On some Hypergroups and their Hyperlattice Structures

G.A. Moghani, A.R. Ashrafi

Abstract. Let G be a hypergroup and $\mathcal{L}(G)$ be the set of all subhypergroups of G. In this survey article, we introduce some hypergroups G from combinatorial structures and study the structure of the set $\mathcal{L}(G)$. We prove that in some cases $\mathcal{L}(G)$ has a lattice or hyperlattice structure.

Mathematics subject classification: 20N20. Keywords and phrases: Hypergroup, hyperlattice, integer partition.

1 Introduction

First of all we will recall some algebraic definitions used in the paper. A hyperstructure is a set H together with a function $\cdot : H \times H \longrightarrow P^*(H)$ called hyperoperation, where $P^*(H)$ denotes the set of all non-empty subsets of H. F.Marty [18] defined a hypergroup as a hyperstructure (H, .) such that the following axioms hold: (i) (x.y).z = x.(y.z) for all x, y, z in H, (ii) x.H = H.x = H for all x in H. The axiom (ii) is called the reproduction axiom. A commutative hypergroup (H, o) is called a join space if for all $a, b, c, d \in H$, the implication $a/b \cap c/d \neq \emptyset \Longrightarrow aod \cap boc \neq \emptyset$ is valid, in which $a/b = \{x \mid a \in xob\}$.

The concept of an H_v -group is introduced by T.Vougiouklis in [20] and it is a hyperstructure (H, .) such that (i) $(x.y).z \cap x.(y.z) \neq \emptyset$, for all x, y, z in H, (ii) x.H = H.x = H for all x in H. The first axiom is called weak associativity.

Following Gionfriddo [12] and Vougiouklis [20], we define a generalized permutation on a non-empty set X as a map $f: X \longrightarrow \mathcal{P}^*(X)$ such that the reproductive axiom is valid, i.e. $\bigcup_{x \in X} f(x) = f(X) = X$. The set of all generalized permutations on X is denoted by M_X . We now assume that (G, \cdot) is a hypergroup and X is a set. The map $\odot: G \times X \longrightarrow \mathcal{P}(X)^*$ is called a generalized action of G on X if the following axioms hold:

- 1) For all $g, h \in G$ and $x \in X$, $(gh) \odot x \subseteq g \odot (h \odot x)$,
- 2) For all $g \in G$, $g \odot X = X$.

Here, for any $g \in G$ and $Y \subseteq X$, $g \odot Y$ is defined as $\bigcup_{x \in Y} g \odot x$, and for any $x \in X$ and $B \subseteq G$, $B \odot x$ is, by definition, equal to $\bigcup_{b \in B} b \odot x$. If the equality holds in the axiom 1) of definition, the generalized action is called strong (see [17]).

Following Konstantinidou and Mittas [15], we define a hyperlattice as a set H on which a hyperoperation \lor and an operation \land are defined which satisfy the following

[©] G.A. Mogani, A.R. Ashrafi, 2003

axioms:

- 1. $a \in a \lor a$ and $a \land a = a$, 2. $a \lor b = b \lor a$ and $a \land b = b \land a$,
- 3. $(a \lor b) \lor c = a \lor (b \lor c)$ and $(a \land b) \land c = a \land (b \land c)$,
- 4. $a \in [a \lor (a \land b)] \land [a \land (a \lor b)],$
- 5. $a \in a \lor b$ implies that $b = a \land b$.

It is well known [8] that in a lattice the distributivity of the meet (\land) with respect to the join (\lor) implies the distributivity of the join with respect to the meet and vice versa, the lattice is then called distributive. But in a hyperlattice a distinction of several types of distributivity is needed. According to Konstantinidou [16], a hyperlattice (H, \lor, \land) will be called distributive if and only if, $a \land (b \lor c) =$ $(a \land b) \lor (a \land c)$, for all $a, b, c \in H$. Also, the hyperlattice (H, \lor, \land) is called modular if $a \leq b$, implies that $a \lor (b \land c) = b \land (a \lor c)$, for all $c \in H$.

The second author in [2, 3] and [5], studied the construction of join spaces from some combinatorial structures. In [4], he found a new closed formula for the partition function p(n). We encourage reader to consult these papers for discussion and background material.

Our notation is standard and taken mainly from [1, 8-10] and [20].

2 The Structure of some Hypergroups

Let G be a group, Sym(G) be the group of all permutations on G and $Sym_e(G)$ be the stabilizer of the identity $e \in G$ in Sym(G). Given two permutations ϕ and ψ from $Sym_e(G)$ and an element $g \in G$, we define a new permutation $\phi \odot_g \psi = L_{\phi(g)^{-1}}\phi L_g \psi$, where $L_{\phi(g)^{-1}}, L_g \in Sym(G)$ are left multiplications by the elements $\phi(g)^{-1}$ and g, respectively.

According to [13], a subgroup H of $Sym_e(G)$ closed under taking products of this form is called rotary closed, i.e. $H \leq Sym_e(G)$ is called rotary closed provided that $\phi \odot_g \psi \in H$, for all $\phi, \psi \in H$ and $g \in G$. A nice family of rotary closed subgroups of $Sym_e(G)$, for finite G's, comes from the theory of Cayley graphs and can be obtained in the following way. Let Ω be a set of generators for a finite group G not containing the identity element e but containing x^{-1} together with every x contained in Ω . The subgroup $Rot_{\Omega}(G)$ of $Sym_e(G)$ of all permutations preserving e and satisfying the condition $\phi(a)^{-1}\phi(ax) \in \Omega$, for every $a \in G$ and $x \in \Omega$, is rotary closed (for details see [13] and [14]).

In this section, first we introduce a hyperoperation \odot on $Sym_e(G)$ and prove that $(Sym_e(G), \odot)$ is a hypergroup. Next, we characterize the sub-hypergroups of this hypergroup. To do this, assume that $\phi, \psi \in Sym_e(G)$, we define $\phi \odot \psi = \{\phi \odot_g \psi \mid g \in G\}$.

17

Proposition 2.1. $(Sym_e(G), \odot)$ is a hypergroup.

Proof. Suppose ϕ , ψ and η are arbitrary permutations of $Sym_e(G)$. Then we have

$$(\phi \odot \psi) \odot \eta = \{\phi \odot_g \psi \mid g \in G\} \odot \eta = \bigcup_{g \in G} (\phi \odot_g \psi) \odot \eta =$$
$$= \bigcup_{g \in G} \{(\phi \odot_g \psi) \odot_h \eta \mid h \in G\} = \{(\phi \odot_g \psi) \odot_h \eta \mid g, h \in G\}.$$

Using similar argument as in above, we can show that

 $\phi \odot (\psi \odot \eta) = \{ \phi \odot_g (\psi \odot_h \eta) \mid g, h \in G \}.$

We now assume that $g, h \in G$, then we have

$$(\phi \odot_g \psi) \odot_h \eta = L_{\phi \odot_g \psi(h)^{-1}} \phi \odot_g \psi L_h \eta = L_{\phi(g\psi(h))^{-1}\phi(g)} \phi \odot_g \psi L_h \eta =$$
$$= L_{\phi(g\psi(h))^{-1}\phi(g)} L_{\phi(g)^{-1}} \phi L_g \psi L_h \eta = L_{\phi(g\psi(h))^{-1}} \phi L_g \psi L_h \eta =$$
$$= L_{\phi(g\psi(h))^{-1}} \phi L_{g\psi(h)} L_{\psi(h)^{-1}} \psi L_h \eta = \phi \odot_{g\psi(h)} (\psi \odot_h \eta) \in \phi \odot (\psi \odot \eta).$$

Therefore, $\phi \odot (\psi \odot \eta) \subseteq (\phi \odot \psi) \odot \eta$. Using similar argument we have $\phi \odot (\psi \odot \eta) \subseteq (\phi \odot \psi) \odot \eta$ and the associativity is valid. Next we assume that $\phi \in Sym_e(G)$ and we have

$$\phi \odot Sym_e(G) = \bigcup_{\psi \in Sym_e(G)} \phi \odot \psi = \bigcup_{\psi \in Sym_e(G)} \{ \phi \odot_g \psi \mid g \in G \}.$$

Suppose $\delta \in Sym_e(G)$ is arbitrary and $\psi = L_{g^{-1}}\phi^{-1}L_{\phi(g)}\delta$. Then, $\phi \odot_g \psi = \delta$ and so $Sym_e(G) = \phi \odot Sym_e(G)$. Similarly, $Sym_e(G) \odot \phi = Sym_e(G)$, which completes the proof. \Box

In what follows, we characterize the sub-hypergroups of the hypergroup $(Sym_e(G), \odot)$.

Proposition 2.2. Let G be a finite group and H be a non-empty subset of $Sym_e(G)$. H is a sub-hypergroup of $Sym_e(G)$ if and only if H is a rotary closed subgroup of $Sym_e(G)$.

Proof. (\Rightarrow) Suppose *H* is a sub-hypergroup of $Sym_e(G)$. We first show that *H* is a closed subset of $Sym_e(G)$. To do this, suppose ϕ and ψ are elements of *H*. Then $\phi\psi = \phi \odot_e \psi \in \phi \odot \psi \subseteq H$ and so $\phi\psi \in H$. Next, for $\phi, \psi \in H$ and $g \in G$, $\phi \odot_q \psi \in \phi \odot \psi \subseteq H$, as desired.

(⇐) Suppose $H \leq Sym_e(G)$ is rotary closed and $\phi \in G$. Since H is rotary closed $\phi \odot H \subseteq H$. Suppose $\psi \in H$. Put $\eta = \phi^{-1}\psi$ and g = e. Then, $\phi \odot_g \eta = \phi \phi^{-1}\psi = \psi \in \phi \odot \eta$ and so $H = \phi \odot H$. Similar argument shows that $H \odot \phi = H$, proving the result. \Box

It is a well-known fact that the set of all subgroups of a group G has a lattice structure under the ordinary operations of meet and join. In general, it is far from true that the set of all sub-hypergroups of a hypergroup has a lattice structure under these operations. In fact, the intersection of two sub-hypergroups of a hypergroup is not necessarily non-empty.

Let $\mathcal{L}(G)$ be the set of all sub-hypergroups of the hypergroup G. In what follows, we show that $Sym_e(G)$ has a lattice structure under the ordinary operations of join and meet.

Proposition 2.3. $\mathcal{L}(Sym_e(G))$ has a lattice structure under the ordinary operations of meet and join.

Proof. It is an easy fact that $\{1_G\}$ and $Sym_e(G)$ are rotary closed. Suppose that H and K are two rotary closed subgroups of $Sym_e(G)$. It is clear that $H \cap K$ is rotary closed. We claim that $\langle H, K \rangle$ is also rotary closed. To do this, we assume that $\psi \in H$, $\phi \in K$ and $g \in G$. Then we have:

$$\psi \odot_g \phi = L_{\psi(g)^{-1}} \psi L_g \phi = L_{\psi(g)^{-1}} \psi L_g \psi \psi^{-1} \phi = \psi \odot_g \psi \psi^{-1} \phi \in \langle H, K \rangle.$$

Also, for $\psi_1, \psi_2 \in H$, $\phi_1, \phi_2 \in K$ and $g \in G$, we have

0

$$\psi_1 \phi_1 \odot_g \psi_2 \phi_2 = L_{\psi_1 \phi_1(g)^{-1}} \psi_1 \phi_1 L_g \psi_2 \phi_2 =$$
$$= L_{(\psi_1(\phi_1(g)))^{-1}} \psi_1 L_{\phi_1(g)} \psi_1 \psi_1^{-1} L_{\phi_1(g)^{-1}} \phi_1 Lg \psi_2 \phi_2 =$$
$$= (\psi_1 \odot_{\phi_1(g)} \psi_1) \psi_1^{-1} (\phi_1 \odot_g \psi_2 \phi_2) \in HK \subseteq \langle H, K \rangle.$$

Using similar argument as in above, we can show that $\langle H, K \rangle$ is a rotary closed subgroup of $Sym_e(G)$. This shows that $\mathcal{L}(Sym_e(G))$ has a lattice structure under ordinary operations of join and meet. \Box

Let G be a set, B an algebraic Boolean algebra and s a function from G into B. We define the hyperoperation $\stackrel{s}{\star}$ as follows:

$$a \overset{\circ}{\star} b = \{ x \in G \mid s(x) \le s(a) \lor s(b) \}.$$

Since for all $x, y \in G \{x, y\} \subseteq x \stackrel{s}{\star} y$, $(G, \stackrel{s}{\star})$ is an H_v -group. It is also clear that the hyperoperation $\stackrel{s}{\star}$ is commutative.

In what follows, we study the sub-hypergroup structure of the hypergroup $(G, \overset{s}{\star})$. In some special cases we will show that the set $\mathcal{L}(G)$ has a hyperlattice structure. We also assume that $G_a = \{g \in G \mid s(g) \leq a\}$. It is easy to see that if $a \in B$ and $G_a \neq \emptyset$ then G_a is an H_v -subgroup of G. In what follows, when we write G_a , we assume that $G_a \neq \emptyset$. **Proposition 2.4.** Let B be a complete Boolean algebra and $s : G \longrightarrow B$ be a function such that $(G, \overset{s}{\star})$ constitute a hypergroup. Also, we assume that that

$$a_1 \stackrel{s}{\star} a_2 \stackrel{s}{\star} \cdots \stackrel{s}{\star} a_n = \{g \in G \mid s(g) \le s(a_1) \lor \cdots \lor s(a_n)\}$$

and H is a sub-hypergroup of G. Then there exists an element $a \in B$ such that $H = G_a$.

Proof. Let *H* be a sub-hypergroup of *G* and $a = \bigvee_{b \in H} s(b)$. We claim that $H = G_a$. To see this, assume $x \in H$. Then $s(x) \leq \bigvee_{b \in H} s(b) = a$ and so $x \in G_a$, i.e., $H \subseteq G_a$. We now assume that $x \in G_a$. Then $s(x) \leq a = \bigvee_{b \in H} s(b)$. Since *B* is algebraic, there are the elements b_1, b_2, \dots, b_r of *H* such that $s(x) \leq s(b_1) \vee \dots \vee s(b_r)$. Now by assumption, $x \in \{g \in G \mid s(g) \leq s(b_1) \vee \dots \vee s(b_r)\} = b_1 \overset{s}{\star} b_2 \overset{s}{\star} \dots \overset{s}{\star} b_r$ and *H* is a sub-hypergroup of *G*, so $x \in H$, proving the result. \Box

It is clear that $G_{a \wedge b} = G_a \cap G_b$, for all $a, b \in B$. It is far from true that $G_{a \vee b} = G_a \cup G_b$. To see this, we construct an example as follows:

Example 2.5. Suppose G = B = P(X), s is the identity function, $|X| \ge 3$ and a, b, c distinct elements of X. Set $R = \{a, b\}$ and $S = \{c\}$. Then $G_R = P(R), G_S = P(S)$ and $G_{R\cup S} = P(R \cup S)$. Now it is easy to see that $G_{R\cup S} \ne G_R \cup G_S$. \Box

By the results of [3] and [4], if the image of G is a \vee -sub-semilattice or constitutes a partition of 1, then $\mathcal{L}(G) = \{G_a \mid a \in B\&G_a \neq \emptyset\}$. In this case, we define a hyperoperation \vee on $\mathcal{L}(G)$ such that $(\mathcal{L}(G), \vee, \wedge)$ constitutes a hyperlattice. To do this, we assume that $G_a \vee G_b = \{G_x \mid a \vee b \leq x\}$.

In the following lemmas we investigate the conditions of a hyperlattice.

Lemma 2.6. $G_a \in G_a \vee G_a, G_a \wedge G_a = G_a, G_a \vee G_b = G_b \vee G_a$ and $G_a \wedge G_b = G_{a \wedge b} = G_b \wedge G_a$.

Proof. Obvious. \Box

Lemma 2.7. $(G_a \vee G_b) \vee G_c = G_a \vee (G_b \vee G_c)$ and $(G_a \wedge G_b) \wedge G_c = G_a \wedge (G_b \wedge G_c)$.

Proof. The associativity of \wedge is obvious. We will show the associativity of \vee . Suppose $a, b, c \in B$. Then

$$(G_a \vee G_b) \vee G_c = \{G_x \mid a \vee b \le x\} \vee G_c = \bigcup_{a \vee b \le x} G_x \vee G_c = \bigcup_{a \vee b \le x} G_t \mid x \vee c \le t\} = \{G_u \mid a \vee b \vee c \le u\}$$

Similar argument shows that $G_a \vee (G_b \vee G_c) = \{G_u \mid a \vee b \vee c \leq u\}$, and the result follows. \Box

Lemma 2.8. $G_a \in [G_a \vee (G_a \wedge G_b)] \cap [(G_a \wedge (G_a \vee G_b)], \text{ for all } a, b \in B.$

Proof. Suppose a, b are arbitrary elements of B, then we have

$$G_a \lor (G_a \land G_b) = G_a \lor G_{a \land b} =$$

$$= \{G_t \mid a \lor (a \land b) \le t\} = \{G_t \mid a \le t\}.$$

Therefore, $G_a \in G_a \vee (G_a \wedge G_b)$. On the other hand, $G_a = G_{a \wedge (a \vee b)} = G_a \wedge G_{a \vee b} \in G_a \wedge (G_a \vee G_b)$, as required. \Box

Lemma 2.9. $G_a \in G_a \vee G_b$ implies that $G_b = G_a \wedge G_b$.

Proof. Suppose $G_a \in G_a \vee G_b$, then there exists $t \in B$ such that $G_a = G_t$ and $a \vee b \leq t$. Thus, $b = b \wedge (a \vee b) \leq b \wedge t$ and so $G_b \subseteq G_{b \wedge t} = G_b \wedge G_t = G_a \wedge G_b$. Therefore, $G_b = G_a \wedge G_b$ and the lemma is proved. \Box

We summarize the above lemmas in the following theorem:

Theorem 2.10. Let $s: G \longrightarrow B$ be a function such that $(G, \overset{s}{\star})$ constitute a hypergroup. Also, we assume that for all positive integer n and the elements a_1, \dots, a_n of G, we have

$$a_1 \stackrel{s}{\star} a_2 \stackrel{s}{\star} \cdots \stackrel{s}{\star} a_n = \{g \in G \mid s(g) \le s(a_1) \lor \cdots \lor s(a_n)\}.$$

Then $(\mathcal{L}(G), \vee, \wedge)$ is a hyperlattice.

We now investigate the distributivity of $\mathcal{L}(G)$ and show this hyperlattice is not distributive, in general. In fact, we have the following example.

Example 2.11. There exists a function $s: G \longrightarrow B$ such that $(G, \overset{*}{\star})$ is a hypergroup which satisfies the conditions of Theorem 2.10, but $\mathcal{L}(G)$ is not distributive. To see this, we assume that H is a finite group, $\Pi_e(H) = \{o(x) \mid x \in H\}$ and s: $P(H) \longrightarrow P(\Pi_e(H))$ defined by $s(A) = \{o(x) \mid x \in A\}$. It is easy to see that the function s is onto, so by Theorem 3.6 $\mathcal{L}(P(H))$ is a hyperlattice. Suppose, $H = Z_4 = \{e, a, a^2, a^3\}$, the cyclic group of order four, and G = P(H). Then $\Pi_e(Z_4) = \{1, 2, 4\}$. Set $A = \{1, 2\}, B = \{1\}, C = \{2, 4\}$ and $D = \{2\}$. It is clear that $G_A \land (G_B \lor G_C) = G_A \land G_{\Pi_e(G)} = G_A$ and $(G_A \land G_B) \lor (G_A \land G_C) = G_B \lor G_D =$ $\{G_A, G_{\Pi_e(G)}\}$. This shows that $G_A \land (G_B \lor G_C) \neq (G_A \land G_B) \lor (G_A \land G_C)$. Therefore, $\mathcal{L}(P(Z_4))$ is a hyperlattice which is not distributive.

It is natural to ask about modularity of $\mathcal{L}(G)$. Here, we obtain an example such that its sub-hypergroup hyperlattice is not modular.

Example 2.12. Assume that $X = \{1, 2, 3, 4, 5\}$, G = B = P(X) and s is the identity function on G. Set $A = \{1, 2\}$, $B = \{1, 2, 3\}$ and $C = \{4, 5\}$. Then $G_A \subseteq G_B$, $|G_A \vee (G_B \wedge G_C)| = 8$ and $|G_B \wedge (G_A \vee G_C)| = 2$. This shows that the hyperlattice $\mathcal{L}(G)$ is not modular.

21

3 About some Generalized Action

Suppose $s : G \longrightarrow B$ is a function such that $(G, \overset{s}{\star})$ is a hypergroup and $A = \operatorname{Atom}(B)$. Define the map $\odot : G \times A \longrightarrow P^{\star}(A)$ by $g \odot x = \{a \in A \mid a \leq x \lor s(g)\}$. In this section, we obtain a condition on s such that \odot is a generalized action and prove that under this condition the hypergroup $(G, \overset{s}{\star})$ is isomorphic to a sub-hypergroup of M_A .

Finally, we define a generalized action of an H_v -group on a set X as in hypergroups. We will apply the elementary properties of a generalized action and prove an inequality between the partition function po(n) and the order of the hypergroup $M_{I(n)}$.

Lemma 3.1. Let B be a Boolean algebra and A = Atom(B). If $s : G \longrightarrow B$ is a function such that the image of G is a partition of 1, then the map $\odot : G \times A \longrightarrow P^*(A)$ defined by $g \odot a = \{x \in A \mid x \leq a \lor s(g)\}$ is a strong generalized action of G on A.

Proof. Suppose $g \in G$. Then it is obvious that for all $x \in A$, we have $x \in g \odot x \subseteq \bigcup_{a \in A} g \Box a$, i.e., $A = \bigcup_{a \in A} g \odot a$. Thus, $g \odot A = A$ and the condition (i) is satisfied. We now assume that $T = \{a \in A \mid a \leq x \lor s(g) \lor s(h)\}$ and prove that $gh \odot x = g \odot (h \odot x) = T$. It is easy to see that $gh \odot x \cup g \odot (h \odot x) \subseteq T$. Suppose $a \in T$. Then $a \leq x \lor s(g) \lor s(h)$ and we have $a = (a \land s(h)) \lor [a \land (x \lor s(g)]]$. We first assume that $a \neq s(h)$, then $a \land s(h) = 0$ and so $a \leq x \lor s(g)$. This shows that $a \in g \Box x \subseteq \bigcup_{t \in gh} t \Box x = gh \Box x$. Next we assume that a = s(h). Then $a \in h \odot x \subseteq gh \odot x$ and so $T = gh \odot x$. Using similar argument as above, we have $T = g \odot (h \odot x)$, proving the lemma. \Box

Lemma 3.2. Let B be a Boolean algebra and A = Atom(B). If $s : G \longrightarrow B$ is a one-to-one function such that the image of G is a partition of 1 and that for all $g \in G$, there exists an atom x such that $|g \odot x| \leq 2$, then (G, \star) is isomorphic to a sub-hypergroup of the hypergroup M_A .

Proof. By Lemma 3.1, $\odot : G \times A \longrightarrow P^*(A)$ is a strong generalized action of G on A and by Proposition 3.1 of [17] this action induced a good homomorphism $\xi : G \longrightarrow M_A$ defined by $\xi(g)(a) = g \odot a$. It is enough to show that this homomorphism is one-to-one. To do this, suppose $g \odot x = h \odot x$, for all $x \in A$. By assumption, there exists an atom x such that $|g \odot x| \ge 2$. If $a \ne x$ and $a \in g \odot x$ then $a \le s(g) \lor x = s(h) \lor x$, and so $a \le x \lor (s(g) \land s(h))$. Thus, $a = (a \land x) \lor (a \land s(g) \land s(h)) = a \land s(g) \land s(h)$, i.e., $a \le s(g) \land s(h)$. But, the image of G is a partition of 1, hence s(g) = s(h) and by injectivity of s, q = h. \Box

Suppose $s : \Pi_d(n) \longrightarrow P^*(I(n))$ is defined by $s(\lambda) = Part(\lambda)$. Then $(\Pi_d(n), \star)$ is an H_v -group. Define the map $\odot : \Pi_d(n) \times I(n) \longrightarrow P^*(I(n))$ by $\lambda \odot k = Part(\lambda) \cup \{k\}$. In the following simple lemma we show that the map \odot is a strong generalized action of $\Pi_d(n)$ on the set I(n).

Lemma 3.3. The map \odot : $\Pi_d(n) \times I(n) \longrightarrow P^*(I(n))$ defined by $\lambda \odot k = Part(\lambda) \cup \{k\}$ is a strong generalized action of $\Pi_d(n)$ on the set I(n).

Proof. We first assume that n is an odd positive integer, we define the partitions μ_i , $0 \le i \le \lfloor \frac{n}{2} \rfloor$, by the following table:

μ_0	μ_1	μ_2	•••	$m_{\left[\frac{n}{2}\right]}$
n = n	n = 1 + (n - 1)	n = 2 + (n - 2)	• • •	$n = \left[\frac{n}{2}\right] + \left(n - \left[\frac{n}{2}\right]\right)$

Next we assume that n is even, then we define the partitions ξ_i , $0 \le i \le \frac{n}{2}$, by $\xi_i = \mu_i$, for all $i < \frac{n}{2}$ and $\xi_{\frac{n}{2}}$ is the partition $n = 1 + (\frac{n}{2} - 1) + \frac{n}{2}$. Then it is clear that $\bigcup_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} Part(\mu_i) = \bigcup_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} Part(\xi_i) = I(n)$, and so the reproduction axiom is valid. We now assume that λ, μ are arbitrary partitions and $m \in I(n)$. Then we have

$$(\lambda \stackrel{s}{\star} \mu) \odot m = \bigcup_{\delta \in \lambda \stackrel{s}{\star} \mu} \delta \odot m =$$

$$= \bigcup_{\delta \in \lambda_{\star \mu}^s} Part(\delta) \cup \{m\} = Part(\lambda) \cup Part(\mu) \cup \{m\}$$

On the other hand,

$$\begin{split} \lambda \odot (\mu \odot m) &= \bigcup_{k \in \lambda \odot m} \lambda \Box k = \\ &\bigcup_{k \in \lambda \odot m} (Part(\lambda) \cup \{k\}) = Part(\lambda) \cup Part(\mu) \cup \{m\}. \end{split}$$

Therefore, the map
$$\odot$$
 is a strong generalized action of the H_v -group $\Pi_d(n)$ on the set $I(n)$. \Box

Lemma 3.4.
$$po(n) \le \sum_{i=0}^{n-1} (-1)^i {n \choose i} (2^{n-i}-1)^n.$$

Proof. By Euler's partition theorem [1], $po(n) = |\Pi_d(n)|$ and by Proposition 4.1 of [17], the right hand of this inequality is the order of $M_{I(n)}$. Therefore, it is enough to show that $|\Pi_d(n)| \leq |M_{I(n)}|$. To do this, we now prove that the induced homomorphism $\eta : \Pi_d(n) \longrightarrow M_{I(n)}$ by $\eta(\mu)(x) = \mu \odot x$ is one-to-one. Assume that $\eta(\mu) = \eta(\xi)$, then $\mu \odot x = \xi \odot x$, for all $x \in I(n)$. Thus, $Part(\mu) \cup \{x\} = Part(\xi) \cup \{x\}$, for all $x \in I(n)$. Choose $x \in Part(\mu)$. We have $Part(\xi) \subseteq Part(\xi) \cup \{x\} = Part(\mu)$. Similarly, $Part(\mu) \subseteq Part(\xi)$ and so $Part(\mu) = Part(\xi)$. Now since μ and ξ have distinct parts, $\mu = \xi$. \Box In the end of this paper, we define a generalized action of $Sym_e(G)$ on the group G. Suppose $\Box : Sym_e(G) \times G \longrightarrow P^*(G)$ sends (ϕ, g) to $\phi(\langle g \rangle)$. Then we have

$$\begin{split} \phi \Box(\psi \Box g) &= \phi \Box \psi(\langle g \rangle) = \bigcup_{i \in Z} \phi \Box \psi(g^i) = \\ &= \bigcup_{i \in Z} \phi(\langle \psi(g^i) \rangle) = \{\phi(\psi(g^i))^j \mid i, j \in Z\} \end{split}$$

and $\phi\psi\Box g = \phi\psi(\langle g\rangle) = \{\phi(\psi(g^i)) \mid i \in Z\}$. This shows that $\phi\psi\Box g \subseteq \phi\Box(\psi\Box g)$. On the other hand, $\phi\Box G = \bigcup_{g\in G}\phi\Box g = \bigcup_{g\in G}\phi(\langle g\rangle) = G$, which shows that \Box is a generalized action of $Sym_e(G)$ on the group G.

Question 3.5. When this generalized action is strong?

References

- [1] ANDREWS G.E., Number Theory. Hindustan Publishing Corporation (India) Delhi, 1992.
- [2] ASHRAFI A.R., About some Join Spaces and Hyperlattices. To appear in Italian J. of Pure and Appl. Math., 2001.
- [3] ASHRAFI A.R., Construction of some Join Spaces from Boolean Algebras. Iranian Int. J. Sci., 2000, no. 1(2), p. 139–145.
- [4] ASHRAFI A.R., An Exact Expression for the partition function p(n). Far East J. Math. Sci., (FJMS), 2000, no. 1(2), p. 271–278.
- [5] ASHRAFI A.R., HOSSEIN-ZADEH A., YAVARI M., Hypergraphs and Join Spaces To appear in Italian J. Pure Appl. Math., 2002.
- [6] ASHRAFI A.R., ESLAMI-HARANDI A.R., Construction of some Hypergroups from Combinatorial Structures. – To appear in J. Zhejian University Science.
- BIGGS N., WHITE A.T., Permutation Groups and Combinatorial Structures. Mathematical Society Lecture Notes 33, Cambridge University Press, Cambridge, 1979.
- [8] BIRKHOFF G., Lattice Theory. 3rd. ed., AMS Coll. Publ. Providence, 1967.
- [9] CORSINI P., Prolegomena of Hypergroup Theory. Second Edition, Aviani Edittore, 1993.
- [10] P. CORSINI, SPACES J., SETS P., SETS F., Algebraic Hyperstructures and Applications. Hadronic Press, Inc., 1994, p. 45–53.
- [11] CORSINI P., Hypergraphs and Hypergroups. Algebra Universalis, 1996, 35, p. 548–555.
- [12] GIONFRIDDO M., Hypergroups associated with multihomomorphisms between generalized graphs. – Convegno su sistemi binari e loro applicazioni, Edited by P. Corsini. Taormina, 1978, p. 161–174.
- [13] JAJCAY R., On a new product of groups. Europ. J. Combinatorics, 1994, 15, p. 251–252.
- [14] JAJCAY R., Automorphism groups of Cayley maps. J. of Comb. Theory, Ser. B, 1993, 59, p. 297–310.
- [15] KONSTANTINIDOU M., MITTAS J., An introduction to the theory of hyperlattices. Mathematica Balcanica, 1977, no. 7(23), p. 187–193.
- [16] KONSTANTINIDOU-SERAFIMIDOU M., Distributive and complemented hyperlattices. $\Pi \rho \alpha \kappa \tau \iota \kappa \alpha \ A \kappa \alpha \delta \eta \mu \iota \alpha \zeta \ A \theta \eta \nu \omega \nu, \ T o \mu o \zeta \ 53 o \zeta, \ 1978.$

- [17] MADANSHEKAF A., ASHRAFI A.R., Generalized Action of a hypergroup on a set. Italian J. of Pure and Appl. Math., 1998, no. 3, p. 127–135.
- [18] MARTY F., Sur une generalization de la notion de groupe. 8^{iem} Congres Math Scandinaves, Stockholm, 1934, p. 45–49.
- [19] SIKORSKI R., Boolean Algebras. Springer-Verlag, Berlin, 2nd Edition, 1964.
- [20] VOUGIOUKLIS T., Hyperstructures and their Representations. Hadronic Press, Inc., 1994.

Received January 20, 2003

G.A. Mogani Department of Mathematics University of Mazandaran Babolsar, Iran E-mail:moghani@umz.ac.ir

A.R. Ashrafi Department of Mathematics University of Kashan, Kashan E-mail:*ashrafi@kashanu.ac.ir*