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On some Hypergroups and their Hyperlattice
Structures
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Abstract. Let G be a hypergroup and £(G) be the set of all subhypergroups of G.
In this survey article, we introduce some hypergroups G from combinatorial structures
and study the structure of the set £(G). We prove that in some cases £(G) has a
lattice or hyperlattice structure.
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1 Introduction

First of all we will recall some algebraic definitions used in the paper. A hyper-
structure is a set H together with a function - : H x H — P*(H) called hyperop-
eration, where P*(H) denotes the set of all non-empty subsets of H. F.Marty [18]
defined a hypergroup as a hyperstructure (H, .) such that the following axioms hold:
(i) (x.y).z = z.(y.z) for all z,y,z in H, (ii) x.H = H.x = H for all x in H. The ax-
iom (ii) is called the reproduction axiom. A commutative hypergroup (H, o) is called
a join space if for all a,b,c¢,d € H, the implication a/bNc/d # ) = aod N boc # B
is valid, in which a/b = {z | a € zob}.

The concept of an H,-group is introduced by T.Vougiouklis in [20] and it is a
hyperstructure (H,.) such that (i) (z.y).z N x.(y.2) # 0, for all z,y,z in H, (ii)
x.H = H.x = H for all x in H. The first axiom is called weak associativity.

Following Gionfriddo [12] and Vougiouklis [20], we define a generalized permu-
tation on a non-empty set X as a map f: X — P*(X) such that the reproductive
axiom is valid, i.e. Uzex f(z) = f(X) = X. The set of all generalized permutations
on X is denoted by Myx. We now assume that (G,-) is a hypergroup and X is a
set. The map ® : G x X — P(X)* is called a generalized action of G on X if the
following axioms hold:

1) Forallghe Gandz € X, (gh) ©x C g® (h® x),

2) Forallge G, g0 X = X.

Here, for any g € Gand Y C X, g ®Y is defined as Uycyg ® x, and for any x € X
and B C GG, B ® z is, by definition, equal to Upegb ® z. If the equality holds in the
axiom 1) of definition, the generalized action is called strong (see [17]).

Following Konstantinidou and Mittas [15], we define a hyperlattice as a set H on

which a hyperoperation V and an operation A are defined which satisfy the following
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axioms:

l.a€aVaandaANa=a,

2.avb=bVaand aANb=0bAa,

3. (avb)Ve=aV (bVec)and (aAb)Ac=aA (bAc),
4. a € aV (aNb)| AaA (aVb),

5. a € a Vb implies that b = a A b.

It is well known [8] that in a lattice the distributivity of the meet (A) with
respect to the join (V) implies the distributivity of the join with respect to the
meet and vice versa, the lattice is then called distributive. But in a hyperlattice a
distinction of several types of distributivity is needed. According to Konstantinidou
[16], a hyperlattice (H,V,A) will be called distributive if and only if, a A (bV ¢) =
(aNb)V (aNc), for all a,b,c € H. Also, the hyperlattice (H,V, A) is called modular
if @ < b, implies that aV (bAc¢) =bA (aVe), for all c € H.

The second author in [2, 3] and [5], studied the construction of join spaces
from some combinatorial structures. In [4], he found a new closed formula for the
partition function p(n). We encourage reader to consult these papers for discussion
and background material.

Our notation is standard and taken mainly from [1, 8-10] and [20].

2 The Structure of some Hypergroups

Let G be a group, Sym(G) be the group of all permutations on G and Sym.(G)
be the stabilizer of the identity e € G in Sym(G). Given two permutations ¢ and
Y from Sym.(G) and an element g € G, we define a new permutation ¢ ©4 ¢ =
Ly(g)-10Lg, where Lygy-1, Ly € Sym(G) are left multiplications by the elements
#(g)~! and g, respectively.

According to [13], a subgroup H of Sym.(G) closed under taking products of this
form is called rotary closed, i.e. H < Sym,(G) is called rotary closed provided that
¢ Oy € H, for all ¢, € H and g € G. A nice family of rotary closed subgroups of
Sym.(G), for finite G’s, comes from the theory of Cayley graphs and can be obained
in the following way. Let {2 be a set of generators for a finite group GG not containing
the identity element e but containing 2! together with every x contained in €. The
subgroup Rotqo(G) of Sym.(G) of all permutations preserving e and satisfying the
condition ¢(a) Lé(ax) € Q, for every a € G and x € €, is rotary closed (for details
see [13] and [14]).

In this section, first we introduce a hyperoperation ® on Sym.(G) and prove
that (Sym¢(G),®) is a hypergroup. Next, we characterize the sub-hypergroups of
this hypergroup. To do this, assume that ¢, € Sym.(G), we define ¢ © ¢ =

{poyv | g€ G}
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Proposition 2.1. (Sym.(G),®) is a hypergroup.
Proof. Suppose ¢, 1) and 7 are arbitrary permutations of Sym.(G). Then we have

Pov)on={s04¢|geCGton=J@ov)on=

geG

— {00y ¥) onn | he @) = {(¢ Oy ) Onn | g.h € G).

geG

Using similar argument as in above, we can show that

PO Won) ={d0s (¥ onn)| g heGh

We now assume that g, h € G, then we have
(¢ Og ¥) Onn = Lyo,ph)-1® Og VLnn = Lygy(n))—16(g)® Og VLnn =

= Ly(gu(n)-1(9) Lotg)- 1 @ Ly Lt = L(gy(ny) -1 ¢LghLnn =
= Ly(gpn))-1 D Lgyn) Lyny 10 L = ¢ Ogyny (¥ ©Onn) € 9 © (¢ ©n).

Therefore, ¢ © (¢ ©n) C (¢ ©®¢p) ©n. Using similar argument we have ¢ ® (¢ ©n) C
(¢ ® 1) ®n and the associativity is valid. Next we assume that ¢ € Sym.(G) and
we have

poSym.(@) = |J oeov= |J {s04¢|geC}

YeSyme(G) PpeSyme(G)

Suppose § € Sym.(G) is arbitrary and ¢ = Lg71¢_1L¢(g)5. Then, ¢ ©®4 1% = and
s0 Syme(G) = ¢ ® Sym,(G). Similarly, Sym.(G) ® ¢ = Sym.(G), which completes
the proof. O

In what follows, we characterize the sub-hypergroups of the hypergroup (Sym.(G), ®).

Proposition 2.2. Let G be a finite group and H be a non-empty subset of Syme(G).
H is a sub-hypergroup of Syme(G) if and only if H is a rotary closed subgroup of
Syme(Q).

Proof. (=) Suppose H is a sub-hypergroup of Sym.(G). We first show that H
is a closed subset of Sym.(G). To do this, suppose ¢ and 1) are elements of H.
Then ¢ptp = p O € ¢ © 1y C H and so ¢p1p € H. Next, for ¢,9 € H and g € G,
POy € 9@ C H, as desired.

(<) Suppose H < Sym.(G) is rotary closed and ¢ € G. Since H is rotary closed
¢ ®H C H. Suppose ¢ € H. Put n = ¢~ and g = e. Then, ¢ ©yn = ¢p 1 =
Y€ pOnand so H=¢® H. Similar argument shows that H ® ¢ = H, proving the
result. O

It is a well-known fact that the set of all subgroups of a group G has a lattice
structure under the ordinary operations of meet and join. In general, it is far from
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true that the set of all sub-hypergroups of a hypergroup has a lattice structure under
these operations. In fact, the intersection of two sub-hypergroups of a hypergroup
is not necessarily non-empty.

Let £(G) be the set of all sub-hypergroups of the hypergroup G. In what follows,
we show that Sym.(G) has a lattice structure under the ordinary operations of join
and meet.

Proposition 2.3. L(Sym.(G)) has a lattice structure under the ordinary operations
of meet and join.

Proof. It is an easy fact that {15} and Sym.(G) are rotary closed. Suppose that
H and K are two rotary closed subgroups of Sym.(G). It is clear that H N K is
rotary closed. We claim that (H, K) is also rotary closed. To do this, we assume
that v € H, ¢ € K and g € G. Then we have:

P Og ¢ = Lyg)-19Lgd = Ly 19 Lypp™ ¢ = 4 Og b~ ¢ € (H, K).
Also, for 11,9 € H, ¢1,¢2 € K and g € G, we have

191 Og Yada = Ly, ¢, (g)- 19101 Lghap2 =

= Ly (61(9)) 1 V1 Ly ()17 ' Ly, (g)-1 &1 Lgthachy =
= (V1 @, (g) Y1)V (91 @9 ¥202) € HK C (H, K).

Using similar argument as in above, we can show that (H, K) is a rotary closed
subgroup of Sym.(G). This shows that £(Sym.(G)) has a lattice structure under
ordinary operations of join and meet. O

Let G be a set, B an algebraic Boolean algebra and s a function from G into B.
We define the hyperoperation % as follows:

axb={zeG|s(x)<sa)Vsb)}

Since for all z,y € G {z,y} Cz * v, (G, i) is an H,-group. It is also clear that the
hyperoperation * is commutative.

In what follows, we study the sub-hypergroup structure of the hypergroup (G, i)
In some special cases we will show that the set £(G) has a hyperlattice structure.
We also assume that G, = {g € G | s(g9) < a}. It is easy to see that if a € B and
Go # 0 then G, is an H,-subgroup of G. In what follows, when we write G, we
assume that G, # 0.
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Proposition 2.4. Let B be a complete Boolean algebra and s : G — B be a
function such that (G, i) constitute a hypergroup. Also, we assume that that

S S

a xag - wan={g€G|s(g) <s(a) V- Vs(an)},

and H is a sub-hypergroup of G. Then there exists an element a € B such that
H=G,.

Proof. Let H be a sub-hypergroup of G and a = Ve gs(b). We claim that H = G,,.
To see this, assume z € H. Then s(x) < Vyeps(b) = a and so x € G, i.e., H C G,.
We now assume that z € G,. Then s(z) < a = Vpegs(b). Since B is algebraic,
there are the elements by, by, -+ , b, of H such that s(xz) < s(by) V---V s(b,). Now
by assumption, z € {g € G | s(g) < s(b1) V-V s(b)} = by *x by % --- * b, and H is
a sub-hypergroup of G, so x € H, proving the result. O

It is clear that Gonpy = Gg N Gy, for all a,b € B. It is far from true that
Gavpy = G4 U Gyp. To see this, we construct an example as follows:

Example 2.5. Suppose G = B = P(X), s is the identity function, |X| > 3 and
a,b, ¢ distinct elements of X. Set R = {a,b} and S ={c}. Then Gr = P(R),Gg =
P(S) and Grus = P(RUS). Now it is easy to see that Grus # GrUGg. O

By the results of [3] and [4], if the image of G is a V-sub-semilattice or constitutes
a partition of 1, then £(G) = {G, | a € B&G, # 0}. In this case, we define a
hyperoperation V on £(G) such that (L£(G),V,A) constitutes a hyperlattice. To do
this, we assume that G, VGp = {Gy | a Vb < z}.

In the following lemmas we investigate the conditions of a hyperlattice.

Lemma 2.6. G, € G, VG,,Go NGy, = Gy, GoV Gy = Gy V Gy and Gy A Gy =
Gary = Gp N Gy

Proof. Obvious. O
Lemma 2.7. (G,VGy)VG. =G,V (GyVG.) and (Go AGp) NGe = G A\ (G AG).

Proof. The associativity of A is obvious. We will show the associativity of V.
Suppose a,b,c € B. Then

(GaVGY)VGe={Gy |aVvb<a}VGe= | G.VG.=

aVb<z

= (J{Gilave<ty={Gu|avbvc<u}

aVb<zx

Similar argument shows that G, V (G V G.) = {Gy | a VbV ¢ < u}, and the result
follows. O
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Lemma 2.8. G, € [G, V (Go A Gp)|N[(Gy A (Gg V Gy)], for all a,b € B.

Proof. Suppose a,b are arbitrary elements of B, then we have
GoV (Gog NGy) = Go V Gopp =

={GilaV(anb) <t} ={G;|a<t}.

Therefore, G, € G, V (G4 A Gp). On the other hand, G, = Ga/\(a\/b) =Gy NGayp €
Go N (Gg V Gy), as required. O

Lemma 2.9. G, € G, V Gy implies that Gy, = G, A Gy,

Proof. Suppose G, € G, V Gy, then there exists t € B such that G, = Gy and
aVb<t Thus,b=bA(aVd) <bAtandso Gy, C Gy = Gy, NGy = Gy A Gy
Therefore, Gy, = G, A G, and the lemma is proved. O

We summarize the above lemmas in the following theorem:

Theorem 2.10. Let s : G — B be a function such that (G, i) constitute a hyper-
group. Also, we assume that for all positive integer n and the elements ai,--- ,an
of G, we have

S S

ag xag - wan=4{g€G|s(g) <s(a) V- Vs(an)}
Then (L(G),V,A) is a hyperlattice.

We now investigate the distributivity of £(G) and show this hyperlattice is not
distributive, in general. In fact, we have the following example.

Example 2.11. There exists a function s : G — B such that (G,i) 18 a hypergroup
which satisfies the conditions of Theorem 2.10, but L(G) is not distributive. To
see this, we assume that H is a finite group, II.(H) = {o(z) | v € H} and s :
P(H) — P(Il.(H)) defined by s(A) = {o(z) | = € A}. It is easy to see that
the function s is onto, so by Theorem 3.6 L(P(H)) is a hyperlattice. Suppose,
H = Z; = {e,a,a?,a%}, the cyclic group of order four, and G = P(H). Then
I (Zy) = {1,2,4}. Set A ={1,2},B = {1},C = {2,4} and D = {2}. It is clear
that GA/\(GB\/Gc) = GA/\GHE(G) =Gy and (GA/\GB)\/(GA/\Gc) =GpVGp =
1G4, G )} This shows that GAN(GBVGc) # (GaANGB)V(GaNGe). Therefore,
L(P(Z4)) is a hyperlattice which is not distributive.

It is natural to ask about modularity of L(G). Here, we obtain an example such
that its sub-hypergroup hyperlattice is not modular.

Example 2.12. Assume that X = {1,2,3,4,5}, G = B = P(X) and s is the
identity function on G. Set A = {1,2},B = {1,2,3} and C = {4,5}. Then G4 C
Gp, |GaAV(GpNGe)| =8 and |G N(GAVGe)| = 2. This shows that the hyperlattice
L(G) is not modular.
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3 About some Generalized Action

Suppose s : G — B is a function such that (G, i) is a hypergroup and A =
Atom(B). Define themap ® : GXA — P*(A) by g0z ={a € A|a<zVs(g)}. In
this section, we obtain a condition on s such that ® is a generalized action and prove
that under this condition the hypergroup (G, i) is isomorphic to a sub-hypergroup
of My4.

Finally, we define a generalized action of an H,-group on a set X as in hyper-
groups. We will apply the elementary properties of a generalized action and prove
an inequality between the partition function po(n) and the order of the hypergroup

Lemma 3.1. Let B be a Boolean algebra and A = Atom(B). If s : G — B is a
function such that the image of G is a partition of 1, then the map © : G x A —
P*(A) defined by goa={x € A|x<aVs(g)} is a strong generalized action of G
on A.

Proof. Suppose g € GG. Then it is obvious that for all x € A, we have =z €
902 C Uyen 99, ie, A=J,cr9®a Thus, g© A= A and the condition (i)
is satisfied. We now assume that 7' = {a € A | a < xV s(g) V s(h)} and prove
that gh ©x = g© (h©®x) = T. Tt is easy to see that gh ©xUg® (h©z) C T.
Suppose a € T. Then a < 2V s(g)V s(h) and we have a = (aAs(h))V]aA (xV s(g)].
We first assume that a # s(h), then a A s(h) = 0 and so a < z V s(g). This
shows that a € g0z C ;¢ ), t0z = ghDz. Next we assume that a = s(h). Then
a€Eh®xCgh®zxandsoTl = gh®xz. Using similar argument as above, we have
T =g® (h®z), proving the lemma. O

Lemma 3.2. Let B be a Boolean algebra and A = Atom(B). If s : G — B is
a one-to-one function such that the image of G is a partition of 1 and that for all
g € G, there exists an atom x such that |g © x| < 2, then (G,i) is isomorphic to a
sub-hypergroup of the hypergroup M4.

Proof. By Lemma 3.1, ® : Gx A — P*(A) is a strong generalized action of G on A
and by Proposition 3.1 of [17] this action induced a good homomorphism ¢ : G —
M 4 defined by £(g)(a) = g©@a. It is enough to show that this homomorphism is one-
to-one. To do this, suppose g ®x = h©@x, for all x € A. By assumption, there exists
an atom z such that [¢©xz| > 2. Ifa #z and a € g©x then a < s(g) Va = s(h) Vz,
and so a <z V (s(g) As(h)). Thus, a = (aAz)V (aAs(g)As(h)) =aAs(g)As(h),
i.e., a < s(g) A s(h). But, the image of G is a partition of 1, hence s(g) = s(h) and
by injectivity of s, g = h. O

Suppose s : Iy(n) — P*(I(n)) is defined by s(\) = Part(\). Then (I4(n), %)
is an H,-group. Define the map ® : IIg(n) x I(n) — P*(I(n)) by A&k = Part(A\)U
{k}. In the following simple lemma we show that the map ® is a strong generalized
action of II;(n) on the set I(n).
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Lemma 3.3. The map ® : lz(n) x I(n) — P*(I(n)) defined by A\®k = Part(\)U
{k} is a strong generalized action of Iy(n) on the set I(n).

Proof. We first assume that n is an odd positive integer, we define the partitions
i, 0 < i < [3], by the following table:

Ho M1 H2 TTL[%}
m=n =T ) (=25 =9 [ [n= 5+ (i T2])

Next we assume that n is even, then we define the partitions &, 0 < i < 3, by

§ = pi, for all i < 5 and 5% is the partition n = 1+ (§ — 1) + 5. Then it is clear
5] (3]

that U Part(u;) = U Part(&;) = I(n), and so the reproduction axiom is valid. We
i=1 i=1

now assume that A, 1 are arbitrary partitions and m € I(n). Then we have

U Part(0) U{m} = Part(\) U Part(u) U {m}.
JEA*M
On the other hand,
AO (p®m) U AOk =
kEXOGM
= |J (Part(\) U{k}) = Part(\) U Part(u) U {m}.
kexom

Therefore, the map @ is a strong generalized action of the H,-group IIz(n) on the
set I(n). O

[y

Lemma 3.4. po(n) < i: (—1)' (")t — )"

: 7
=0

Proof. By Euler’s partition theorem [1], po(n) = |II4(n)| and by Proposition 4.1
of [17], the right hand of this inequality is the order of Mj(,). Therefore, it is
enough to show that [IIg(n)| < [Mj,)|. To do this, we now prove that the induced
homomorphism 7 : Ilg(n) — M,y by n(u)(x) = 4 © = is one-to-one. Assume that
n(p) =n(&), then poOx = Oz, for all x € I(n). Thus, Part(u)U{z} = Part(§)U{z},
for all z € I(n). Choose x € Part(p). We have Part(§) C Part(§)U{x} = Part(u).
Similarly, Part(p) C Part(§) and so Part(p) = Part(§). Now since p and & have
distinct parts, p =¢£. O
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In the end of this paper, we define a generalized action of Sym.(G) on the group

G. Suppose O : Sym.(G) x G — P*(G) sends (¢, g) to ¢((g)). Then we have

¢0(y0g) = ¢y ((g)) = | s00(g') =

€7

— | s((w(g')) = {o((g))) | i, € 2}

€7

and ¢y0g = ¢¥((g)) = {d(v(¢")) | i € Z}. This shows that ¢ypOg C ¢O(4Og).
On the other hand, ¢0OG = UgEG Qg = UgeG #({g)) = G, which shows that O is a

generalized action of Sym.(G) on the group G.

Question 3.5. When this generalized action is strong?
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