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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(43), 2003, Pages 15–24
ISSN 1024–7696

On some Hypergroups and their Hyperlattice

Structures

G.A. Moghani, A.R. Ashrafi

Abstract. Let G be a hypergroup and L(G) be the set of all subhypergroups of G.
In this survey article, we introduce some hypergroups G from combinatorial structures
and study the structure of the set L(G). We prove that in some cases L(G) has a
lattice or hyperlattice structure.
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1 Introduction

First of all we will recall some algebraic definitions used in the paper. A hyper-
structure is a set H together with a function · : H ×H −→ P ⋆(H) called hyperop-
eration, where P ⋆(H) denotes the set of all non-empty subsets of H. F.Marty [18]
defined a hypergroup as a hyperstructure (H, .) such that the following axioms hold:
(i) (x.y).z = x.(y.z) for all x, y, z in H, (ii) x.H = H.x = H for all x in H. The ax-
iom (ii) is called the reproduction axiom. A commutative hypergroup (H, o) is called
a join space if for all a, b, c, d ∈ H, the implication a/b ∩ c/d 6= ∅ =⇒ aod ∩ boc 6= ∅
is valid, in which a/b = {x | a ∈ xob}.

The concept of an Hv-group is introduced by T.Vougiouklis in [20] and it is a
hyperstructure (H, .) such that (i) (x.y).z ∩ x.(y.z) 6= ∅, for all x, y, z in H, (ii)
x.H = H.x = H for all x in H. The first axiom is called weak associativity.

Following Gionfriddo [12] and Vougiouklis [20], we define a generalized permu-
tation on a non-empty set X as a map f : X −→ P∗(X) such that the reproductive
axiom is valid, i.e. ∪x∈Xf(x) = f(X) = X. The set of all generalized permutations
on X is denoted by MX . We now assume that (G, ·) is a hypergroup and X is a
set. The map ⊙ : G ×X −→ P(X)∗ is called a generalized action of G on X if the
following axioms hold:

1) For all g, h ∈ G and x ∈ X, (gh) ⊙ x ⊆ g ⊙ (h⊙ x),
2) For all g ∈ G, g ⊙X = X.

Here, for any g ∈ G and Y ⊆ X, g ⊙ Y is defined as ∪x∈Y g ⊙ x, and for any x ∈ X
and B ⊆ G, B ⊙ x is, by definition, equal to ∪b∈Bb⊙ x. If the equality holds in the
axiom 1) of definition, the generalized action is called strong (see [17]).

Following Konstantinidou and Mittas [15], we define a hyperlattice as a set H on
which a hyperoperation ∨ and an operation ∧ are defined which satisfy the following
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axioms:
1. a ∈ a ∨ a and a ∧ a = a,
2. a ∨ b = b ∨ a and a ∧ b = b ∧ a,
3. (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c),
4. a ∈ [a ∨ (a ∧ b)]

∧
[a ∧ (a ∨ b)],

5. a ∈ a ∨ b implies that b = a ∧ b.
It is well known [8] that in a lattice the distributivity of the meet (∧) with

respect to the join (∨) implies the distributivity of the join with respect to the
meet and vice versa, the lattice is then called distributive. But in a hyperlattice a
distinction of several types of distributivity is needed. According to Konstantinidou
[16], a hyperlattice (H,∨,∧) will be called distributive if and only if, a ∧ (b ∨ c) =
(a∧ b)∨ (a∧ c), for all a, b, c ∈ H. Also, the hyperlattice (H,∨,∧) is called modular
if a ≤ b, implies that a ∨ (b ∧ c) = b ∧ (a ∨ c), for all c ∈ H.

The second author in [2, 3] and [5], studied the construction of join spaces
from some combinatorial structures. In [4], he found a new closed formula for the
partition function p(n). We encourage reader to consult these papers for discussion
and background material.

Our notation is standard and taken mainly from [1, 8–10] and [20].

2 The Structure of some Hypergroups

Let G be a group, Sym(G) be the group of all permutations on G and Syme(G)
be the stabilizer of the identity e ∈ G in Sym(G). Given two permutations φ and
ψ from Syme(G) and an element g ∈ G, we define a new permutation φ ⊙g ψ =
Lφ(g)−1φLgψ, where Lφ(g)−1 , Lg ∈ Sym(G) are left multiplications by the elements
φ(g)−1 and g, respectively.

According to [13], a subgroupH of Syme(G) closed under taking products of this
form is called rotary closed, i.e. H ≤ Syme(G) is called rotary closed provided that
φ⊙g ψ ∈ H, for all φ,ψ ∈ H and g ∈ G. A nice family of rotary closed subgroups of
Syme(G), for finite G’s, comes from the theory of Cayley graphs and can be obained
in the following way. Let Ω be a set of generators for a finite group G not containing
the identity element e but containing x−1 together with every x contained in Ω. The
subgroup RotΩ(G) of Syme(G) of all permutations preserving e and satisfying the
condition φ(a)−1φ(ax) ∈ Ω, for every a ∈ G and x ∈ Ω, is rotary closed (for details
see [13] and [14]).

In this section, first we introduce a hyperoperation ⊙ on Syme(G) and prove
that (Syme(G),⊙) is a hypergroup. Next, we characterize the sub-hypergroups of
this hypergroup. To do this, assume that φ,ψ ∈ Syme(G), we define φ ⊙ ψ =
{φ⊙g ψ | g ∈ G}.
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Proposition 2.1. (Syme(G),⊙) is a hypergroup.

Proof. Suppose φ, ψ and η are arbitrary permutations of Syme(G). Then we have

(φ⊙ ψ) ⊙ η = {φ⊙g ψ | g ∈ G} ⊙ η =
⋃

g∈G

(φ⊙g ψ) ⊙ η =

=
⋃

g∈G

{(φ⊙g ψ) ⊙h η | h ∈ G} = {(φ⊙g ψ) ⊙h η | g, h ∈ G}.

Using similar argument as in above, we can show that

φ⊙ (ψ ⊙ η) = {φ⊙g (ψ ⊙h η) | g, h ∈ G}.

We now assume that g, h ∈ G, then we have

(φ⊙g ψ) ⊙h η = Lφ⊙gψ(h)−1φ⊙g ψLhη = Lφ(gψ(h))−1φ(g)φ⊙g ψLhη =

= Lφ(gψ(h))−1φ(g)Lφ(g)−1φLgψLhη = Lφ(gψ(h))−1φLgψLhη =

= Lφ(gψ(h))−1φLgψ(h)Lψ(h)−1ψLhη = φ⊙gψ(h) (ψ ⊙h η) ∈ φ⊙ (ψ ⊙ η).

Therefore, φ⊙ (ψ⊙ η) ⊆ (φ⊙ψ)⊙ η. Using similar argument we have φ⊙ (ψ⊙ η) ⊆
(φ ⊙ ψ) ⊙ η and the associativity is valid. Next we assume that φ ∈ Syme(G) and
we have

φ⊙ Syme(G) =
⋃

ψ∈Syme(G)

φ⊙ ψ =
⋃

ψ∈Syme(G)

{φ⊙g ψ | g ∈ G}.

Suppose δ ∈ Syme(G) is arbitrary and ψ = Lg−1φ−1Lφ(g)δ. Then, φ ⊙g ψ = δ and
so Syme(G) = φ⊙Syme(G). Similarly, Syme(G)⊙ φ = Syme(G), which completes
the proof. 2

In what follows, we characterize the sub-hypergroups of the hypergroup (Syme(G),⊙).

Proposition 2.2. Let G be a finite group and H be a non-empty subset of Syme(G).
H is a sub-hypergroup of Syme(G) if and only if H is a rotary closed subgroup of
Syme(G).

Proof. (⇒) Suppose H is a sub-hypergroup of Syme(G). We first show that H
is a closed subset of Syme(G). To do this, suppose φ and ψ are elements of H.
Then φψ = φ ⊙e ψ ∈ φ ⊙ ψ ⊆ H and so φψ ∈ H. Next, for φ,ψ ∈ H and g ∈ G,
φ⊙g ψ ∈ φ⊙ ψ ⊆ H, as desired.

(⇐) Suppose H ≤ Syme(G) is rotary closed and φ ∈ G. Since H is rotary closed
φ⊙H ⊆ H. Suppose ψ ∈ H. Put η = φ−1ψ and g = e. Then, φ ⊙g η = φφ−1ψ =
ψ ∈ φ⊙ η and so H = φ⊙H. Similar argument shows that H ⊙φ = H, proving the
result. 2

It is a well-known fact that the set of all subgroups of a group G has a lattice
structure under the ordinary operations of meet and join. In general, it is far from
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true that the set of all sub-hypergroups of a hypergroup has a lattice structure under
these operations. In fact, the intersection of two sub-hypergroups of a hypergroup
is not necessarily non-empty.

Let L(G) be the set of all sub-hypergroups of the hypergroup G. In what follows,
we show that Syme(G) has a lattice structure under the ordinary operations of join
and meet.

Proposition 2.3. L(Syme(G)) has a lattice structure under the ordinary operations
of meet and join.

Proof. It is an easy fact that {1G} and Syme(G) are rotary closed. Suppose that
H and K are two rotary closed subgroups of Syme(G). It is clear that H ∩ K is
rotary closed. We claim that 〈H,K〉 is also rotary closed. To do this, we assume
that ψ ∈ H, φ ∈ K and g ∈ G. Then we have:

ψ ⊙g φ = Lψ(g)−1ψLgφ = Lψ(g)−1ψLgψψ
−1φ = ψ ⊙g ψψ

−1φ ∈ 〈H,K〉.

Also, for ψ1, ψ2 ∈ H, φ1, φ2 ∈ K and g ∈ G, we have

ψ1φ1 ⊙g ψ2φ2 = Lψ1φ1(g)−1ψ1φ1Lgψ2φ2 =

= L(ψ1(φ1(g)))−1ψ1Lφ1(g)ψ1ψ
−1
1 Lφ1(g)−1φ1Lgψ2φ2 =

= (ψ1 ⊙φ1(g) ψ1)ψ
−1
1 (φ1 ⊙g ψ2φ2) ∈ HK ⊆ 〈H,K〉.

Using similar argument as in above, we can show that 〈H,K〉 is a rotary closed
subgroup of Syme(G). This shows that L(Syme(G)) has a lattice structure under
ordinary operations of join and meet. 2

Let G be a set, B an algebraic Boolean algebra and s a function from G into B.

We define the hyperoperation
s
⋆ as follows:

a
s
⋆ b = {x ∈ G | s(x) ≤ s(a) ∨ s(b)}.

Since for all x, y ∈ G {x, y} ⊆ x
s
⋆ y, (G,

s
⋆) is an Hv-group. It is also clear that the

hyperoperation
s
⋆ is commutative.

In what follows, we study the sub-hypergroup structure of the hypergroup (G,
s
⋆).

In some special cases we will show that the set L(G) has a hyperlattice structure.
We also assume that Ga = {g ∈ G | s(g) ≤ a}. It is easy to see that if a ∈ B and
Ga 6= ∅ then Ga is an Hv-subgroup of G. In what follows, when we write Ga, we
assume that Ga 6= ∅.
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Proposition 2.4. Let B be a complete Boolean algebra and s : G −→ B be a

function such that (G,
s
⋆) constitute a hypergroup. Also, we assume that that

a1
s
⋆ a2

s
⋆ · · ·

s
⋆ an = {g ∈ G | s(g) ≤ s(a1) ∨ · · · ∨ s(an)},

and H is a sub-hypergroup of G. Then there exists an element a ∈ B such that
H = Ga.

Proof. Let H be a sub-hypergroup of G and a = ∨b∈Hs(b). We claim that H = Ga.
To see this, assume x ∈ H. Then s(x) ≤ ∨b∈Hs(b) = a and so x ∈ Ga, i.e., H ⊆ Ga.
We now assume that x ∈ Ga. Then s(x) ≤ a = ∨b∈Hs(b). Since B is algebraic,
there are the elements b1, b2, · · · , br of H such that s(x) ≤ s(b1) ∨ · · · ∨ s(br). Now

by assumption, x ∈ {g ∈ G | s(g) ≤ s(b1) ∨ · · · ∨ s(br)} = b1
s
⋆ b2

s
⋆ · · ·

s
⋆ br and H is

a sub-hypergroup of G, so x ∈ H, proving the result. 2

It is clear that Ga∧b = Ga ∩ Gb, for all a, b ∈ B. It is far from true that
Ga∨b = Ga ∪Gb. To see this, we construct an example as follows:

Example 2.5. Suppose G = B = P (X), s is the identity function, |X| ≥ 3 and
a, b, c distinct elements of X. Set R = {a, b} and S = {c}. Then GR = P (R), GS =
P (S) and GR∪S = P (R ∪ S). Now it is easy to see that GR∪S 6= GR ∪GS . 2

By the results of [3] and [4], if the image of G is a ∨-sub-semilattice or constitutes
a partition of 1, then L(G) = {Ga | a ∈ B&Ga 6= ∅}. In this case, we define a
hyperoperation ∨ on L(G) such that (L(G),∨,∧) constitutes a hyperlattice. To do
this, we assume that Ga ∨Gb = {Gx | a ∨ b ≤ x}.

In the following lemmas we investigate the conditions of a hyperlattice.

Lemma 2.6. Ga ∈ Ga ∨ Ga,Ga ∧ Ga = Ga, Ga ∨ Gb = Gb ∨ Ga and Ga ∧ Gb =
Ga∧b = Gb ∧Ga.

Proof. Obvious. 2

Lemma 2.7. (Ga∨Gb)∨Gc = Ga∨ (Gb∨Gc) and (Ga∧Gb)∧Gc = Ga∧ (Gb∧Gc).

Proof. The associativity of ∧ is obvious. We will show the associativity of ∨.
Suppose a, b, c ∈ B. Then

(Ga ∨Gb) ∨Gc = {Gx | a ∨ b ≤ x} ∨Gc =
⋃

a∨b≤x

Gx ∨Gc =

=
⋃

a∨b≤x

{Gt | x ∨ c ≤ t} = {Gu | a ∨ b ∨ c ≤ u}

Similar argument shows that Ga ∨ (Gb ∨Gc) = {Gu | a ∨ b ∨ c ≤ u}, and the result
follows. 2
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Lemma 2.8. Ga ∈ [Ga ∨ (Ga ∧Gb)] ∩ [(Ga ∧ (Ga ∨Gb)], for all a, b ∈ B.

Proof. Suppose a, b are arbitrary elements of B, then we have

Ga ∨ (Ga ∧Gb) = Ga ∨Ga∧b =

= {Gt | a ∨ (a ∧ b) ≤ t} = {Gt | a ≤ t}.

Therefore, Ga ∈ Ga ∨ (Ga ∧Gb). On the other hand, Ga = Ga∧(a∨b) = Ga ∧Ga∨b ∈
Ga ∧ (Ga ∨Gb), as required. 2

Lemma 2.9. Ga ∈ Ga ∨Gb implies that Gb = Ga ∧Gb.

Proof. Suppose Ga ∈ Ga ∨ Gb, then there exists t ∈ B such that Ga = Gt and
a ∨ b ≤ t. Thus, b = b ∧ (a ∨ b) ≤ b ∧ t and so Gb ⊆ Gb∧t = Gb ∧ Gt = Ga ∧ Gb.
Therefore, Gb = Ga ∧Gb and the lemma is proved. 2

We summarize the above lemmas in the following theorem:

Theorem 2.10. Let s : G −→ B be a function such that (G,
s
⋆) constitute a hyper-

group. Also, we assume that for all positive integer n and the elements a1, · · · , an
of G, we have

a1
s
⋆ a2

s
⋆ · · ·

s
⋆ an = {g ∈ G | s(g) ≤ s(a1) ∨ · · · ∨ s(an)}.

Then (L(G),∨,∧) is a hyperlattice.

We now investigate the distributivity of L(G) and show this hyperlattice is not
distributive, in general. In fact, we have the following example.

Example 2.11. There exists a function s : G −→ B such that (G,
s
⋆) is a hypergroup

which satisfies the conditions of Theorem 2.10, but L(G) is not distributive. To
see this, we assume that H is a finite group, Πe(H) = {o(x) | x ∈ H} and s :
P (H) −→ P (Πe(H)) defined by s(A) = {o(x) | x ∈ A}. It is easy to see that
the function s is onto, so by Theorem 3.6 L(P (H)) is a hyperlattice. Suppose,
H = Z4 = {e, a, a2, a3}, the cyclic group of order four, and G = P (H). Then
Πe(Z4) = {1, 2, 4}. Set A = {1, 2}, B = {1}, C = {2, 4} and D = {2}. It is clear
that GA∧(GB∨GC) = GA∧GΠe(G) = GA and (GA∧GB)∨(GA∧GC) = GB∨GD =
{GA, GΠe(G)}. This shows that GA∧(GB∨GC) 6= (GA∧GB)∨(GA∧GC). Therefore,
L(P (Z4)) is a hyperlattice which is not distributive.

It is natural to ask about modularity of L(G). Here, we obtain an example such
that its sub-hypergroup hyperlattice is not modular.

Example 2.12. Assume that X = {1, 2, 3, 4, 5}, G = B = P (X) and s is the
identity function on G. Set A = {1, 2}, B = {1, 2, 3} and C = {4, 5}. Then GA ⊆
GB, |GA∨(GB∧GC)| = 8 and |GB∧(GA∨GC)| = 2. This shows that the hyperlattice
L(G) is not modular.
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3 About some Generalized Action

Suppose s : G −→ B is a function such that (G,
s
⋆) is a hypergroup and A =

Atom(B). Define the map ⊙ : G×A −→ P ⋆(A) by g⊙x = {a ∈ A | a ≤ x∨s(g)}. In
this section, we obtain a condition on s such that ⊙ is a generalized action and prove

that under this condition the hypergroup (G,
s
⋆) is isomorphic to a sub-hypergroup

of MA.

Finally, we define a generalized action of an Hv-group on a set X as in hyper-
groups. We will apply the elementary properties of a generalized action and prove
an inequality between the partition function po(n) and the order of the hypergroup
MI(n).

Lemma 3.1. Let B be a Boolean algebra and A = Atom(B). If s : G −→ B is a
function such that the image of G is a partition of 1, then the map ⊙ : G × A −→
P ⋆(A) defined by g ⊙ a = {x ∈ A | x ≤ a∨ s(g)} is a strong generalized action of G
on A.

Proof. Suppose g ∈ G. Then it is obvious that for all x ∈ A, we have x ∈
g ⊙ x ⊆

⋃
a∈A g2a, i.e., A =

⋃
a∈A g ⊙ a. Thus, g ⊙ A = A and the condition (i)

is satisfied. We now assume that T = {a ∈ A | a ≤ x ∨ s(g) ∨ s(h)} and prove
that gh ⊙ x = g ⊙ (h ⊙ x) = T . It is easy to see that gh ⊙ x ∪ g ⊙ (h ⊙ x) ⊆ T .
Suppose a ∈ T . Then a ≤ x∨ s(g)∨ s(h) and we have a = (a∧ s(h))∨ [a∧ (x∨ s(g)].
We first assume that a 6= s(h), then a ∧ s(h) = 0 and so a ≤ x ∨ s(g). This
shows that a ∈ g2x ⊆

⋃
t∈gh t2x = gh2x. Next we assume that a = s(h). Then

a ∈ h ⊙ x ⊆ gh ⊙ x and so T = gh ⊙ x. Using similar argument as above, we have
T = g ⊙ (h⊙ x), proving the lemma. 2

Lemma 3.2. Let B be a Boolean algebra and A = Atom(B). If s : G −→ B is
a one-to-one function such that the image of G is a partition of 1 and that for all

g ∈ G, there exists an atom x such that |g ⊙ x| ≤ 2, then (G,
s
⋆) is isomorphic to a

sub-hypergroup of the hypergroup MA.

Proof. By Lemma 3.1, ⊙ : G×A −→ P ⋆(A) is a strong generalized action of G on A
and by Proposition 3.1 of [17] this action induced a good homomorphism ξ : G −→
MA defined by ξ(g)(a) = g⊙a. It is enough to show that this homomorphism is one-
to-one. To do this, suppose g⊙x = h⊙x, for all x ∈ A. By assumption, there exists
an atom x such that |g⊙x| ≥ 2. If a 6= x and a ∈ g⊙x then a ≤ s(g)∨x = s(h)∨x,
and so a ≤ x∨ (s(g) ∧ s(h)). Thus, a = (a ∧ x)∨ (a ∧ s(g) ∧ s(h)) = a ∧ s(g) ∧ s(h),
i.e., a ≤ s(g) ∧ s(h). But, the image of G is a partition of 1, hence s(g) = s(h) and
by injectivity of s, g = h. 2

Suppose s : Πd(n) −→ P ⋆(I(n)) is defined by s(λ) = Part(λ). Then (Πd(n),
s
⋆)

is an Hv-group. Define the map ⊙ : Πd(n)×I(n) −→ P ⋆(I(n)) by λ⊙k = Part(λ)∪
{k}. In the following simple lemma we show that the map ⊙ is a strong generalized
action of Πd(n) on the set I(n).
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Lemma 3.3. The map ⊙ : Πd(n)× I(n) −→ P ⋆(I(n)) defined by λ⊙k = Part(λ)∪
{k} is a strong generalized action of Πd(n) on the set I(n).

Proof. We first assume that n is an odd positive integer, we define the partitions
µi, 0 ≤ i ≤ [n2 ], by the following table:

µ0 µ1 µ2 · · · m[ n
2
]

n = n n = 1 + (n− 1) n = 2 + (n− 2) · · · n = [n2 ] + (n − [n2 ])

Next we assume that n is even, then we define the partitions ξi, 0 ≤ i ≤ n
2 , by

ξi = µi, for all i < n
2 and ξn

2
is the partition n = 1 + (n2 − 1) + n

2 . Then it is clear

that

[ n
2
]⋃

i=1

Part(µi) =

[ n
2
]⋃

i=1

Part(ξi) = I(n), and so the reproduction axiom is valid. We

now assume that λ, µ are arbitrary partitions and m ∈ I(n). Then we have

(λ
s
⋆ µ) ⊙m =

⋃

δ∈λ
s
⋆µ

δ ⊙m =

=
⋃

δ∈λ
s
⋆µ

Part(δ) ∪ {m} = Part(λ) ∪ Part(µ) ∪ {m}.

On the other hand,

λ⊙ (µ⊙m) =
⋃

k∈λ⊙m

λ2k =

=
⋃

k∈λ⊙m

(Part(λ) ∪ {k}) = Part(λ) ∪ Part(µ) ∪ {m}.

Therefore, the map ⊙ is a strong generalized action of the Hv-group Πd(n) on the
set I(n). 2

Lemma 3.4. po(n) ≤
n−1∑

i=0

(−1)i(
n

i
)(2n−i − 1)

n
.

Proof. By Euler’s partition theorem [1], po(n) = |Πd(n)| and by Proposition 4.1
of [17], the right hand of this inequality is the order of MI(n). Therefore, it is
enough to show that |Πd(n)| ≤ |MI(n)|. To do this, we now prove that the induced
homomorphism η : Πd(n) −→MI(n) by η(µ)(x) = µ⊙ x is one-to-one. Assume that
η(µ) = η(ξ), then µ⊙x = ξ⊙x, for all x ∈ I(n). Thus, Part(µ)∪{x} = Part(ξ)∪{x},
for all x ∈ I(n). Choose x ∈ Part(µ). We have Part(ξ) ⊆ Part(ξ)∪{x} = Part(µ).
Similarly, Part(µ) ⊆ Part(ξ) and so Part(µ) = Part(ξ). Now since µ and ξ have
distinct parts, µ = ξ. 2
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In the end of this paper, we define a generalized action of Syme(G) on the group
G. Suppose 2 : Syme(G) ×G −→ P ⋆(G) sends (φ, g) to φ(〈g〉). Then we have

φ2(ψ2g) = φ2ψ(〈g〉) =
⋃

i∈Z

φ2ψ(gi) =

=
⋃

i∈Z

φ(〈ψ(gi)〉) = {φ(ψ(gi))j | i, j ∈ Z}

and φψ2g = φψ(〈g〉) = {φ(ψ(gi)) | i ∈ Z}. This shows that φψ2g ⊆ φ2(ψ2g).
On the other hand, φ2G =

⋃
g∈G φ2g =

⋃
g∈G φ(〈g〉) = G, which shows that 2 is a

generalized action of Syme(G) on the group G.

Question 3.5. When this generalized action is strong?
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