises from (4) as n→ ∞.

This amazing fact allows us to expect that for an evolution with the continuum
number of directions (i.e. when the particle chooses new directions uniformly on the
unit circumference) the limiting Wiener process will have the same generator (5).
Proof of this statement is one of the principal results of our paper.

Studying of random evolutions with the continuum number of directions in
Rm,m ≥ 2, is an extremely interesting, natural and practically useful problem.
Although the equation governing such a motion is not obtained yet, nevertheless we
are able to present the results concerning limiting behaviour of the transition laws
of the evolutions in R2 and R3 under the Kac condition (3).

The main tool of our research is a diffusion approximation method given in
Kurtz [9]. In Section 2, for the reader’s convenience, we shall briefly remind the
main points of this method in a form convenient for further applications. In Section
3 we shall apply it to the problem of studying the behaviour of the transition laws of
a random evolution in R2 governed by a jump Markov process on the S2-sphere (unit
circumference). We will show that under the Kac condition (3) the transition laws
of the evolution weakly converge in an appropriate Banach space to the transition
law of the two-dimensional Brownian motion with zero drift and the variance

√
c.

In Section 4 we will give a similar result for a random evolution in R3 driven by a
jump Markov process on the S3-sphere (surface of the unit 3D-ball) and will prove
the weak convergence of the transition laws of the motion to the transition law of
the Wiener process in R3 with zero drift and the variance

√

2c/3.
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2 Kurtz’s Approximation Method

Let U(t) and S(t) be strongly continuous semigroups of linear contractions on a
Banach space L with infinitesimal operators A and B, respectively. Let D(A) and
D(B) be the domains of A and B. Assume that for each sufficiently large α, the
closure of A + αB is the infinitesimal operator of a strongly continuous semigroup
Tα(t) on L. Also suppose that B is the closure of B restricted to D(A)∩D(B). We
are interested in the behaviour of Tα(t) as α goes to infinity.

Define the operator P on L by the equality

Pf = lim
γ→0

γ

∫

∞

0

e−γtS(t)f dt, (6)

and suppose that the limit in the right-hand side of (6) exists for every f ∈ L. It
is known (see Hille and Phillips [5], page 516) that operator P defined by (6) is a
bounded linear projection, i.e. P 2 = P .

Denote by R(P ) the image of the operator P . Let

D = {f ∈ R(P ) : f ∈ D(A)}

and for f ∈ D define the operator C by the equality Cf = PAf . Kurtz’s approxi-
mation method is given by the following theorem.

Theorem [Kurtz [9], theorem 2.2]. Let U(t), S(t), Tα(t), D, C be defined as above.
Suppose that for all f ∈ D

Cf = 0. (7)

Let

D0 = {f ∈ D : ∃ h ∈ D(A) ∩D(B) such that Bh = −Af}. (8)

For f ∈ D0 define the operator C0 by the equality

C0f = PAh. (9)

Suppose that

R(µ− C0) ⊃ D0 (10)

for some µ > 0.

Then the closure of C0 restricted so that C0f ∈ D0 is the infinitesimal operator of
a strongly continuous contraction semigroup T (t) defined on D0 and for all f ∈ D0

T (t)f = lim
α→∞

Tα(αt)f.

This theorem gives an effective method of obtaining approximation results for a
wide class of stochastic processes. First of all one should note that the conditions of
the theorem are not too burdensome. The equality (7) is some sort of symmetry con-
dition which in practice can often be provided (if needed) by simple transformations.
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Fulfilment of the condition (10) can be provided by the choice of an appropriate Ba-
nach space. Therefore, there are two crucial points in this method. The first one
concerns finding of a solution h ∈ D(A) ∩ D(B) of the equation

Bh = −Af (11)

for every element f ∈ D0. The second point concerns the possibility of computing
the projector P defined by (6). The main question here is the existence of the limit
in the right-hand side of (6).

In the case of Markovian random evolutions the projector P can be found by
means of a more explicit formula. Let V (t) be a temporally homogeneous Markov
process with measurable state space (E, E) and transition function P (t, x,Γ). Then
the semigroup S(t) in the Banach space of bounded strongly measurable functions
f : E → L with the sup-norm is defined by

S(t)f(x) =

∫

E

f(y) P (t, x, dy),

and the projector P is explicitly given by the formula

Pf(x) =

∫

E

f(y) P (x, dy), (12)

where P (x,Γ) is the limiting distribution, assumed to exist, of the process V (t)
starting from x, or the weak limit as t → ∞ of the transition function P (t, x,Γ).
One should note that formula (12) takes an especially simple form if the limiting
distribution P (x,Γ) is uniform.

If h and P are found and the conditions (7) and (10) are fulfilled then, according
to the conclusion of the Kurtz’s theorem, one can assert that the transition laws
of the random evolution weakly converge to the transition law of a process with
generator given by the closure of C0.

In the next sections we will apply this method to the Markovian random evolu-
tions in R2 and R3 and prove that their transition functions weakly converge to the
transition function of the two- and three-dimensional Brownian motion, respectively,
with explicitly given generators.

3 Diffusion Approximation Theorem in R
2

Consider the following planar stochastic motion. A particle starts at the moment
t = 0 from the origin x = y = 0 of the plane R2 taking initial random direction
uniformly on the S2-sphere (unit circumference) and moves with some constant finite
speed v. At every time instant t > 0 it can have some random direction of motion
Eϕ, ϕ ∈ [0, 2π) which forms the angle ϕ with x-axis. In other words, the direction Eϕ
is oriented like the vector eϕ = (cosϕ, sinϕ), ϕ ∈ [0, 2π). The motion is controlled
by a homogeneous Poisson process of rate λ > 0 as follows. When a Poisson event
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occurs, the particle instantly takes on a new random direction distributed uniformly
on S2 and continues its motion in the chosen direction with the same speed v until
the next Poisson event occurs, then it takes on a new random direction again, and
so on. Thus, the evolution is controlled by the jump Markov process Φt on the unit
circumference S2.

Let Ξ(t) = (Xt, Yt) denote the particle’s position in the plane at some instant
t > 0. Since the motion depends on v and λ then, in fact, we deal with a two-
parameter family of stochastic processes Ξλv (t). Bearing this in mind, we omit these
indices in the sequel.

The main goal of this section is to study the behaviour of the transition laws
of Ξ(t) as the intensity of transitions λ tends to infinity and, according to λ, the
particle speed v increases as well. The accordance between the growth rates of λ
and v is determined by the Kac condition (3).

Since the sample paths of Ξ(t) are continuous and differentiable almost every-
where and the velocity of the process is finite, the distribution of Ξ(t) consists of
the absolutely continuous component concentrated strictly inside the circle

Kt = {(x, y) ∈ R2 : x2 + y2 < v2t2}, t > 0

and the singular component on the boundary

Bt = {(x, y) ∈ R2 : x2 + y2 = v2t2}, t > 0.

Therefore there exist the partial (with respect to directions) transition densities
fϕ = fϕ(x, y, t), (x, y) ∈ Kt, t > 0, ϕ ∈ [0, 2π) of the absolutely continuous
component of Ξ(t) defined by the equality

fϕ(x, y, t)dxdydϕ = Prob{x ≤ Xt < x+ dx, y ≤ Yt < y + dy, ϕ ≤ Φt < ϕ+ dϕ}

Kolmogorov equation (1) written down for these transition densities has the form of
the integro-differential equation

∂fϕ
∂t

= −v cosϕ
∂fϕ
∂x

− v sinϕ
∂fϕ
∂y

− λfϕ +
λ

2π

∫

2π

0

fθdθ, ϕ ∈ [0, 2π). (13)

Equation (13) is a particular case (for the uniform dissipation function identically
equal to 1/(2π)) of a some more general equation with an arbitrary dissipation
function given in the monograph by Tolubinsky [15], page 40. One should note that
the integral term in (13) appears due to the continuum number of directions. This is
the main difference of the motion from the model with a finite number of directions
studied in Kolesnik and Turbin [7] and Kolesnik [6] where only PDEs arose.

Consider the Banach space B of twice continuously differentiable functions on
R2 × (0,∞) vanishing at infinity. The transition densities fϕ can be considered as
the one-parameter family of functions f = {fϕ, ϕ ∈ [0, 2π)} belonging to B.

Introduce the one-parameter family A = {Aθ, θ ∈ [0, 2π)} of operators acting in
B where

Aθ = −v cos θ
∂

∂x
− v sin θ

∂

∂y
.



WEAK CONVERGENCE OF THE DISTRIBUTIONS . . . 47

Define the action of A on f as

Af = {δ(θ, ϕ)Aθfϕ, θ, ϕ ∈ [0, 2π)} (14)

where

δ(θ, ϕ) =

{

1, if θ = ϕ
0, otherwise

is the generalized Kronecker delta-symbol of rank 2. The operator A in (14) is an
analogue of a diagonal matrix differential operator and the family f is the continuum
analogue of the vector-function of partial transition densities appearing in the finite-
state case (see Kolesnik [6], formula (2)).

Introduce now the operator Λ acting on f by the following formula

Λf = −λf +
λ

2π

∫

2π

0

fθdθ. (15)

Then equality (13) can be rewritten as follows

∂f

∂t
= Af + Λf (16)

and it has exactly the form of equation (1).
The principal result of this section is given by the following theorem.

2D-Diffusion Approximation Theorem. Let the Kac condition (3) be fulfilled.
Then in the Banach space B the semigroups generated by the transition functions of
the process Ξ(t) converge to the semigroup generated by the transition function of
the Wiener process in R2 with generator

G =
c

2
∆ (17)

where ∆ is the two-dimensional Laplace operator.

Remark. Note that generator (17) also formally appears from formula (13) of
Kolesnik [6] and formula (4.3) of Kolesnik and Turbin [7] as n→ ∞.

Remark. One should also note that for the particular case when the limiting
constant c = 1, the generator (17) coincides with the evolutionary operator given in
Proposition 4.8 of the paper by Pinsky [13] for the dimension m = 2.

Proof. According to formulas (8) and (11) of the Kurtz’s theorem above, we need
to find a solution h of the equation

Λh = −Af (18)

for arbitrary function (family) f ∈ D0. As is easy to see, such a solution for any
differentiable function f is given by the formula

h =
1

λ
Af +

1

2π

∫

2π

0

fθdθ. (19)
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Really, taking into account that for any f ∈ B
∫

2π

0

Af dθ =

(
∫

2π

0

Aθ dθ

)

f = 0 (20)

and using (15) and (19) we obtain

Λh = −λ
(

1

λ
Af +

1

2π

∫

2π

0

fϕdϕ

)

+
λ

2π

∫

2π

0

(

1

λ
Af +

1

2π

∫

2π

0

fϕdϕ

)

dθ = −Af

and equality (18) is fulfilled.
Our next step is to compute the projector P given by formula (12). Since the

limiting distribution of the governing Markov process on S2 is uniform with the
density 1/(2π) then formula (12) simplifies, and the projector is given by

Pf =
1

2π

∫

2π

0

fϕdϕ. (21)

Then, according to (9), (19) and (21), we obtain

C0f = PAh =
1

2π

∫

2π

0

(

1

λ
A2f +

1

2π
A

∫

2π

0

fϕdϕ

)

dθ.

The well-known equalities

∫

2π

0

sin2ϕ dϕ = π,

∫

2π

0

cos2ϕ dϕ = π,

∫

2π

0

sinϕ cosϕ dϕ = 0

yield the formula

∫

2π

0

A2f dθ =

(
∫

2π

0

A2

θ dθ

)

f = πv2∆f (22)

where ∆ is the two-dimensional Laplacian and therefore, taking into account (20)
and (22), for any f ∈ B we have

C0f =

(

1

2πλ

∫

2π

0

A2

θdθ

)

f +
1

4π2

(
∫

2π

0

Aθ dθ

)(
∫

2π

0

fϕdϕ

)

=
v2

2λ
∆f.

Thus, we obtain

C0 =
v2

2λ
∆

and therefore generator (17) under the Kac condition (3) is the limiting operator of
the evolution.

It remains to check conditions (7) and (10) of the Kurtz’s theorem. Taking into
account equality (20) for any f continuously differentiable we have

Cf = PAf =
1

2π

(
∫

2π

0

Aθ dθ

)

f = 0
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and thus condition (7) is fulfilled.
In order to check condition (10) it is sufficient to show that for any function f

twice continuously differentiable there exists a solution g of the equation

(µ− C0)g = f (23)

for some µ > 0. One can easily see that for any µ > 0 equation (23) takes the form
of an inhomogeneous Klein-Gordon equation (or Helmholtz equation with a purely
imaginary constant) with a sufficiently smooth right-hand part, and existence of its
solution is well-known from the general PDEs theory. Thus, condition (10) is also
fulfilled.

Therefore, by the Kurtz’s approximation theorem, one can assert that under the
Kac condition (3) the semigroups generated by the transition laws of the process
Ξ(t) converge in B to the semigroup generated by the transition law of the Wiener
process in R2 with generator (17). �

4 Diffusion Approximation Theorem in R
3

In this section we give a similar result concerning 3-dimensional random evolu-
tion. A particle starts at the moment t = 0 from the origin x = y = z = 0 of the
space R3 taking initial random direction uniformly on the S3-sphere (surface of the
unit 3D-ball) and moves with some constant finite speed v. At every time instant
t > 0 it can have some random direction of motion ω ∈ S3 where ω is a spacial
(bodial) angle. The motion is driven by a Poisson process of rate λ > 0 as follows.
When a Poisson event occurs, the particle instantly takes on a new random direction
distributed uniformly on S3 and continues its motion in the chosen direction with
the same speed v until the next Poisson event occurs, then it takes on a new random
direction again, and so on. Thus, the evolution is controlled by the jump Markov
process Φt on S3.

Let Ξ(t) = (Xt, Yt, Zt) denote the particle’s position in the space R3 at some
instant t > 0. The main goal of this section is to study the behaviour of the
transition laws of Ξ(t) under the Kac condition (3).

Like in the planar case, the distribution of Ξ(t) consists of the absolutely con-
tinuous component concentrated strictly inside the ball

Kt = {(x, y, z) ∈ R3 : x2 + y2 + z2 < v2t2}, t > 0

and the singular component on the boundary

Bt = {(x, y, z) ∈ R3 : x2 + y2 + z2 = v2t2}, t > 0

Therefore there exist the partial (with respect to directions) transition densities
fω = fω(x, y, z, t), (x, y, z) ∈ Kt, ω ∈ S3, t > 0, of the absolutely continuous
component of Ξ(t) defined by the equality
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fω(x, y, z, t) dx dy dz µ(dω) =

Prob{x ≤ Xt < x+ dx, y ≤ Yt < y + dy, z ≤ Zt < z + dz, Φt ∈ dω}
where µ(dω) is the measure of the elementary spacial angle dω.

Since in R3 any direction ω is determined by the ordered pair of two planar
angles (ϕ,ψ), ϕ ∈ [0, 2π), ψ ∈ [0, π), and the measure of the elementary spacial
angle dω is equal to

µ(dω) = sinψ dψ dϕ (24)

then Kolmogorov equation (1) written down for the transition densities fω = fϕ,ψ
has the form of the integro-differential equation

∂fϕ,ψ
∂t

= −v sinψ cosϕ
∂fϕ,ψ
∂x

− v sinψ sinϕ
∂fϕ,ψ
∂y

− v cosψ
∂fϕ,ψ
∂z

−λfϕ,ψ +
λ

4π

∫

S3

fω µ(dω), ϕ ∈ [0, 2π), ψ ∈ [0, π). (25)

Equation (25) is a particular case (for the uniform dissipation function identically
equal to 1/(4π)) of a some more general equation with an arbitrary dissipation
function given in the monograph by Tolubinsky [15], page 40.

Consider the Banach space B of twice continuously differentiable functions on
R3 × (0,∞) vanishing at infinity. The transition densities fϕ,ψ can be considered as
the two-parameter family of functions f = {fϕ,ψ, ϕ ∈ [0, 2π), ψ ∈ [0, π)} belonging
to B.

Introduce the two-parameter family A = {Aθ,ν , θ ∈ [0, 2π), ν ∈ [0, π)} of
operators acting in B where

Aθ,ν = −v sinψ cosϕ
∂

∂x
− v sinψ sinϕ

∂

∂y
− v cosψ

∂

∂z
.

Define the action of A on f as

Af = {δ(θ, ϕ)δ(ν, ψ)Aθ,νfϕ,ψ, θ, ϕ ∈ [0, 2π), ν, ψ ∈ [0, π)} (26)

where δ(·, ·) is the generalized Kronecker delta-symbol of rank 2 defined above.
Introduce now the operator Λ acting on f in the following way

Λf = −λf +
λ

4π

∫

S3

fω µ(dω). (27)

Then equality (25) can be rewritten as

∂f

∂t
= Af + Λf

having the form of equation (1) and similar to (16).
The principal result of this section is given by the following theorem.



WEAK CONVERGENCE OF THE DISTRIBUTIONS . . . 51

3D-Diffusion Approximation Theorem. Let the Kac condition (3) be fulfilled.
Then in the Banach space B the semigroups generated by the transition functions of
the process Ξ(t) converge to the semigroup generated by the transition function of
the Wiener process in R3 with generator

G =
c

3
∆ (28)

where ∆ is the three-dimensional Laplace operator.

Remark. Note that for the particular case when the limiting constant c = 1, the
generator (28) coincides with the evolutionary operator given in Proposition 4.8 of
the paper by Pinsky [13] for the dimension m = 3.

Proof. The proof of the theorem is similar to that of the planar case. A solution h
of the equation

Λh = −Af
for any differentiable function (family) f is

h =
1

λ
Af +

1

4π

∫

S3

fω µ(dω). (29)

Since the limiting distribution of the governing Markov process on S3 is uniform
with the density 1/(4π) then, by formula (12), the projector P is given by

Pf =
1

4π

∫

S3

fω µ(dω). (30)

Then, according to (9), (29) and (30), we obtain

C0f = PAh =
1

4π

∫

S3

(

1

λ
A2f +

1

4π
A

∫

S3

fω µ(dω)

)

µ(dξ)

Using the equality (24) one can easily show that for any f ∈ B
∫

S3

Af µ(dξ) =

(
∫

2π

0

dθ

∫ π

0

Aθ,ν sin ν dν

)

f = 0, (31)

∫

S3

A2f µ(dξ) =

(
∫

2π

0

dθ

∫ π

0

A2

θ,ν sin ν dν

)

f =
4πv2

3
∆f (32)

where ∆ is the three-dimensional Laplacian, and therefore we have

C0f =
1

4πλ

∫

S3

A2f µ(dξ) +
1

16π2

∫

S3

A
(

∫

S3

fω µ(dω)

)

µ(dξ) =
v2

3λ
∆f.

Thus, we obtain

C0 =
v2

3λ
∆
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and therefore generator (28) under the Kac condition (3) is the limiting operator of
the evolution.

Fulfilment of the condition (7) of the Kurtz’s theorem is provided by equality
(31), and condition (10) can be checked in the same manner as it was done in the
planar case.

Therefore, by the Kurtz’s approximation theorem, one can conclude that under
the Kac condition (3) the distributions of the random evolution Ξ(t) weakly converge
in B to the distribution of the Wiener process in R3 with generator (28). �
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