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Bieberbach-Auslander Theorem

and Dynamics in Symmetric Spaces

Boris N. Apanasov

Abstract. The aim of this paper (my extended contribution to Intern. Conf. on Dis-
crete Geometry dedicated to A.M.Zamorzaev) is to study dynamics of a discrete isom-
etry group action in a noncompact symmetric space of rank one nearby its parabolic
fixed points. Due to Margulis Lemma, such an action on corresponding horospheres
is virtually nilpotent, so our extension of the Bieberbach-Auslander theorem for dis-
crete groups acting on connected nilpotent Lie groups can be applied. As result, we
show that parabolic fixed points of a discrete group of isometries of such symmetric
space cannot be conical limit points and that the fundamental groups of geometrically
finite locally symmetric of rank one orbifolds are finitely presented, and the orbifolds
themselves are topologically finite.

Mathematics subject classification: 57, 55, 53, 51.
Keywords and phrases: Symmetric spaces, negative curvature, discrete groups,
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1 Introduction

Here we apply our structural theorem on discrete actions on nilpotent groups [6,7]
to study the dynamics of a discrete isometry group action nearby its parabolic fixed
points at infinity of symmetric spaces of rank 1 with negative curvature. All those
spaces X are foliated by horospheres centered at a given point at infinity (i.e. by
level surfaces of a Busemann function). The most important case is that of a discrete
(parabolic) group Γ ⊂ Isom X that fixes a point at infinity and preserves setwise
each of those horospheres. In this case, by applying the Margulis Lemma, it follows
that this discrete parabolic group Γ is virtually nilpotent. Furthermore, at least in
symmetric spaces of rank 1 with negative curvature (that is the hyperbolic spaces –
either real, complex, quaternionic or octonionic ones), all those horospheres can be
identified with a connected simply connected Lie group N and our discrete group
Γ isometrically acts on N as a subgroup Γ ⊂ N ⋊ C where C is a compact group
of automorphisms of N . In the case of real hyperbolic spaces (of constant negative
curvature), horospheres are flat, and discrete Euclidean isometry group actions are
described by the Bieberbach theorem [2]. However in the other symmetric spaces
of rank 1 this is no longer true. In these spaces horospheres may be represented as
non-Abelian nilpotent Lie groups with a left invariant metric, and therefore they
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have sectional curvatures of both signs. Here we can use our structural theorem,
see [6, 7]:

Theorem 1. Let N be a connected, simply connected nilpotent Lie group, C be a
compact group of automorphisms of N , and Γ ⊂ N ⋊C be a discrete subgroup. Then
there exist a connected Lie subgroup NΓ of N and a finite index subgroup Γ∗ of Γ
with the following properties:

1. There exists b ∈ N such that bΓb−1 preserves NΓ;

2. NΓ/bΓb−1 is compact;

3. bΓ∗b−1 acts on NΓ by left translations, and this action is free.

Here the compactness condition on the group C of automorphisms of N is essen-
tial. The situation when the group C may be noncompact is completely different.
For instance, G. Margulis [13] constructed discrete subgroups of R3

⋊SO(2, 1) which
are nonabelian free groups, whereas in the compact case any discrete subgroup of
N ⋊ C must be virtually nilpotent, which resembles Gromov’s almost flat mani-
folds [10]. On the other hand, when the group C is compact, there exists a left
invariant metric on N such that N ⋊ C acts on N as a group of isometries. So
any discrete subgroup of N ⋊ C can be viewed as a discrete isometry group of N
with respect to some left invariant metric. We remark that our Theorem advances
a result by Louis Auslander [1] who proved its claims (1) and (2) only for a finite
index subgroup of a given discrete group Γ. In the Euclidean case when N = Rn,
this is the Bieberbach theorem, see [2].

A motivation for our study comes from an attempt to understand parabolic (the
so-called ”thin”) ends of negatively curved manifolds, as well as the geometry and
topology of geometrically finite pinched negatively curved manifolds, see [2, 3, 5, 9].
The concept of geometrical finiteness first arose in the context of (real) hyperbolic
3-manifolds. Its original definition (due to L.Ahlfors) came from an assumption that
such a geometrically finite real hyperbolic manifold M may be decomposed into a
cell by cutting along a finite number of its totally geodesic hypersurfaces. Since
that time, other definitions of geometrical finiteness have been given by A.Marden,
A.Beardon and B.Maskit, and W.Thurston, and the notion has become central to
the study of real hyperbolic manifolds. Though other pinched Hadamard manifolds
may not have totally geodesic hypersurfaces, the other definitions of geometrical
finiteness work in the case of variable negative curvature as well, see [4, 7, 9]. Our
previous paper [5] deals with geometrical finiteness in variable curvature in the case
of complex hyperbolic manifolds, on the base of a structural theorem for discrete
isometric actions on the Heisenberg groups, a predecessor of our Theorem 1. Our
proof of Theorem 1 uses different algebraic ideas, see [6, 7].

Here we apply our Theorem 1 in two directions. First we answer a question on
dynamics of a discrete isometry group action nearby its limit points, which was left
open for variable negative curvature spaces. Namely, it distinguishes two types of
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limit points of a discrete group G ⊂ Isom X acting on a symmetric rank one space
X with negative curvature. Namely it shows that parabolic fixed points of such a
discrete group G cannot be its conical limit points, i.e. such points z ∈ X(∞) that
for some (and hence every) geodesic ray ℓ in X ending at z, there is a compact set
K ⊂ X such that the subset {g ∈ G : g(ℓ) ∩ K 6= ∅} is infinite. Such a dichotomy
has been recently proved only in the case of real hyperbolic spaces (of constant
curvature) by Susskind and Swarup [16] and independently, from a dynamical point
of view, by Starkov [15].

The second our result answers another open question (formulated as a conjecture
in [9], p.230). Namely, it shows that discrete parabolic groups Γ isometrically acting
on a connected Lie groups N with a compact automorphism group, as well as geo-
metrically finite discrete groups G ⊂ Isom X acting on the corresponding symmetric
space of rank 1 are finitely presented, and the corresponding quotient orbifolds are
topologically finite. Previously, it was known for constant negative curvature. For
pinched Hadamard manifolds with various negative curvature, Bowditch [9] proved
that such groups are finitely generated. The answer in the case of Heisenberg groups
and complex hyperbolic manifolds has been earlier given by the author in [5, 6].

2 Preliminaries

The symmetric spaces of R-rank one of non-compact type are the hyperbolic
spaces Hn

F
, where F is either the real numbers R, or the complex numbers C, or the

quaternions H, or the Cayley numbers O; in last case n = 2. They are respectively
called as real, complex, quaternionic and octonionic hyperbolic spaces (the latter
one H2

O
is also known as the Cayley hyperbolic plane). Algebraically these spaces

can be described as the corresponding quotients: SO(n, 1)/SO(n), SU(n, 1)/SU(n),
Sp(n, 1)/Sp(n) and F−20

4 /Spin(9) where the latter group F−20
4 of automorphisms

of the Cayley plane H2
O

is the real form of F4 of rank one. We normalize the metric
so the (negative) sectional curvature of Hn

F
is bounded from below by −1.

Following Mostow [14] and using the standard involution (conjugation) in F,
z → z̄, one can define projective models of the hyperbolic spaces Hn

F
as the set of

negative lines in the Hermitian vector space F
n,1, with Hermitian structure given by

the indefinite (n, 1)-form

〈〈z,w〉〉 = z1w1 + · · · + znwn − zn+1wn+1 .

Here, taking non-homogeneous coordinates, one can obtain unit ball models (in the
unit ball Bn

F
(0, 1) ⊂ F

n) for the first three spaces. Since the multiplication by
quaternions is not commutative, we specify that we use “left” vector space H

n,1

where the multiplication by quaternion numbers is on the left. However, it does
not work for the Cayley plane since O is non-associative, and one should use a
Jordan algebra of 3 × 3 Hermitian matrices with entries from O whose group of
automorphisms is F4, see [14].

Another models of Hn
F

use the so called horospherical coordinates [6, 11] based
on foliations of Hn

F
by horospheres centered at a fixed point ∞ at infinity ∂Hn

F
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which is homeomorphic to (n dimR F − 1)-dimensional sphere. Such a horosphere
can be identified with the nilpotent group N in the Iwasawa decomposition KAN
of the automorphism group of Hn

F
. The nilpotent group N can be identified with

the product F
n−1 × Im F (see [14]) equipped with the operations:

(ξ, v) · (ξ′, v′) = (ξ + ξ′, v + v′ + 2 Im〈ξ, ξ′〉) and (ξ, v)−1 = (−ξ,−v) ,

where 〈, 〉 is the standard Hermitian product in F
n−1, 〈z,w〉 =

∑

ziwi. The group
N is a 2-step nilpotent Carnot group with center {0} × Im F ⊂ F

n−1 × Im F, and
acts on itself by the left translations Th(g) = h · g , h, g ∈ N .

Now we may identify

Hn
F ∪ ∂Hn

F\{∞} −→ N × [0,∞) = F
n−1 × ImF × [0,∞) ,

and call this identification the “upper half-space model” for Hn
F

with the natural
horospherical coordinates (ξ, v, u). In these coordinates, the above left action of N
on itself extends to an isometric action (Carnot translations) on the F-hyperbolic
space in the following form:

T(ξ0,v0) : (ξ, v, u) 7−→ (ξ0 + ξ , v0 + v + 2 Im〈ξ0, ξ〉 , u) ,

where (ξ, v, u) ∈ F
n−1 × Im F × [0,∞).

There are a natural norm and an induced by this norm distance on the Carnot
group N = F

n−1× Im F, which are known in the case of the Heisenberg group (when
F = C) as the Cygan’s norm and distance. Using horospherical coordinates, they
can be extended to a norm on Hn

F
, see [6]:

|(ξ, v, u)|c = | (|ξ|2 + u − v)|1/2 , (1)

where |.| is the norm in F, and to a metric ρc (still called the Cygan metric) on
F

n−1 × ImF × [0,∞) = X\{∞}:

ρc

(

(ξ, v, u), (ξ′, v′, u′)
)

=
∣

∣ |ξ − ξ′|2 + |u − u′| − (v − v′ + 2 Im〈ξ, ξ′〉)
∣

∣

1
2 . (2)

It follows directly from the definition that Carnot translations and rotations are
isometries with respect to the Cygan metric ρc. Moreover, the restrictions of this
metric to different horospheres centered at ∞ are the same, so Cygan metric plays
the same role as Euclidean metric does on the upper half-space model for the real
hyperbolic space H

n.

The group of automorphisms of Hn
H

is PSp(n, 1). The stabilizer K of the origin
is Sp(1) × Sp(n) which can be described in the matrix form as:

[

M 0
0 ν

]
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where M ∈ Sp(n) and ν ∈ Sp(1). Note the matrix acts on the right, and the
projectivization is given by multiplication on the left. So in the ball model, the
action is:

z → ν−1zM .

The stabilizer of a real geodesic connecting two points (0, 1) and (0,−1) is MA =
Sp(1) × Sp(n − 1) × R. This action can be described in the matrix form as:





M 0 0
0 ν cosh r ν sinh r
0 ν sinh r ν cosh r





where M ∈ Sp(n − 1), ν ∈ Sp(1) and r ∈ R. Specially Sp(1) acts as





I 0 0
0 ν 0
0 0 ν





If (0, H) is the H-line containing the real geodesic joining (0, 1) and (0,−1), the
action of Sp(1) on this H-line is:

(0, H) → ν−1(0, Hν, ν) = (0, ν−1
Hν).

But in general, ν ∈ Sp(1) maps (z, zn) to (ν−1z , ν−1znν).
A Cayley number z ∈ O is a pair of quaternions, z = (q1, q2), and the multipli-

cation in O is given by

(q1, q2)(p1, p2) = (q1p1 − p̄2q2, p2q1 + q2p̄1) .

The standard involution (conjugation) in O is defined by (q1, q2) = (q̄1,−q2), so for
z = (q1, q2) ∈ H × H = O, we have Im z = (Im q1, q2) and Re z = Re q1. Then
Cayley numbers satisfy the usual properties like: xx̄ = |x|2, |xy| = |x||y|, x−1 =
x̄/|x|2, xy = ȳx̄. Even though Cayley numbers are not commutative, nor associative,
by Artin’s lemma a subalgebra generated by two elements is associative. Cayley
hyperbolic plane is made out of an exceptional Jordan algebra of 3 × 3 Hermitian
matrices with entries from O whose group of automorphisms is F4, see [14]. The
group of automorphisms of the Cayley plane H2

O
is F−20

4 , the real form of F4 of rank

one. The stabilizer in F−20
4 of the origin (0, 0) ∈ B2

O
(0, 1) = H2

O
is Spin(9) operating

on O
2 = R

16 via the spinor representation. If L1 = O × 0 and L2 = 0 × O denote
the coordinate O-axes, then the stabilizer of L1 acts on L1 as SO(8) via the even
1
2 -spin representation, and on L2 as odd 1

2 -spin representation. The stabilizer of the
real line through (0, 0) and (1, 0) is Spin(7).

3 Margulis region and parabolic cusps

One of the most important tools for studying negatively curved spaces is given by
the Margulis Lemma which induces the thick-thin decomposition of corresponding
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orbifolds, see [8, 9]. Such orbifolds are quotients M = X/G of symmetric spaces
X by discrete isometric actions of their fundamental groups πorb

1
∼= G ⊂ Isom X.

Adding the induced discrete action of G in some domain at infinity ∂X, we obtain
a partial closure M(G) of that orbifold M . More precisely, let Λ(G) ⊂ ∂X and
ω(G) = ∂X\Λ(G) be the limit and discontinuity sets of G ⊂ Isom X. Then we set
M(G) = (X ∪ Ω(G))/G.

Let ǫ be a positive number less than ǫ(n), the Margulis constant for symmetric
n-spaces of rank one. For a given discrete group G ⊂ Isom X and its orbifold
M = X/G, we define the ǫ-thin part thinǫ(M) as

thinǫ(M) = {x ∈ X :Gǫ(x) = 〈g ∈ G :d(x, g(x)) < ǫ〉 is infinite}/G .

The thick part thickǫ(M) of M is defined as the closure of the complement to the
thin part, thinǫ(M) ⊂ M .

As a consequence of the Margulis Lemma, there is the following description of
the thin part of M [8, 9]:

Theorem 2. Let G ⊂ Isom X be a discrete group and ǫ, 0 < ǫ < ǫ(n), be chosen.
Then the ǫ-thin part thinǫ(M) of M = X/G is a disjoint union of its connected
components, and each such component has the form Tǫ(Γ)/Γ where Γ is a maximal
infinite elementary subgroup of G. Here, for each such elementary subgroup Γ ⊂ G,
the connected component (Margulis region)

Tǫ = Tǫ(Γ) = {x ∈ X :Γǫ(x) = 〈g ∈ Γ:d(x, γ(x)) < ǫ〉 is infinite}

is precisely invariant with respect to the subgroup Γ in G:

Γ(Tǫ) = Tǫ , g(Tǫ) ∩ Tǫ = ∅ for any g ∈ G\Γ .

We note that in the real hyperbolic case of dimension 2 and 3, a Margulis region
Tǫ with parabolic stabilizer Γ ⊂ G can be taken as a horoball neighborhood centered
at the parabolic fixed point p, Γ(p) = p. It is not true in general due to Apanasov’s
construction in real hyperbolic spaces of dimension at least 4, see [2]. As we discussed
it in [5], this construction works in complex hyperbolic spaces ch n as well as in other
rank one symmetric spaces X. However, we may apply our Theorem 1 to describe
parabolic Margulis regions in all such spaces.

Namely, let Γ ⊂ G be a discrete parabolic subgroup. We may view X from the
fixed point p ∈ ∂X in the way we have used in §2 to define the upper half-space
model for X. Then, by using the foliation of X by horospheres Xt centered at p, we
identify X\{p} and N × [0,∞), where Xt

∼= N is a connected, simply connected Lie
group with a compact automorphism group C. Since the parabolic group Γ acts on
each horosphere Xt centered at the fixed point p as a discrete subgroup of N ⋊ C,
we can apply Theorem 1 which implies that there exists a Γ-invariant connected
subspace σ ⊂ ∂X\{p} ∼= N where Γ acts co-compactly. Also we have a finite index
subgroup Γ∗ ⊂ Γ which acts on σ freely by left translations. In fact, σ is a translate
of a connected Lie subgroup NΓ of ∂X\{p} ∼= N . Now we define the subspace τ ⊂ X
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to be spanned by σ and all geodesics (z, p) ⊂ X connecting z ∈ σ to the parabolic
fixed point p. Let τt be the ”half-plane” in τ of a height t > 0, that is the part of τ
whose last horospherical coordinate is at least t.

Lemma 3. Let G ⊂ Isom X be a discrete group in a rank one symmetric space X
and p ∈ ∂X a parabolic fixed point of G. Let Tǫ be a Margulis region for p and let
τt be the half-plane defined as above. Then for any δ, 0 < δ < ǫ/2, there exists a
positive number t > 0 such that the Margulis region Tǫ contains the δ-neighborhood
Nδ(τt) of the half-plane τt.

Proof: Let Γ ⊂ G be the maximal parabolic subgroup fixing a given parabolic
fixed point p ∈ ∂X. Since Γ preserves the subspace σ ⊂ ∂X\{p}, it preserves the
boundary ∂τt of each half-plane τt.

As it was shown in [12], the geometry of horospheres in the space X with sectional
curvatures −1 ≤ K ≤ −1/4 may be closely compared with that in the spaces
of constant negatives curvature −1/4 and −1, respectively. In particular, for two
asymptotic geodesic rays ℓ and ℓ′ approaching p ∈ ∂X from two points x and x′ on
the same horosphere, with a horospherical distance R0 between them, we have:

(2arcsinh(2R0)) e−t ≤ d(ℓ(t), ℓ′(t)) ≤ R0e
−

t

2 .

This implies that distances on horospheres in X of height t exponentially decrease
as t goes to +∞. On the other hand, due to Theorem 1, infinite order elements γ ∈ Γ
act on the boundary ∂τt, t > 0, as virtual translations, and the quotient ∂τt/Γ is
compact. Therefore, for positive numbers δ and ǫ′, 2δ + ǫ′ < ǫ, there exist some
height tǫ′ such that

∂τt ⊂ Tǫ′(Γ) ⊂ Tǫ′(G) = Tǫ′ for all t > tǫ′ .

Clearly, the same is true for the whole half-plane:

τt ⊂ Tǫ′(Γ) ⊂ Tǫ′ . (3)

Now, for any x ∈ Nδ(τt) with t > tǫ′ , we have a δ-close point x0 ∈ τt, d(x, x0) < δ.
Due to 3, there is an infinite order element γ ∈ Γ such that d(x0, γ(x0)) < ǫ′. It
implies:

d(x, γ(x)) ≤ d(x, x0) + d(x0, γ(x0)) + d(γ(x0), γ(x) < 2δ + ǫ′ < ǫ ,

which shows that the point x and thus the whole δ-neighborhood Nδ(τt) belong to
the Margulis region Tǫ.

Now we can (negatively) answer the question of whether a parabolic fixed point
of a discrete group G ⊂ Isom X may also be its conical limit point.

Here a limit point z ∈ Λ(G) is called a conical limit point of a discrete group
G ⊂ Isom X if, for some (and hence every) geodesic ray ℓ ⊂ X ending at z, there is
a compact set K ⊂ X such that g(ℓ) ∩ K 6= ∅ for infinitely many elements g ∈ G.
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This definition is equivalent to a possibility to approximate the limit point z ∈
Λ(G) by a G-orbit {gi(x)} of a point x ∈ X inside a tube (cone) in X with vertex
z ∈ ∂X. Applying an argument originally due to A.Beardon and B.Maskit, one can
use the following equivalent definition of conical limit points [7]:

Lemma 4. A point z ∈ Λ(G) is a conical limit point of a discrete group G ⊂ Isom X
in a negatively curved space X if and only if, for every geodesic ray ℓ ⊂ X ending
at z and for every δ > 0, there is a point x ∈ X and a sequence of distinct elements
gi ∈ G such that the orbit {gi(x)} approximates z inside the δ-neighborhood Nδ(ℓ)
of the ray ℓ.

There are other (equivalent) definitions of conical limit points [9]. One of them is
even intrinsic to the action of the group G on the limit set Λ(G). Namely, z ∈ Λ(G)
is a conical limit point if there is a sequence {gi} of distinct elements of G such that,
for any other limit point y ∈ Λ(G)\{z}, the sequence of pairs (g−1

i (z), g−1
i (y)) lies

in a compact subset of (Λ(G) × Λ(G))\∆(Λ), where ∆(Λ) = {(x, x) :x ∈ Λ(G)}.

Theorem 5. Let G ⊂ Isom X be a discrete group in a rank one symmetric space
X. Then any parabolic fixed point of G cannot be its conical limit point.

Proof: Let Γ ⊂ G be the maximal parabolic subgroup of given group G fixing
a parabolic fixed point p ∈ ∂X. As in Lemma 3, viewing X from the point p at
infinity by using horospherical coordinates and applying Theorem 1, we again have
a Γ-invariant connected subspace σ ⊂ ∂X\{p} where Γ acts co-compactly, and on
which a finite index subgroup Γ∗ ⊂ Γ acts freely by left translations. Applying
Lemma 3 to the subspace τ ⊂ X spanned by σ and p, we have positive numbers
δ and t so that the δ-neighborhood Nδ(τt) of the half-plane τt is contained in the
parabolic Margulis region Tǫ at p.

Now suppose that the point p is also a conical limit point of G. Then for a
geodesic ray ℓ ⊂ τt tending to p, there must exist a point x ∈ X and a sequence
of distinct elements gi ∈ G such that the sequence gi(x) tends to p inside of δ-
neighborhood Nδ(ℓ) of the ray ℓ, see Lemma 4. However, due to Lemma 3, Nδ(ℓ) ⊂
Nδ(τt) ⊂ Tǫ. Since the Margulis region Tǫ is precisely invariant for the subgroup Γ ⊂
G (Theorem 2), it follows that all elements gi belong in fact to the parabolic subgroup
Γ. Hence all gi preserve each horosphere Xt centered at p. Using compactness of
∂τt/Γ, we see then that all points gi(x) must lie in a compact part of Nδ(τt) and
hence cannot approach the limit point p. This contradiction completes the proof.

Now we shall apply our structural Theorem 1 to clarify the structure of cusp
ends of geometrically finite locally symmetric rank one manifolds/orbifolds. This
new geometric insight on dynamics of discrete isometry group actions near their
parabolic fixed points will allow us to prove that fundamental groups of such mani-
folds/orbifolds are in fact finitely presented.

A parabolic fixed point p ∈ ∂X of a discrete group G ⊂ Isom X in a pinched
negatively curved space X is called a cusp point if the quotient (Λ(G) \ {p})/Gp of
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the limit set of G by the action of the parabolic stabilizer Gp = {g ∈ G : g(p) = p}
is compact [9].

This leads to a definition (GF1, originally due to A.Beardon and B.Maskit,
see [2]) of geometrically finite discrete groups G ⊂ Isom X (and their negatively
curved orbifolds M = X/G) as those whose limit set Λ(G) ⊂ ∂X entirely consists
of conical limit points and parabolic cusps.

Another definition of geometrical finiteness (GF2, originally due to Albert Mar-
den, see [2]) is that the quotient M(G) = X ∪ Ω(G)/G has only finitely many
topological ends and each of these ends can be identified with the end of M(Γ),
where Γ is a maximal parabolic subgroup of G.

Additional two definitions of geometrical finiteness are originally due to W.Thur-
ston, see [2]:

(GF3): The thick part of the minimal convex retract (=convex core) C(G) of X/G
is compact.

(GF4): For some ǫ > 0, the uniform ǫ-neighborhood of the convex core C(G) ⊂
X/G has finite volume, and there is a universal bound on the orders of finite
subgroups in G.

Theorem 6. [9] Let X be a pinched Hadamard manifold. Then the four definitions
GF1, GF2, GF3 and GF4 of geometrical finiteness for a discrete group G ⊂
Isom X are all equivalent.

We shall add that in contrast to the real hyperbolic geometry, our examples [5] of
discrete parabolic groups acting in complex hyperbolic space suggest that there exists
no elegant formulation of geometrical finiteness involving finite-sided polyhedra.

Now we shall give a new geometric definition of parabolic cusp points (cusp ends)
for discrete isometry groups acting in non compact symmetric spaces X of rank one.
Let a point p ∈ ∂X be a parabolic fixed point of a discrete group G ⊂ Isom X and
let Γ = Gp be the stabilizer of p in G, that is a maximal parabolic subgroup in G
with fixed point p. As before, taking horospherical coordinates on X with respect
to p ∈ ∂X, we can regard this stabilizer as Γ ⊂ N ⋊ C where C is a compact
automorphism group of the connected Lie group N representing horospheres in X.
Let ρc be the (N ⋊C-invariant) Cygan metric on N × [0,∞) = X ∪∂X\{p} defined
in (2), and let NΓ ⊆ N = ∂X\{p} be a minimal connected subgroup of the nilpotent
group N given by Theorem 1. The parabolic stabilizer Γ preserves NΓ and acts there
cocompactly.

Definition 7. Given a positive number δ and a parabolic fixed point p ∈ ∂X of a
discrete group G ⊂ Isom X with stabilizer Γ = Gp ⊂ G, the set

Up,δ = {x ∈ X ∪ ∂X\{p} :ρc(x,NΓ) ≥
1

δ
} (4)

is called a (closed) standard cusp neighborhood of radius δ > 0 at p, provided it is
precisely invariant with respect to the stabilizer Γ in G:

γ(Up,δ) = Up,δ for γ ∈ Γ = Gp ,
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g(Up,δ) ∩ Up,δ = ∅ for g ∈ G\Gp .

Lemma 8. Let p ∈ ∂X be a parabolic fixed point of a discrete group G ⊂ Isom X
in a rank one symmetric space X. Then p is a parabolic cusp point if and only if it
has a standard cusp neighborhood Up,δ.

Proof: As before, let Γ ⊂ G be the parabolic stabilizer of a given parabolic fixed
point p, and NΓ ⊆ N = ∂X\{p} be the minimal connected Γ-invariant subspace of
the nilpotent group N given by Theorem 1. If p has a standard cusp neighborhood
Up,δ ⊂ X\{p} then the limit set Λ(G) must lie in its complement ∂X\Up,δ due to
the condition of its precise Γ-invariantness. Hence Λ(G)\{p}/Γ is compact because
of compactness of NΓ/Γ (due to Theorem 1). The converse statement follows from
Bowditch’s arguments in the proof [9] of Theorem 6.

For a given discrete group Γ ⊂ N ⋊ C ⊂ Isom X, the quotient space M(Γ) =
(X ∪ ∂X\{∞})/Γ has a unique end. We call this end a standard parabolic end
with (X, Isom X)-geometry. It is clear that (closed) neighborhoods of a standard
parabolic end may be taken as U∞,δ/Γ, δ > 0.

Applying the above definitions of cusp points and ends, Lemma 8 and Theorem
6, we see that for a cusp point p ∈ ∂X of a geometrically finite discrete group
G ⊂ Isom X, the family Ep = {Up,δ/Gp} of closed subspaces in M(G) naturally
defines the cusp end of M(G) identified by the G-orbit of the parabolic cusp point
p. It is isometric to a standard cusp end, actually to the end of M(Gp).

We may represent a standard cusp neighborhood Up,δ0 at a cusp point p of a
discrete group G ⊂ Isom X as the product

Up,δ0 = Sp,δ0 × (0, r0] , (5)

if we foliate Up,δ0 by subsets Sp,δ , 0 < δ ≤ δ0 , of the form:

Sp,δ = {x ∈ X ∪ ∂X\{p} :ρc(x,NGp
) = 1/δ} . (6)

Since each set Sp,δ is Gp-invariant, we see that the standard cusp neighbor-
hood Up,δ0/Gp ⊂ M(G) of the cusp end Ep in the orbifold M(G) is the product
(Sp,δ0/Gp)× (0, 1]. Furthermore, due to compactness of the automorphism group C
of the nilpotent group N , this foliation of a standard cusp neighborhood Up,δ0 by
Gp-invariant sets Sp,δ defines a Gp-equivariant retraction

Rp : Up,δ0 −→ NGp
. (7)

This retraction shows topological finiteness of ends of noncompact orbifolds N/Γ
for discrete parabolic groups Γ ⊂ N ⋊C (and, with a little bit more work, existence
of a vector bundle structure on them, compare our Theorem 4.1 in [5]), as well as
topological finiteness of cusp ends of (X, Isom X)-orbifolds. So, due to Theorem 1,
all those ends have the homotopy type of closed virtually nilpotent orbifolds NΓ/Γ.
This, together with Theorem 6, completes the proof of the following fact:
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Theorem 9. For any geometrically finite discrete group G ⊂ Isom X in a symmetric
rank one non-compact space X, the orbifold M = X/G is topologically finite. In
other words, M is orbifold-homeomorphic to the interior of a compact orbifold with
boundary obtained from M(G) by gluing to its ends closed virtually nilpotent orbifolds
of the form NΓ/Γ where Γ ⊂ N ⋊C is a parabolic discrete group in the corresponding
nilpotent group N representing horospheres in X.

It immediately implies:

Corollary 10. Let N be a nilpotent group representing horospheres in a symmetric
rank one non-compact space X and C its compact group of automorphisms. Then
all discrete parabolic groups Γ ⊂ N ⋊ C as well as geometrically finite groups G ⊂
Isom X are finitely presented.
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