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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(43), 2003, Pages 25–40
ISSN 1024–7696

The commutative Moufang loops

with minimum conditions for subloops I

N.I. Sandu

Abstract. The structure of the commutative Moufang loops (CML) with minimum
condition for subloops is examined. In particular it is proved that such a CML Q is a
finite extension of a direct product of a finite number of the quasicyclic groups, lying
in the centre of the CML Q. It is shown that the minimum conditions for subloops and
for normal subloops are equivalent in a CML. Moreover, such CML also characterized
by different conditions of finiteness of its multiplicative groups.
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The loop Q satisfies minimum condition for subloops with the property α if
any decreasing chain of its subloops with the property α H1 ⊇ H1 ⊇ . . . , i.e.
Hn = Hn+1 = . . . for a certain n. In this paper the construction of the commutative
Moufang loops (abbreviated CMLs) with minimum condition for subloops is exam-
ined. In particular, it is shown that such a CML Q decomposes into a direct product
of finite number of quasicyclic groups which lies in the centre of Q, and a finite CML
(Section 2). In the third Section these loops are described with the help of their
multiplicative groups. Finally, it is shown in the fourth section that for the CML,
the minimum conditions for subloops are equivalent to the minimum condition for
normal subloops, and in the case of ZA-loops these conditions are equivalent to the
minimum condition for normal associative subloops. It follows from the last state-
ment that the infinite commutative Moufang ZA-loop Q has an infinite centre and
if the centre of the CML satisfies the minimum condition for the subloops, then Q
itself satisfies this condition.

We finally note that loops, in particular the CML, with different conditions of
finiteness are examined in [1–3]. We remind that the condition of finiteness means
such’s property, that holds true for all finite loops, but there exist infinite loops that
do not have this property.

1 Preliminaries

Let us bring some notions and results on the theory of the commutative Moufang
loops from [4]. A commutative Moufang loop (abbreviated CML) is characterized
by the identity
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x2 · yz = xy · xz. (1.1)

The multiplicative group M(Q) of the CML Q is the group generated by all
the translations L(x), where L(x)y = xy. The subgroup I(Q) of the group M(Q)
generated by all the inner mappings L(x, y) = L−1(xy)L(x)L(y) is called the inner
mapping group of the CML Q. The subloop H of the CML Q is called normal
(invariant) in Q if I(Q)H = H.

Lemma 1.1 [4]. Let Q be a commutative Moufang loop with the multiplicative group
M. Then M/Z(M), where Z(M) is the centre of the group M, and M

′ = (M,M)
are locally finite 3-groups and will be finite if Q is finitely generated.

The associator (a, b, c) of the elements a, b, c of the CML Q are defined by the
equality ab · c = (a · bc)(a, b, c). The identities

L(x, y)z = z(z, y, x), (1.2)

(xp, yr, zs) = (x, y, z)prs, (1.3)

(x, y, z)3 = 1, (1.4)

(xy, u, v) = (x, u, v)((x, u, v), x, y)(y, u, v)((y, u, v), y, x) (1.5)

hold in the CML [4].

The centre Z(Q) of the CML Q is a normal subloop Z(Q) = {x ∈ Q|(x, y, z) =
1∀y, z ∈ Q}.

Lemma 1.2 [4]. In a commutative Moufang loop Q the following statements hold
true:

1) for any x ∈ Q x3 ∈ Z(Q);

2) the quotient loop Q/Z(Q) has the index three.

Lemma 1.3 [4]. The periodic commutative Moufang loop is locally finite.

Lemma 1.4 [5]. The periodic commutative Moufang loop Q decomposes into a direct
product of its maximum p-subloops Qp, in addition Qp belongs to the centre Z(Q)
under p 6= 3.

The system σ of the normal subloops of the loop Q is called normal if it:

1) contains the loop Q and its identity subloop;

2) is linearly ordered by the inclusion;

3) the intersection and union of any non-empty set of elements of σ is an element
of σ (fullness).

If A ⊆ B are two members of the system σ and between them there are no other
members of this system then it is said that the subloops A and B form a jump in the
system σ. The quotient loop B/A is called the factor of this system. The normal
system σ is called central if for any jump A and B of the system σ, B/A ⊆ Z(B/A).
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The loop possessing a central system is called a Z-loop. This statement is proved in
[4, Theorems 4.1, Chap. VI; 10.1, Chap. VIII].

Lemma 1.5. Any commutative Moufang loop is a Z-loop.

If the loop possesses a central system entirely ordered by the inclusion (the central
series), then this loop is called ZA-loop.

Lemma 1.6 [3]. Any normal different from the identity element subloop H of the
commutative Moufang ZA-loop Q has a different from identity element intersection
with its centre.

If the upper central series of the ZA-loop have a finite length, then the loop is
called centrally nilpotent. The least of such length is called the class of the central
nilpotentcy.

Lemma 1.7 [3]. If a commutative Moufang ZA-loop Q has an infinite associative
normal subloop, then its centre Z(Q) is infinite.

Lemma 1.8 (Bruck-Slaby Theorem) [4]. The finitely generated commutative
Moufang loop is centrally nilpotent.

Lemma 1.9 [3]. If at least one maximal associative subloop of the commutative
Moufang loop Q satisfies the minimum conditions for subloops, then Q satisfies
these conditions itself.

The CMLQ will be called divisible it the equality xn = a has at least one solution
in Q, for any number n > 0 and any element a ∈ Q. If n = 3, then a = b3 ∈ Z(Q)
by Lemma 1.2. Therefore it takes place.

Lemma 1.10. If a subloop of the commutative Moufang loop Q is divisible, it
belongs to the centre Z(Q) and, consequently, is normal in Q.

The quasicyclic p-groups are some important examples of divisible CML. As
abstract groups they have the set of generators 1 = a0, a1, a2, . . . , an, . . . and defining
relations a0 = ap

1, a1 = ap
2, . . . , an = ap

n+1, . . ..

A CML is called injective if there exists a homomorphism γ : B → Q such that
αγ = β, for any monomorphism α : A→ B and homomorphism β : A→ Q.

Lemma 1.11. The divisible commutative Moufang loops are injective.

Proof. By Lemma 1.10 a divisible CML is associative, but divisible abelian groups
are injective [6].

Further we will denote by < M > the subloop of loop Q, generated by the set
M ⊆ Q.

Proposition 1.12. The divisible subloop D of the commutative Moufang loop Q
serves as a direct factor for Q, i.e. Q = D × C for a certain subloop C of the loop
Q. We can choose such a subloop that it possesses the given before subloop B of the
loop Q for which D ∩B = 1.

Proof. By Lemma 1.11 there exists such homomorphism β : Q → Q, that βα = ε
for the natural inclusion α : D → Q and the identity mapping ε : D → D. By
Lemma 1.10 the subloop D is normal in Q, therefore Q = D × ker β.
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Let now the equality B ∩ D = 1 hold true for the subloop B ⊆ Q. We denote
H =< D,B >. By Lemma 1.10 D ⊆ Z(Q) is the centre of the loop H, then it is
easy to show that any element of the CML H has the form au, where a ∈ B,u ∈ D.
By (1.2) and (1.5) we have L(au, bv)c = c(c, bv, au) = c(c, b, a) ∈ B, for any a, b ∈ B
and any u, v ∈ D. Consequently, the subloop B is invariant in regard to the inner
mapping group of the CML H, i.e. the subloop B is normal in H. Then < B,D >=
B ×D and there is a homomorphism ξ : B ×D → D coinciding with the identity
on D and unitary on B. If we replace ε by ξ in the first part of this proof, then we
obtain Q = D × ker β, where B ⊆ ker β. This completes the proof of Proposition
1.12.

The second part of this proposition states that a divisible CML is an absolute
direct factor.

If the CML Q is given, let us examine the subloop D within it, generated by
all divisible subloops of the CML Q. By Lemma 1.10 they all belong to the centre
Z(Q) of the CML Q, then it is easy to see that D is a divisible CML. Thus it is
the maximal divisible subloop of the CML Q. By Proposition 1.12 Q = D × C,
where obviously C is a reduced CML, meaning that it has no non-unitary divisible
subloops. Consequently, we obtain

Proposition 1.13. Any commutative Moufanf loop Q is a direct product of the
divisible subloop D that lies in the centre Z(Q) of the loop Q, and the reduced
subloop C. The subloop D is unequivocally defined, the subloop C is defined exactly
till the isomorphism.

Proof. Let us prove the last statement. As D is the maximal divisible subloop of
the CML Q, it is entirely characteristic in C, i.e. it is invariant in regard to the
endomorphisms of the CML Q. Let Q = D′ × C ′, where D′ is a divisible subloop,
and C ′ is a reduced subloop of the CML Q. We denote by ϕ,ψ the endomorphisms
ϕ : Q → D′, ψ : Q → C ′. As D is an entirely characteristic subloop, ϕD and ψD
are subloops of the loop Q. It follows from the inclusions ϕD ⊆ D′ and ψD ⊆ C ′

that ϕD ∩ ψD = 1. By Lemma 1.10 D is an abelian group, therefore ϕD,ψD are
normal in D. Then d = ϕd · ψd (d ∈ D) gives D = ϕD · ψD, so D = ϕD × ψD.
Obviously, ϕD ⊆ D ∩D′, ψD ⊆ D ∩ C ′, where from D = (D ∩D′)× (D ∩C ′). But
D ∩C ′ = 1 as a direct factor of the divisible CML, that is contained by the reduced
CML. Therefore, D ∩ D′ ⊆ D,D ⊆ D′, i.e. D = D′. This completes the proof of
Proposition 1.13.

Let us finally prove

Proposition 1.14. The following conditions are equivalent for the commutative
Moufang loop D:

1) D is a divisible loop;

2) D is an injective loop;

3) D serves as a direct factor for any commutative Moufang loop that contains
it.

Proof. The implication 1) −→ 2) is proved in Lemma 1.11.
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2) −→ 3). By the definition of the injective CML D there is such a homomor-
phism β : Q → D that βα = ǫ for the natural inclusion α : D → Q and identity
mapping ǫ : D → D. We denote ker β = H. Obviously Q =< D,H >,H ∩D = 1
and if aH = bH, then a = b. Let x ∈ Q, d ∈ D,h ∈ H. The CML is an IP -loop,
then (L(x, h)d)H = ((xh)−1(x · hd)H = (x−1(xd))H = dH, i.e. L(x, h)d = d. Any
element from Q has the form dh, where d ∈ D,h ∈ H. Using (1.2) and (1.5) it is
easy to show then that the subloop D is invariant in regard to the inner mapping
group of the CML Q, i.e. D is normal in Q. Consequently, Q = D ×H.

3) −→ 1). Let the CML D satisfy the condition 3) and let there exist such
generators a, b, c of the CML D that (a, b, c) 6= 1. Let us examine the CML Q =<
D,x >, where the element x does not belong to D and given by all the identity
relations (a, u, v) = (x, u, v) for any u, v ∈ D. Obviously, D is a subloop of the CML
Q, then it serves as a direct factor. Therefore the element x associates with any two
elements of the subloop D, in particular, (x, b, c) = 1. But (x, b, c) = (a, b, c) 6= 1.
Contradiction. A consequently, the CML D is associative. By [6] any abelian group
can be embedded as a subgroup into a divisible group. Therefore the CML D is
divisible. This completes the proof of Proposition 1.14.

2 Finitely cogenerated commutative Moufang loops

A subset H of the CML Q is called self-conjugate if I(Q)H = H, where I(Q)
is the inner mapping group of the CML Q. A self-conjugate set L of elements of
the loop Q will be called a normal system of cogenerators if any homomorphism
ϕ : Q → H for which L ∩ kerϕ 6= ∅ or {1} is a monomorphism, for any loop H.
Obviously it is equivalent to the fact that any non-unitary normal subloop of the
loop Q contains an non-unitary element from L.

A loop Q will be called finitely cogenerated if it possesses a finite normal system
of cogenerators.

Theorem 2.1. The following conditions are equivalent for an arbitrary commutative
Moufang loop Q:

1) Q is a finitely cogenerated loop;

2) the loop Q possesses a finite normal subloop B such that B ∩ H 6= {1}, for
any normal subloop H of the loop Q;

3) the loop Q is a direct product of a finite number of quasicyclic groups that lie
in the centre Z(Q) of the loop Q and a finite loop;

4) the loop Q satisfies the minimum conditions for subloops;

5) the loop Q possesses a finite series of normal subloops any factor of which is
either a group of a simple order, or a quasicyclic group.

Proof. 1) −→ 2). Let L be a finite normal system of cogenerators of the CML Q
and a ∈ Q be an element of an infinite order. By Lemma 1.2 the subloop < a3n

>
is normal in the CML Q. The intersection < a3n

> ∩L is either null, or equal to
{1} for a certain large n, that contradicts the condition 1). Therefore there are
no elements of an infinite order in the CML Q. Then, by Lemma 1.3, the subloop
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< L > is finite. The system of cogenerators is self-conjugate in the CML Q, then
the subloop < L > is normal in Q, as the inner mappings are automorphisms in the
CML [4]. Consequently, the condition 2) holds in the CML Q.

2)−→ 3). It can be shown that the CML Q is periodic, as it was done when
proving the implication 1) −→ 2). Then, by Lemma 1.4, it decomposes into a direct
product of its maximal p-subgroups, therefore Q contains a finite number of such
p-subloops. In order to prove 3) we can suppose that Q,B are 3-loops.

Like in abelian groups [6] the non-negative number n for which the equality
x3n

= a has solutions in Q will be called the 3-height h(a) of the element a. If the
equality x3n

= a has solutions for any n, then a will be called the infinite 3-height,
h(a) =∞.

We denote Q[3] = {x ∈ Q|x3 = 1} and let a ∈ Q[3]. Then < ϕa|ϕ ∈ I(Q) >
is the minimal normal subloop containing the element a, where I(Q) is the inner
mapping group of the CML Q. By the condition 2) a ∈ B, and then Q[3] will be a
finite subloop. It follows from here that the equality x3 = a can have not more than
a finite number of solutions in CML Q, for a fixed element a ∈ Q. If h(a) = ∞,
then the solutions x1, . . . , xk cannot have all finite heights, as if the equality y3n

= a
holds for the element y ∈ Q, then y3n−1

is one of the elements x1, . . . , xk.
Let now a1 ∈ Q[3], h(a1) = ∞. We denote the solution of an infinite height

of the equality a1 = x3 by a2, the solution of an infinite height of the equality
a2 = x3 by a3 and so on. Consequently, we have constructed a quasicyclic group
which lies in the centre of the CML Q, by Lemma 1.10, i.e. it is normal in Q.
The union D of all quasicyclic groups of the CML Q is a divisible group, therefore
by Proposition 1.12 Q = D × C,D ⊆ Z(Q). The subloop C has no element of
an infinite height, as if an element a ∈ Q of the order 3n (n ≥ 1) has an infinite
height, then a3n−1

= a3−1
, a3−1

∈ Q[3] and the element a3−1
has an infinite height.

We have shown that C[3] is a finite subloop. If a ∈ C[3], a3n

= 1, a = x3m

, then
x3n+m

= 1, x3m+n−1
= x3−1

, x3−1
∈ C[3], therefore there is an maximum of heights

k of the elements of subloops C[3]. But then (C[3])k+1 = 1, but by Lemma 1.3 the
subloop C is finite. The finiteness of the quasicyclic groups of the CML Q number
follows from the finiteness of the subloop D[3].

3) −→ 4). This statement follows from that the fact the quasicyclic groups
and the direct product of their finite number satisfy the minimum conditions for
subgroups.

4) −→ 1). The CML Q has no elements of an infinite order, as if a is such an
element, then < a3n

> (n = 1, 2, . . .) is a strictly descending series of the subloops of
the CML Q. Then, by Lemma 1.4, Q decomposes into the direct product of a finite
number of maximal p-subloops Qp. The subloop Qp[p] is normal in Q and it cannot
be infinite. In such a case the subloop

∏
pQp[p] will be a finite normal system of

cogenerators.
The implication 3) −→ 5) follows from Lemma 1.8.
In order to prove the implication 5) −→ 3) we should first show that if Q has a

finite normal subloopH such that the quotient loop Q/H is a quasicyclic group, then
Q has a quasicyclic group of an finite index. First we suppose that the subloop H
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is associative. By the definition of the quasicyclic group of the CML Q is generated
by the set {a0H, . . . , aiH, . . . , }, where ap

i+1H = aiH,a0 ∈ H, i = 1, 2, . . . We will
show that ai ∈ ZQ(H) is the centralizer of the subloop H in Q. If p = 3, then if
follows from the equality a3

i+1h = ai, where h ∈ H, for h1, h2 ∈ H from (1.3)- (1.5),
that (ai, h1, h2) = (a3

i+1h, h1, h2) = 1, i.e. ai ∈ ZQ(H). If p 6= 3, then by (1.3), (1.4)
(up, v, w) = (u, v,w)±1. Then we have (a1, h1, h2) = (ap

1, h1, h2)
±1 = (h, h1, h2)

±1 =
1 from the relations ap

1 = h ∈ H. Further, if ai ∈ ZQ(H) and ap
i+1 = aih, then

(ai+1, h1, h2) = (ap
i+1, h1, h2)

±1 = (aih, h1, h2) = 1 by (1.5), i.e. ai+1 ∈ ZQ(H).
Therefore Q = HZQ(H). As the intersection H ∩ ZQ(H) is contained in the centre
of the CML ZQ(H), and the quotient loop ZQ(H)/(ZQ(H)∩H) is isomorphic to the
quasicyclic group Q/H = ZQ(H)H/H the CML ZQ(H) is an infinite abelian group,
and it satisfies the minimum condition for subgroups. Then it contains a quasicyclic
group of finite index [6]. But by the relation Q = HZQ(H), the latter has a finite
index in the CML Q.

Let now H be an arbitrary subloop. It is finite, then by Lemma 1.8 its up-
per central series has the form 1 = Z0 ⊂ Z1 ⊂ . . . ⊂ Zn−1 ⊂ Zn = H, where
Zi/Zi−1 = Z(H/Zi−1) or Zi = {a ∈ H|(a, h1, . . . , h2i = 1∀h1, . . . , h2i) ∈ H}. (Here
(u1, . . . , u2i−1, u2i, u2i+1) = ((u1, . . . , u2i−1), u2i, u2i+1)). The inner mappings are
automorphisms in CML [4], then it follows from the last equality that the subloop
Zi is normal in Q, as the subloop H is normal in Q. Further, if follows from the
relations

Q/H ∼= (Q/Zn−1)/(H/Zn−1) = (Q/Zn−1)/(Zn/Zn−1) = (Q/Zn−1)/Z(H/Zn−1)

and according to the previous case that the CML Q/Zn−1) contains a quasicyclic
group of finite index. Without loss of generalitiy, we will consider that Q/Zn−1 is a
quasicyclic group, by Proposition 1.14. Let us now suppose that Q/Zi (i ≤ n−1) is a
quasicyclic group. Then it follows from the relations Q/Zi

∼= (Q/Zi−1)/(Zi/Zi−1) =
(Q/Zi−1)/Z(Q/Zi−1) that Q/Zi−1 is a quasicyclic group. We obtain for i = 1 that
Q contains a quasicyclic group of finite index.

It is obvious, that the implication 5) −→ 3) should be proved supposing that the
CML Q contains a series of normal subloops

1 = H0 ⊂ H1 ⊂ . . . ⊂ Hm = Q (2.1)

with m ≥ 2 that have infinite factors and all are quasicyclic groups.
Let us show that the series (2.1) contains a member which has a quasicyclic

group of finite index. If the subloop H1 is infinite, then the statement is obvious.
But if it is finite, then let Hk be such a finite member of the series (2.1) that the
next number Hk+1 is infinite. Then Hk+1 contains a quasicyclic group Lk+1 of finite
index. If all factors of the series (2.1) which are after the factor Hk+1/Hk are finite,
then Lk+1 has a finite index in Q and by Proposition 1.14 the statement 3) holds in
the CML Q.

Let Hn+1/Hn be the first infinite factor among those that are after Hk+1/Hk. By
Lemma 1.10 the subloop Lk+1 is normal in Q. There exists a finite normal subloop
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Hn/Lk+1 in the CML Hn+1/Lk+1 on which the quotient loop is a quasicyclic group.
By the above proved, the CML Hn+1/Lk+1 contains a quasicyclic group Ln+1/Lk+1

of finite index. In the CML the quasicyclic groups lie in the centre (Lemma 1.10),
then Ln+1 is a product of two quasicyclic groups. Continuing these reasonings, after
a finite number of steps we will obviously obtain that the CML Q contains a subloop
that is the direct product of a finite number of quasicyclic groups of finite index.
Then the CML Q satisfies the condition 3). This completes the proof of Theorem
2.1.

Corollary 2.2. The commutative Moufang loops satisfying the minimum condition
for subloops, compose a class closed in regard to the extension.

The statement follows from the equivalence of the conditions 4) and 5) of The-
orem 2.1.

Corollary 2.3. The commutative Moufang loops, satisfying the minimum condition
for subloop, are centrally nilpotent.

The statement follows from the equivalence of the conditions 3), 4) of the The-
orem 2.1 and Lemma 1.8.

Corollary 2.4. The set of elements of any order is finite in the commutative Mo-
ufang loop satisfying the minimum condition for subloops.

3 The multiplicative groups of commutative

Moufang loops with minimum condition for subloops

Let Q be an arbitrary CML and let H be a subset of the set Q. Let M(H)
denote a subgroup of the multiplicative group M(Q) of the CML Q, generated by
the set {L(x)|∀x ∈ H}. Takes place

Lemma 3.1. Let the commutative Moufang loop Q with the multiplicative group
M, Z(M), which is the centre of the group M and the centre Z(Q) decompose into
the direct product Q = D ×H, moreover, D ⊆ Z(Q). Then M = M(D) ×M(H),
and besides, M(D) ⊆ Z(M),M(D) ∼= D.

Proof. It is obvious that any element a ∈ Q has the form a = dh, where d ∈ D,h ∈
H. As d ∈ Z(Q), then L(a) = L(d)L(h), therefore M =< M(D),M(H) >. It
follows from the equality

Z(M) = {ϕ ∈M|ϕ = L(a)∀a ∈ Z(Q)}

that M(D) ⊆ Z(M), therefore it is easy to see that the subgroups M(D),M(H) are
normal in M and M(D) ∼= D. Finally, if ϕ ∈M(D)∩M(H), then ϕ = L(u), L(u)1 ∈
D ∩H,ϕ is an inner mapping. Consequently, M = D×H, as required.

Corollary 3.2. The multiplicative group M of the periodic commutative Moufang
loop Q decomposes into the direct product of its maximal p-subgroups M3, moreover,
Mp ⊆ Z(M) for p 6= 3.

Proof. By Lemma 1.4 the CMLQ decomposes into the direct product of its maximal
p-subgroups, moreover, Qp ⊆ Z(Q) for p 6= 3. Then it follows from lemma 3.1 that
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the group M decomposes into a direct product of the subgroups M(Qp), moreover,
M(Qp) ⊆ Z(M) and M(Qp) ∼= Qp for p 6= 3. In order to finish the proof, it should
be shown that M(Qp) is a 3-group. But this is shown in the next lemma.

Lemma 3.3. The multiplicative group M of the commutative Moufang 3-loop Q is
a 3-group.

Proof. Let γ be an arbitrary element from M. Then γ can be presented as a product
of a finite number of translation γ = L(u1)L(u2) . . . L(un), where u1, u2, . . . , un ∈ Q.
We denote L =< u1, u2, . . . , un >. For any element x ∈ Q we denote by H(x) the
subloop of CML Q, generated by set x ∪ L, by N(x) – the multiplicative group
of CML H(x), and by Γ – the subgroup of group M generated by the translations
L(ui), i = 1, . . . , n. By Lemmas 1.8 and 1.3H(x) is a finite centrally nilpotent 3-loop.
Let us show that N(x) is a 3-loop. Indeed, we denote H(x) = G. By Lemma 1.3,
Chap. IV from [4] M(Z/Z(G)) ∼= M(G)/Z∗, where Z∗ = {α ∈ M(G)|αx · Z(G) =
x ·Z(G) ∀x ∈ G}. If θ ∈ Z∗, then we define the function f : G −→ Z(G) by the rule
θx = xf(x) for ∀x ∈ G. Obviously, f(x) ∈ Z(G). If η ∈ Z∗ and ηx = xg(x), then
(θη)x = θ(L(g(x))x) = L(g(x))θx = (g(x)f(x))x. Consequently, Z∗ is isomorphic
to the group of one-to-one mappings of CML Q on Z(G). Therefore Z∗ is a 3-group.
If CML G is centrally nilpotent of the class k, then G/Z(G) is centrally nilpotent of
class k − 1. Then by inductive assumption M(G)/Z∗ is a 3-group, therefore M(G)
is also 3-group.

The restriction Γ on H(x) is a homomorphism of Γ on the subgroup of the group
N(x) which maps the element γ ∈ Γ into the element L(u1) . . . L(un) from N(x)
of the order 3t. Moreover, Γ maps H(x) into itself. Consequently, γ3t

induces an
identity mapping on H(x). In particular, γ3t

maps x into itself for any x from Q.
Therefore γ has the order 3t. This completes the proof of Lemma 3.3.

Lemma 3.4. The multiplicative group M of an arbitrary commutative Moufang
loop is locally nilpotent. But if group M is periodic, then it is locally finite.

The proof of the first statement follows from Lemma 1.1. The second statement
follows from the well-known fact of the group theory: a periodic locally nilpotent
group is locally finite.

Now we can characterize CML, with the minimum conditions for subloops with
the help of their multiplicative groups.

Theorem 3.5. For an arbitrary non-associative commutative Moufang loop Q with
a multiplicative group M the following conditions are equivalent:

1) loop Q satisfies the minimum condition for subloops;

2) group M is a product of a finite number of quasicyclic groups lying in the
centre of the group M and a finite group;

3) group M satisfies the minimum condition for subgroup;

4) group M satisfies the minimum condition for normal subgroup;

5) group M satisfies the minimum condition for non-abelian subgroup;

6) at least one maximal abelian subgroup of the group M satisfies the minimum
conditions for subgroups;
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7) if group M contains a solvable subgroup of the class r, then M satisfies the
minimum condition for solvable subgroups of the class r;

8) if group M contains a nilpotent subgroup of the class n, then M satisfies the
minimum condition for nilpotent subgroups of the class n.

Proof. 1) −→ 2). If CML Q satisfies the minimum condition for subloops, then
by Theorem 2.1 Q = D × H, where H is the direct product of a finite number of
quasicyclic groups, besides, D ⊆ Z(Q), and H is a finite CML. Then by Lemma
3.1 M = M(D)×M(H), and besides D ⊆ Z(M),M(D) ∼= D. The group M(H) is
finitely generated, then by Lemma 3.3 H is finite, as it follows from Corollary 3.2
that a multiplicative group of a periodic CML is periodic.

The implication 2) −→ 3) is obvious. Let now the group M satisfy the condition
3), and the CML Q do not satisfy the condition 1), and let Q ⊃ H1 ⊃ H2 ⊃
. . . ⊃ Hi ⊃ . . . be an infinite descending series of subloops of the CML Q. It is
easy to see that M(Hi) 6= M(Hi+1) follows from Hi 6= Hi+1, using the relation
M(Hi)1 = Hi, where M(Hi)1 = {α1|α ∈M(Hi)}. But it contradicts the condition
3). Consequently, 3) −→ 1).

By Lemma 3.4 the group M is locally nilpotent, then the implications 3) ←→
4), 3) ←→ 5) follow, respectively, from Theorems 1.24 and Corollary 6.2 from [7].

6) −→ 3). Let the maximal abelian subgroup N of the group M satisfy the
minimum condition for subgroups. By Lemma 1.1 the quotient group M/Z(M) is
a 3-group, therefore by the periodicity of N, the group M is also periodic. Thereof,
and in view of Corollary 3.2, we will consider M a 3-group. By Lemma 3.4 the group
M is locally nilpotent. Then the condition 6) −→ 3) follows from the statement that
is proved using Lemma 1.6, analogous to Theorem 1.19 from [7]:

if at least one maximal abelian subgroup of the locally nilpotent p-group satisfies
the minimum condition for subgroup, then the group satisfies this condition itself.

By Lemma 3.4 the group M is locally nilpotent. It is proved in [8] that for such
groups the conditions 3), 7), 8) are equivalent.

Finally, the implication 3) −→ 6) is obvious. This completes the proof of Theo-
rem 3.5.

It is proved in [7] that if the locally finite p-group has a finite maximal elemen-
tary abelian subgroup (respect., a finite set of elements of any order different from
unitary element), then it satisfces the minimum condition for subgroups (Theorem
1.21 (respect., Theorem 3.2)). Then from Lemmas 3.3, 3.4 and Theorem 3.6 follows
the truth of the following statement.

Proposition 3.6. The following conditions are equivalent for an arbitrary commu-
tative Moufang 3-loop with a multiplicative group M:

1) the loop Q satisfies the minimum condition for subloops;
2) the group M contains only a finite set of elements of a certain order different

from the unitary element.

Finally, let us prove the statement.

Proposition 3.7. The following conditions are equivalent for an arbitrary non-
associative commutative Moufang ZA-loop Q with a multiplicative group M:
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1) the loop Q satisfies the minimum condition for subloops;
2) the group M satisfies the minimum condition for noninvariant abelian sub-

groups.

Proof. Let us first observe that from Lemma 11.4, Chap. VIII from [4] it follows
that CML Q is a ZA-loop if and only if its multiplicative group is a ZA-group.

Let us suppose that the group M satisfies the minimum condition for noninvari-
ant abelian subgroups. It follows from the above-mentioned that it is a ZA-group. If
M does not contain noninvariant abelian subgroups, then, obviously, each subgroup
is normal in it, i.e. it is hamiltonian. However, it is impossible that the multiplica-
tive group of an arbitrary CML cannot contain a nonabelian gamiltonian subgroup.
Indeed, arbitrary hamiltonian groups are described by the next theorem [7]:

A hamiltonian group can be decomposed into a direct product of the group of
quaternions and abelian groups whose each element’s order is not greater than 2.
Conversely, a group that has such a decomposition is hamiltonian.

A group of quaternions is the group generated by the generators a, b and that
satisfies the identical relations a4 = 1, a2 = b2, b−1ab = a−1. Then it follows from
Corollary 3.2 that in the case of a multiplicative group a = b = 1. Consequently,
the arbitrary hamiltonian group of the multiplicative group of CML is abelian.

Let now N be a noninvariant abelian subgroup of the group M and α be an
element of infinite order from M. By Lemma 1.1 the quotient group M/Z(M) is a

3-group, therefore α3k

∈ Z(M) for a certain natural number k. This means that the
descending series of noninvariant associative subgroups

< N, α3k

>⊃< N, α3k+1
>⊃ . . . ⊃< N, α3k+i

>⊃ . . .

of the group M does not break. But it contradicts the condition 5). Consequently,
the group M is periodic. In such a case, we will consider by Corollary 3.2 that M is
a 3-group.

Let us suppose that the group M does not satisfy the minimum condition for
subgroups. Then, by Lemma 3.4 and Theorem 1.21 from [7] the group M contains
the infinite direct product

N = N1 ×N2 × . . . ×Nn × . . .

of cyclic groups of the order three. If α is an arbitrary element from the centralizer
ZM(N) of the subgroup N in M, then there exists such a number n = n(α) that

< α > ∩(Nn+1 ×Nn+2 × . . .) = 1.

As the group M satisfies the minimum condition for noninvariant abelian subgroups,
the infinite descending series of abelian subgroups

ℜk(α) ⊃ ℜk+1(α) ⊃ . . . ,

where ℜk(α) =< α > (Nk+1×Nk+1× . . .), contains an noninvariant subgroup ℜk(α)
(r = r(α)), beginning with a certain natural number k ≥ n. As the intersection of
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all such noninvariant subgroups coincides with the subgroup < α >, the latter is
normal in M. But α is an arbitrary element from the centralizer ZM(N), and it
means that ZM(N) is a hamiltonian group. From here follows that ZM(N) is an
abelian group. Obviously, Ni ⊆ ZM(N), then the minimal subgroup Ni is normal
in M. By Proposition 1. 6 from [7], in a ZA-group the minimal normal subgroups
are contained in its centre. Then Ni ⊆ ZM(N), therefore ZM(N) = M. As ZM(N)
is an ablian group, the last equality contradicts the fact that M is an noninvariant
group. Consequently, the group M satisfies the minimum condition for subgroups.
Then the equivalence of the conditions 1) and 2) follows from the Theorem 3.5.

4 The commutative Moufang loops

with the minimum condition for normal subloops

If it does not cause any misunderstandings, we will further omit the words ”for
subloops” in the expression ”minimum condition for subloops”.

Lemma 4.1. Let the series

1 = Z0 ⊂ Z1 ⊂ . . . ⊂ Zα ⊂ . . . ⊂ Zβ ⊂ . . . ⊂ Zγ = Q (4.1)

be the upper central series of the commutative Moufang ZA-loop Q, H be its arbitrary
normal subloop. Then the non-emptiness of the intersection H∩(Zβ\Zα follows from
the non-emptiness of the intersection H ∩ (Zβ+1\Zβ for any β > α.

Proof. Let h ∈ H ∩ (Zβ+1\Zβ). The existence of such elements a, b ∈ Q that
(h, a, b) ∈ H∩(Zβ\Zα) follows from the normality of the subloopH and the definition
of the members of series (4.1). Indeed, if (h, a, b) ∈ Zα for all a, b ∈ Q, then
h ∈ Zα+1 ⊂ Zβ. So, h /∈ Zβ+1\Zβ, and it contradicts the choice of the element n.
This completes the proof of Lemma 4.1.

Lemma 4.2. Let the commutative Moufang ZA-loop Q be the finite extension of
the loop Q satisfies the minimum condition if and only if the centre Z(H) of the
loop H also satisfies this condition.

Proof. Let us suppose that the centre Z(Q) satisfies the minimum condition for
subloops, and let a1, . . . , an be representations of cosets of Q modulo H, taken by
one from each coset. We denote L =< Z(H), a1, . . . , an >. Let us show that the
centre Z(L) of the CML L satisfies the minimum condition. Indeed, the intersection
Z(L)∩Z(H) is contained into Z(Q), therefore it is a group with minimum condition.
Obviously, the index Z(H) in < Z(H), Z(L) > is finite. We have

< Z(H), Z(L) > /Z(H) ∼= Z(L)/(Z(L) ∩ Z(H)).

It follows from this relation that Z(L) which is a finite extension of the group
Z(H) ∩ Z(L) satisfies the minimum condition, satisfies this condition itself.

Let Nk be a subgroup of the group Z(L) generated by all its elements whose
orders are divisible by pk. The group Nk is finite, as the group Z(L) satisfies the
minimum condition. We denote by Zk the subgroup of the group Z(H) generated
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by all its elements whose orders are divisors of pk. If Z(H) does not satisfy the
minimum condition, then Zk should be infinite. Let

Zk = Z
(1)
k × . . . × Z

(m)
k × Z

(m+1)
k × . . .

be the decomposition of the group Zk into an infinite direct product of cyclic groups.

If the intersection Zk∩Nk is contained into the finite direct product Z
(1)
k ×. . .×Z

(m)
k ,

then the intersection of the groups Mk = Z
(m+1)
k . . . and Z(L) should contain only

the unitary element:

Mk ∩ Z(L) = 1. (4.2)

By Lemma 1.1 the subgroup Φ of the inner mapping group of the CML Q
generated by all the mappings of the form L(ai, aj), i, j = 1, . . . , n, is finite. The
subgroups ϕMk, ϕ ∈ Φ, is a (finite) the set of all conjugated subloops with Mk in
the CML Q, because the elements a1, . . . , an present a full system of representations
of cosets of CML Q modulo H, and Mk ⊆ Z(H). The intersection

Rk = ∩ϕ∈ΦϕMk

is obviously an infinite normal subloop in Q. We remind that Rk ⊆ L, as
Mk ⊆ Z(L), ϕMk ⊆ L. By Lemma 1.8 and Lemma 1.6 Rk ∩ Z(L) 6= 1, that
contradicts (4.2). Consequently, the assumption that Z(H) does not satisfy the
minimum condition is not true.

Conversely, let Z(Q) does not satisfy the minimum condition. As H has a finite
index in Q, then it follows from the relation

Z(Q)H/H ∼= Z(Q)/(Z(Q) ∩H)

that Z(Q)∩H has a finite index in Z(Q). Consequently, Z(Q)∩H does not satisfy
the minimum condition. But Z(Q) ∩ H ⊆ Z(H), therefore Z(H) does not satisfy
the minimum condition as well. This completes the proof of Lemma 4.2.

Lemma 4.3. If the commutative Moufang ZA-loop, which is a finite extension of
the loop H, possesses a normal subloop K, which lies in the centre Z(H) of the loop
H and does not satisfy the minimum condition, then the intersection of H with the
centre Z(Q) of the loop Q does not satisfy the minimum condition as well.

Proof. By Lemma 1.4 we’ll consider that the CML Q is a 3-loop. We denote by
L the lower layer of the abelian group K. As K does not satisfy the minimum
condition, L is infinite.

Let us first examine the case when the quotient loop Q/H is associative. Let

1 = g1, g2, . . . , gn

be a full system of representations of cosets of CML Q modulo H. We suppose
by inductive considerations that the intersection of Li−1 of the centre of the CML
< H, g1, . . . , gi−1 > with the subloop L is infinite. As the quotient loop Q/H is
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associative, the subloop < H, g1, . . . , gi−1 > inverse image of a normal subloop under
the homomorphismQ −→ Q/H, is normal inQ. The subloop L is invariant in regard
to all automorphisms of the normal subloopsH of the CML Q. In the CML the inner
mappings are its automorphisms [4]. Then the subloop L is invariant in regard to the
inner mapping group of the CML Q, i.e., it is normal in Q. Therefore the intersection
Li−1 is also a normal subloop in Q. Let us examine the CML < Li−1, gi >. By
Lemma 4.2 this loop’s center does not satisfy the minimum condition. Consequently,
if the order of the element gi is 3k, then there exists such a number r ≤ 3k that for
the infinite set of elements P of the order 3 from the CML Li−1, the elements of the
form pgr

i , p ∈ P , belong to the centre of the CML < Li−1, gi >. Now, with the help
of (1.1) we obtain for p, q ∈ P

gi(g
r
i p · g

r
i q) = (gi · g

r
i p)(g

r
i q),

gi(g
2r
i · pq) = (gr

i · gip)(g
r
i q).

g2r
i (gi · pq) = g2r

i (gip · q),

gi · pq = gip · q.

The last equality shows that the infinite CML Pi =< P > of the index three
belongs to the centre of the CML < H, g1, . . . , gi−1 >. As Li−1 belongs to the
centre < H, g1, . . . , gi−1 > and Pi ⊆ Pi−1, the CML Pi belongs to the centre
< H, g1, . . . , gi−1, gi >. So, the intersection of this CML’s centre with Li−1 is infi-
nite, therefore it does not satisfy the minimum condition. But Li−1 ⊆ Li ⊆ H, then
the statement is proved in this case.

Let now Q/H be an arbitrary finite CML and by Lemma 1.8 let

1 ⊂ Z1/H ⊂ . . . ⊂ Zk/H = Q

be the upper central series of the CML Q/H. By the first case, the intersection of
the centre of the CML Z1 with the subloop L is infinite. As it has already been
proved that the intersection of the centre of the CML Zi with the subloop L is in-
finite, then applying the first case’s results to the CML Zi and Zi+1 we obtain that
the intersection of the centre of the CML Zi+1 with the subloop L is also infinite.
For i+ 1 = k follows the lemma’s statement.

Lemma 4.4. If the periodic commutative Moufang ZA-loop contains an associative
normal subloop H that does not satisfy the minimum condition, then the latter con-
tains a normal subloop of the loop Q different from itself that does not satisfy the
minimum condition as well.

Poof. By Lemma 1.4 we will consider that Q is a 3-loop. We denote by L the lower
layer of the group H. As H does not satisfy the minimum condition, L is infinite.
Let
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1 ⊂ Z1 ⊂ . . . ⊂ Zγ = Q

be the upper central series of the CML Q. If L ⊆ Z1, then the lemma is proved.
Let us suppose that L does not belong to Z1. The product LZ1 = Q1 does not

satisfy the minimum condition. The subloop L is contained in the centre of the CML
Q1 (Q1 is associative). By the assumption L does not belong to the centre of the
CML Q, so, there exists such an ordinal number α less than γ that the centre of the
CML ZαL = Qα+1 does not contain L in its centre anymore. Consequently, there
is such an element a in Zα+1 that the centre C of the finite extension < Qα, a > of
the CML Q does not contain the subloop L. By Lemma 4.2 the centre C does not
satisfy the minimum condition. The normality of the subloop < Zα, a > in the CML
Q follows from the relation Zα+1/Zα = Z(Q/Zα), and hereof follows the normality
of the subloop < Qα, a >. Consequently, the centre C of the subloop < Qα, a > is
normal in the CML Q. By Lemma 4.3 the intersection C ∩ L does not satisfy the
minimum condition. It is different from the subloop L, as the latter does not belong
to C. As this intersection is normal in Q, the statement is proved.

Corollary 4.5. In the periodic commutative Moufang ZA-loop Q each associative
normal subloop which satisfies the minimum condition for the normal subloops of
the loop Q satisfies the minimum condition for its subloops.

This statement follows from Lemma 4.4.

Theorem 4.6. If at least one maximal associative subloop of the commutative Mo-
ufang ZA-loop Q satisfies the minimum condition for the normal subloops of the
loop Q, then Q satisfies the minimum condition for subloops.

Proof. By Lemma 1.2 we will consider that the CML Q is periodic. Then the
statement follows from Corollary 4.5 and Lemma 1.9.

Corollary 4.7. In the commutative Moufang ZA-loop the minimum condition for
subloops and associative normal subloops are equivalent.

Corollary 4.8. If in a commutative Moufang ZA-loop at least one maximal asso-
ciative normal subloop is finite, then the loop Q is also finite.

The statement follows from the Theorems 4.6 and 2.1.

Corollary 4.9. The infinite commutative Moufang ZA-loop Q has an infinite cen-
tre.

Proof. By Corollary 4.8 the CML Q possesses an infinite associative normal
subloop. Then the statement follows from Lemma 1.7.

We remark that in [4] an example of a CML with unitary centre is constructed.

Theorem 4.10. If the centre Z(Q) of the commutative Moufang ZA-loop Q satisfies
the minimum condition for subloops, then the loop Q satisfies the minimum condition
for subloop itself.

Proof. By Theorem 2.1 the centre Z(Q) decomposes into the direct product of a
finite number of quasicyclic groups D and a finite group C, and by Proposition 1.12
Q = D × L. Obviously, the centre Z(L) of the CML L coincides with C. As C is a
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finite group, then by Corollary 4.9 the CML L is finite. Then the CML Q satisfies
the minimum condition for subloops.

Theorem 4.11. If a commutative Moufang loop satisfies the minimum condition
for normal subloops, it satisfies the minimum condition for subloops as well.

Proof. By Lemma 1.5 an arbitrary CML possesses a central system. It follows from
the minimum condition for normal subloops that each central system of the CML Q
is an ascending central series, i.e. Q is a ZA-loop. Now the statement follows from
Corollary 4.7.

References

[1] Sandu N.I., On locally normal loops. – Scripta scientiarum mathematicarum, 1999, 1, no. 2,
p. 364–380.

[2] Sandu N.I., Commutative Moufang loops with finite classes of conjugate elements. – Scripta
scientiarum mathematicarum, 1999, 1, no. 2, p. 381–394.

[3] Sandu N.I., Commutative Moufang loops with finite classes of conjugate subloops. – Mat.
zametki, 2003, 73, no. 2, p. 269–280 (In Russian).

[4] Bruck R.H., A survey of binary systems. – Springer Verlag, Berlin-Heidelberg, 1958.

[5] Sandu N.I., Centrally nilpotent commutative Moufang loops. – Quasigroups and loops, Mat.
issled., 1979, 51, p. 145–155 (In Russian).

[6] Fuchs L., Infinite abelian groups, vol. 1. – Mir, Moscow, Mir, 1974 (In Russian).

[7] Chernikov S.N., The groups with given properties of the systems of subgroups. – Moscow,
Nauka, 1980 (In Russian).

[8] Zaitzev D.I., Steadily solvable and steadily nilpotent groups. – DAN SSSR, 1967, 176, no. 3,
p. 509–511 (In Russian).

State Agrarian University of Moldova
str. Mirceshti 44, Chişinău, MD−2028
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