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Abstract. We study the behavior of solutions of the problem eu” (t)+u'(t)+ Au(t) =
f(#),u(0) = uo, v (0) = w1 in the Hilbert space H as ¢ — 0, where A is a linear,
symmetric, strong positive operator.
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1 Introduction

Let V and H be the real Hilbert spaces endowed with the norm || - || and
| - |, respectively, such that V' C H, where the embedding is defined densely and
continuously. By (,) denote the scalar prodact in H. Let A : V — H be a linear,
closed, symmetric operator and

(Au,u) > wl|ul?, YueV, w>0. (1)

In this paper we shall study the behavior of the solutions of the problem

{ au”(t) —|—u/(t) _|_Au(t) - f(t), t>0, (Ps)

u(0) = ug, u'(0) = ug

as € — 0, where ¢ is a small positive parameter. Our aim is to show that u — v as
€ — 0, where v is the solution of the problem

V0o =0, >0 ()

The main tool of our approach is the relation between the solutions of the prob-
lems (P:) and (F).

For k € N,p € [1,00) and (a,b) C (—o0,+0c) we denote by W*P(a,b; H) the
usual Sobolev spaces of vectorial distributions W*P(a,b; H) = {f € D'(a,b; H);
f® e LP(a,b;H),1 =0,1,... k} with the norm

k
1wt oty = (O IO a7
=0
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96 PERJAN A.

For each k € N, WF%(a,b; H) is the Banach space equipped with the norm

!
||f||W’f’°°(a,b;H) = o”%?g’% ||f( )||L°°(a,b;H)

For s € R, ¥k € N and p € [l,00] we denote the following Banach space
WEP(a,b; H) = {f : (a,b) — H; fO(t)e=*" € LP(a,b; H)} with the norm

HfHvaP(a,b;H) = Olglag}i "f(l)(’)e_StHLp(mb;H)-

2 A priori estimates for solutions of the problem (P.)

In this section we shall prove the a priori estimates for the solutions of the
problem (P.) which are uniform relative to the small values of parameter . First

of all we shall remind the existence theorems for the solutions of the problems (P:)
and (Fp).

Theorem A. [1] For any T > 0 suppose that f € WYY0,T; H),up,u; € V
and the operator A satisfies the condition (1). Then there exists a unique func-
tion uw € C(0,T;H) N L*>(0,T;V) satisfying the problem (P.) and the conditions:
Au € L>®(0,T;H), v € L>=(0,T;V), v € L>=(0,T; H).

Theorem B. [1] If f € WYY(0,T; H),ug € V and A satisfies the condition (1),
then there exists a unique strong solution v € W1°(0,T; H) of the problem (Pp)
and estimates

o1 < e (ol + [ nlr(rr).

t
/ —wt A _ 0 wT | £/ d
01 < e (14w = 5O+ [ el lar)
are true for 0 <t <T.

Before to prove the estimates for solutions of problem (P:) we recall the following
well-known lemma.

Lemma A. [2] Let ¢ € L'(a,b)(—oc < a < b < o) with ¢ >0 a. e. on (a,b) and
let ¢ be a fized real constant. If h € C([a,b]) verifies

t
%hZ(t) < %ch/a W(s)h(s)ds, ¥t € [a, ]

then .
WMSM+/w®meMM

also holds.
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Denote by

By (u,1) = eful (1) + [u(t)| + (= (Au(r), u(t / ol ()7’

—I-(/Ot (A’LL(T),’LL(T))dT) 1/2.

Lemma 1. Suppose that for any T > 0 f € WHY(0,T; H),up,u1 € V and the
operator A satisfies the condition (1). Then there exist positive constants v and C
depending on w such that for the solutions of the problem (Ps) the following estimates

El(u,t)§C’<E1(u,0)—|—/0t‘f(7)‘d7'), 0<t<T, (2)

t
B ) < O(Ea(ul,0) +/ F@ldr). 0<t<T ()
0
are true.

Proof. Denote by

Blu,t) = 2l (0 + gl + £(Au(t),u +e/ /() Par+

2

+e (u(t), u'(t)> + /0 t (Au(T), W))df.

The direct computations show that for every solution of the problem (P:) the fol-
lowing equality

@ But) = (F(0),u(t) + 220/ (1) (1)
is fulfilled. From (4) it follows that
@ Bty < 1701 (futt)] + 22/ (1)) (5)

As E(u,t) > 0 and |u(t)| + 2|u/(t)| < C(E(u,t))"/?, then from (5) we have

Z(E(u ¢ ) <c(f (( (u,t)>1/2.

Integrating the last inequality we obtain
1 1 1/2
2E(u t) < §E(u 0) +C/ (u 7')) ‘ ‘d’T

From the last inequality using Lemma A we get the estimate

(E(u,t))l/ <C[ uO 2 /(f ‘dr (6)
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It is easy to see that there exist positive constants Cj, C7 such that
1/2 1/2
Co(B(w,t)) " < Er(ut) < 1 (But) . (7)

Using the inequality (7) from (6) we obtain the estimate (2).
To prove the estimate (3) let us denote by

Ep(u,t) = 2/ (t + h) — o' (1)) + 6<A(u(t ) —ut)),ult +h) — u(t))—i—
bl 4 h) = wO + e (u (64 B) o/ (1) ult + ) — u(t) ) +
t U/ T —Ul T 2 T
[ ) o) pars

. /Ot (A(u(T +h) —u(r)),u(r + h) — u(T))dT, h>0,t>0.

For any solution of the problem (F.) we have

%Ehw,w — (20t + ) = /(1)) + ult + h) = u(t), f(t+h) = f(2)), t = 0.

Dividing the last equality by h? and then passing to the limit as h — 0 we get

d

B 1) = ( F(8), 2e0" (1) + u’(t)). (8)

Since u/(0) = uy,eu”(0) = f(0) — u; — Aug, then the estimate (3) follows from (8)
in the same way as the estimate (2) follows from (4). Lemma 1 is proved.

3 Relation between the solutions of the problems (P.) and (F)

In this section we shall give the relation between the solutions of the problems
(P:) and (Pp). This relation was inspired by the work [3]. At first we shall prove some
properties of the kernel K (¢, 7) of transformation which realizes this connection.

For € > 0 denote

K(t,7) = # (K1t 7) + 8ot 7) — 2K5(1,7))
where
Ki(t,7) = exp{3t ;827—})\{2;\;6_2}, (9)
Ks(t,7) = exp{3t 1_667—})\<2;\;_E_Z>, (10)
Ka(t,7) = exp {E}A(’;fé) (11)

and A(s) = [° e~ dn.
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Lemma 2. The function K(t,T) possesses the following properties:
(i) K e C(E.ﬁ. X EJ,_) N 02(R+ X R+),'
(i) Ki(t,7) =eK.(t,7) — K-(t,7), t>0,7>0;

(iii) K, (t,0) — K(t,0) =0, t>0;

1 T
i = — —_ — > :
(iv) K(0,7) 5 exp { 5 }, 7> 0;

(v) For each fized t > 0, there exist constants Cy(t,€) > 0 and Ca(t) > 0 such that
[K(t,7)] < Ci(t,e) exp{=Ca(t)7/e}, |Ki(t,7)| < Ci(t,e) exp{—Ca(t)T/e},
| K- (t,7)] < Cy(t,e) exp{—Ca(t)T/c}, |Krr(t,7)] < Ci(t,e)exp{—Ca(t)T/c}
for T > 0;
(vi) K(t,7) >0, t>0, 7>0;

(vii) For any ¢ : [0,00) — H continuous on [0,00) such that |p(t)| < M exp{Ct}
fort >0, the relation

e}

lim K(t,T)gp(T)dT:/ e Tp(2eT)dr
t—0 Jq 0

1s valid in H for each fizred €, 0 < e <« 1;
(viii) [(CK(t,7)dr =1, t>0;
(ix) Let p:[0,00) — R, p € C0,00),p and p' be increasing functions and |p(t)| <

)
Me, |p/(t)] < Me, fort € [0,00). Then there exist positive constants Cy
and Cy such that

/ K(t,7)|p(t) — p(1)|dr < C1v/ee®?t, >0,
0

(x) Let f(t)e O f'(t)e=C € L>(0,00; H) with some C > 0. Then there exist
positive constants Cq,Cy such that

‘f(t) —/ K(taT)f(T)dT‘H < 01\/5602t||f/\|L°C°(0,oo;H), t>0, 0<e<;
0
(xi) There ezists C' > 0 such that

t o0 9
/ / K(T,H)exp{——}dé?drgcs, t>0, e>0.
0 0 g
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Proof. The properties (i)-(iv) can be verified by direct calculation.
Proof (v). From (9), (10) and (11) we have

(t—7)2
4et

1 €

Kt(t,T) = @ |:3K1(t,T)+9K2(t,T) —6\/;6)([) { — }},t > O,T > 0, (12)
1

Ko(t7) = 7 [ — Ky (t,7) + 9Ko(t, T) — 4K3(t,r)], t>0,7>0, (13)
T

|
Kor(t,7) = o [Kl(t, )+ 27Ky (t, 7) — 8K3(t, 7)—

med

o Fen{ -] s "
As [A(s)| < /7 for s € R and |exp{s?}A(s)| < C for s € [0,00), then
‘Kl(t,T)‘ §exp{t_27—}, 7> 0,t> 0, (15)
‘K2(t,7)‘ gcexp{— (t;&;)z} t>0,7>0, (16)
‘Kg(t,T)‘ < Cexp{ _¢ ;EZ)Q} t>0,7>0. (17)

Using (15), (16) and (17) from (12), (13) and (14) we get the estimates from property
(v). The property (v) is proved.

Proof (vi). We shall prove property (vi) using the maximum principle for the
solutions of equation (ii). It is easy to see that

K(t,O)—7[2exp{3t})\< é) —A(% é)] t>0. (18)
We intend to prove that
K(t,0) >0, t>0. (19)

To this end we consider the function f(s) = 2¢(s) — q(s/2), where ¢(s) =
exp{s?}\(s),s € [0,00). Because K(t,0) = (\/_) Lexp{—t/4e} f(\/t/€), to prove
(19) it is sufficient to show that f(s) > 0 for s € [0,00). At first we shall prove that
q'(s) <0 for s € [0,00). Since

¢'(s) = 2sq(s) — 1, ¢"(s) = 2(25 + 1)q(s) — 25, ¢"'(s) = (85° +125)q(s) — 4(s* + 1)

and limg_. 4 25q(s) = 1, then ¢'(0) = —1 and lims_.1 ¢'(s) = 0. Suppose that
there exists s; € (0,00) such that ¢”(s1) = 0, i. e. q(s1) = s1(2s7 +1)7L. As
q"(s1) = —4(2s% +1)71, then s is the point of maximum for ¢/(s), and ¢'(s1) <
0,51 € [0,00) and consequently the function ¢(s) is decreasing on (0,00). Further,
we note that

f(0) =q(0) = ==, lim f(s) = (20)

S§——+00
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Suppose that s; € (0,00) is any critical point for function f(s), i. e. f'(s1) = 0,
then we have: 4s1q(s1) — 27 1s1q(s1/2) — 3/2 = 0, from which follows

Flo0) = 2a(0) a3 ) = =~ 6a(s0). (21)

As ¢/(s) < 0 for s € (0,00), then 2s1¢(s1) < 1. Hence from (21) it follows that
f(s1) > 0. The last condition and conditions (20) permit us to conclude that
f(s) >0 for s € [0,00), i. e. K(¢,0) > 0 for ¢ > 0. Finally, from (ii), (iv), (v) and
(18) it follows that the function V(t,7) = exp{(t — 27)/4e}K (t,7) is the bounded
solution of the problem

Vi(t, 1) = eVer(t,7), t>0,7>0

V(0,7) = 2—1€exp{ — g}, T>0,

V(t,0) = % (\/g) t>0,

in Qr = {(¢t,7) : 7> 0,0 <t < T}, for any T > 0. Using the maximum principle
for the solutions of problem (P.V') we conclude that V(¢,7) > 0 and consequently
K (t,7) > 0. The property (vi) is proved.

Proof (vii). For any fixed C' > 0 and for any fixed € > 0, we get

/OOO Ky(t,7)e“Tdr = 3 +2;Cs [exp {C’(l + C’s)t}A( 1 +22CE \/g)_

t

(P.V)

€

(SR = s PO e 2+ [ e

1+2Ce |t
(e {car oo~ 2 D] —owh, 10 e
If ¢ :[0,00) — H, and |p(t)|g < Me®tt >0, then from (22) we have

(/ Kolt, Yol <M/ Kot 7)eCdr < MCeWE, 0<t<1, (23)

for any fixed £ > 0. Similarly as was obtained (22) we get

/OOO Ks(t,7)e“Tdr = . —|—€CE [exp{C’(l + C'E)t})‘< . +22CE \/E) B )\(% éﬂ -

= (s fouscar (- H5E )
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\/f
/ e dn =0(Wt), t—0, (24)

[N

1+2

for any fixed € > 0. If ¢ : [0,00) — H, and |p(t)|g < M exp{Ct},t > 0, then from
(24) it follows that

/ Ks(t, 1) d’T < M/ Ks3(t,7) exp{C7}dr < C(e)M+/t (25)

for 0 <t < 1. For ¢ : [0,00) — H, ¢ € C(0,00;H) and |p(t)|g < M exp{Ct},
t > 0, we have

f et —en{ g} [[ew{ - ZHp(G7E) -A(- 55)Jetrars
(o)1) [Tow{ - 2 (- syg)emine

+/Oooexp{_2l€}/\<—2\7/_67)@(7')(17':[1—!-[2—1-]3. (26)

Let us evaluate the integrals I;, i = 1,2,3, from (26). For any fixed 0 < ¢ <
(2C)~! we have

2t—1

\L|m < Mexp{z—z}/oooexp{ — l—i—C’T}/Z\/a exp{ —7]2}dnd7' <

4e .

2Vet
2M 3 (27)

t
< - <
_1—2CseXp{4g}\/€_t—C(€)\/5, 0<t<1,
and
|12|H<M‘exp{ —1‘\/—/ exp ——+C'7'}d7-<

(28)

<C(e)t, 0<t< 1.

At last, let us investigate the behaviour of integral I3 as ¢ — 0. I3 can be represented
in the form

b= [ et )Nz VAo [ e et oo

The first term of the right side of (29) can be evaluated as follows

[ oo {2 (- 575) - vAler], <
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< M/Oooexp{ - % +CT})\<2\7/—€_t)dT =

2o {20 (1205 T

(172205)2 \/E
} / exp{ - n2}dn] <CEWL 0<t<1. (30)
0
From (29) and (30) follows the estimate

(1 —2Ce)%t
4e

—l—exp{
(1 f/oo { T}()d( <ClEWt 0<t<1 (31)
3 7r0 exp 5 f(m)dr| < Cle)Vt, .
Hence due to (26), (27), (28) and (31) we have
‘/ Ky (t,m)p(T)dr — 2€ﬁ/ 6_T90(2€T)dT‘H <OVH 0<t<l, (32)
0 0
for any fixed €, 0 < ¢ < 1. Finally, from (23), (25) and (32) we get the proof of the

property (vii).

Proof (viii). Integrating by parts we have

[ ey = 2o {2 (/1) (- 5y 9))
et =S (- 7)o (D)
[ setemiar =P 3y ) -2y D)

from which follows the proof of the property (viii).

Proof (ix). As p is increasing and |p(t)| < M exp(C't), then integrating by parts
and using the property (v) we get

/0 “Ka(t7)olt) — p(rldr = exp { 21 /0 exp [ ;—g}x(ﬁg) (p(t) — () ) dr+
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[ (= P (o o0)ir] =20 0) e (1)
5 e = S - oo 2o {1

X /000 exp { - 216};)’(7')/\<2;\/_E_Z) sign(t — 7)dr. (33)

Similarly can be obtained the equalities

/ Ko(t, 7)|p(t) ydT_——( (t) ~ p(0)) exp{i—i}A( S)+

w35 e { = g ot - mfar+

seo{f) [ en (oGS ) et —nar @0

and

€

\[ / 4€t plt) — p(r)]dr+

—|-€/0 exp {Z}p'(T)x\(ng%) sign(t — 7)dr, (35)

As a consequence from (33), (34) and (35) we get

| w0 rdT—T[ (51/2) (o)~ p0))+

/ Ks(t,7)|o(t) |d7'——6<()—p(0)>)\<% N+

2\/_/ - 4€t p(t) — p(T)‘dT‘F

+/Ooop/(7'){GXP{&I&&})‘(?\;—Z) —exp{3t;€27})\(2;\/_€_z)—

—exp { - } (;;_ﬂ sign(t — T)d’T] , (36)
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Since p/(t) is increasing and |p/(t)| < M exp(Ct), then it follows that

3GV (o) - o) < 2(3y/ D) arresmicn <

(37)
t
< Cltexp{ s + Ct} < Creexp{Cat}, t>0, < —.

Further we have

[T e { - o0 - pimiar <

—7)?2

4et

+ C max{t, T}}|t —Tldr =

o |+

0
=4Met exp{C’t}( / In| exp{—n*}dn + /0 nexp{ —n? + 20\/6_7577}(177) <
Vi

=

< Chetexp{Cat}, t>0. (38)
As [\(s) exp{s?}| < C, for s > 0, then we have

exp{i’—i}/f o@esn {5 1A (G2 Jar <
<o) [Teolors Eh (e Tee (o 0 S

= C1Vetexp{Ct} / exp {20\/6_7577 — 772}d7’] < C1Vetexp {C’gt}, t>0. (39)

1 /T

2 €

Similarly we get the estimates

exp {i—z} /000 exp{ - ;E}A(zg\/_e_;—)’p,(T)‘dT < C1Vetexp {Cgt}, t >0, (40)

and

/000 exp {g}A(;\—/Z_D |p(1)|dT < C1Vet exp {C’gt}, t > 0. (41)
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Finally from (36) and the estimates (37)-(41) follows the estimate from property

(ix).

Proof (x). From the properties (viii) and (ix) it follows that

- [T Ko, < [T RO - 10l dr <

< [T wn| [ 17 < ar [ K7 107 - ar <

< C1vE €| ']l Lo 0,001
for t > 0,0 < e < 1. Property (x) is proved.

Proof (xi). Denote by K(t,7) = K(t,7)|e=1,Ki(t,7) = K;(t,7)|e=1,i = 1,2,3.

Then
t 00 0 é 00
I :/ / K(1,0) exp{ - —}d@dﬂ' = 6/ / K(T,0) exp{—0}dfdr =
o Jo 2

N (11 430 — 213) (42)

AsO<IC(7'9)<Cexp{ (r— 9)}2—23 then

I</ / 7“9) }d@dTgc, £>0,i=23 (43)

For I; we have the estimate

I1=/ / Ki (7, 0)¢ edeT—/OteXp{ 92}/_fexp{377\/_} A(n)dndr =

-1 /057—1/2exp{?jf}x<ﬁ>d7_§ / D<o 120 ()

0
From (42), (43) and (44) follows the property (xi). Lemma 2 is proved.
Now we are ready to establish the relation between the solutions of the problem
(P:) and the corresponding solutions of the problem (FP).

Theorem 1. Let A : D(A) C H — H be a linear and closed operator, f €
Wé’OO(O,oo;H) for some C > 0. If u is a solution of the problem (P:) such that
u € Wé’oo(O, oo; H) with some C > 0, then the function vy which is defined by

= / K(t,7)u(r)dr
0
satisfies the following conditions:

{ vp(t) + Avg(t) = Fy(t,e), >0,
Vo

(O) = Pe, (P'UO)
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where

Fo(t,a)—T[zexp{?’t}A( é) —A(%\/§>]u1+/0°of{(t,¢)f(f)df

cpaz/ e Tu(2eT)dr.
0

Proof. Integrating by parts and using the properties (i) — (iii) and (v) of Lemma
2 we get

/ K (t, T)u(t)dr = /0 (EKTT(t,T) - KT(t,T)>U(T)dT =

:/0 K(t,7)<au”(7')+u'(T))dT+EK(t,O)u1 Awg(t) / K(t,1)

Thus vy (t) satisfies the equation from (P.vg). From property (viii) of Lemma 2
follows the validity of the initial condition of (P.vg). Theorem 1 is proved.

4 The limit of the solutions of the problem (P.) as ¢ — 0

In this section we shall study the behavior of the solutions of the problem (P:)
as € — 0.
Theorem 2. Suppose [ € Wé’oo(O, oo; H), with some C > 0, ug,u; € H, Aug, Auq €
H and the operator A satisfies the condition (1). Then

lu(t) —v(t)| < CiMe“?' Ve, t>0, 0<e<1, (45)
where u and v are the solutions of the problems (P.) and (P.v), respectively,
= |£(0)] + [uo| + [Auo| + [ur] + (| fl| Les (0,0050)

and C1 and Cy are independent of M and .

If
ug, Aug,u1, f(0) €V, f € Wé’oo(O, oo; H), with some C >0, (46)

then
t
u'(t) — o' (t) + hexp{ — —H < C1Me®?\e, t>0, 0<e<x ], (47)

where h = f(0) — w1 — Aug, My = |f'(0)] + [AR| + [|f"||Les (0,00:11), and C1 and Co
are independent of My and €.

If
ug, Aug, Auy € V, Af € Wé’oo(O,oo;H), with some C >0, (48)

then
lu(t) —v(t)]| < CrMae™'VE, 20, 0<e<1, (49)

where My = |Af(0)| + |Aug| + |Auy| + |A%ug| + AS L2 (0,00:11)» and C1 and Cy are
independent of My and ¢.
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Proof. Under the conditions of the theorem from (3) follows the estimate
/()] < CM, t>0. (50)

According to Theorem 1 the function w which is defined by

w(t) = / K (t,7)u(r)dr
0
is a solution of the problem

w’(t) + Aw(t) = F(t, ),
{ w(0) = wo, c (Paw)

where
F(t,e) = Fy(t,e) + /0 K(t,7)f(r)dr,

Fo(t,e) = \/LEPGXP{%‘})\( é) — A(% é)]ul, wp = /000 e Tu(2eT)dr.

Using the property (x) of Lemma 2 and the estimate (50) we get
u(t) — w(t)] < CrMe* /e, t>0. (51)

Let us denote R(t) = v(t) — w(t), where v is the solution of the problem (P.v) and
w is the solution of the problem (P.w). Then R(t) is the solution of the problem

{ R'(t) + AR(t) = F(t,e), t >0,
R(0) = Ro,

where Ry = ug — wgp and

Flt,e) = f(t) — /0 T K7 f(F)dr — Fo(t€).

%\R(t)\z = —2(AR(t),R(t)) + 2(f(t,€),R(t)> <

< —2w|R(t)|? + 2|F(t,e)||R(t)|, t>0,

and hence
1 2 2wt 1 2 ! 2wT
5yR(t)y et < §\RO\ + [ |F(r,e)||R(T)e*Tdr, t>0,
0
then using Lemma A we obtain the estimate

R < e (1Ro] + /0 F(roedr), 120 (52)
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From (50) follows the estimate

o) 00 2eT
[Ro| < / e Tu(2er) — ugldr < / 6_7/ |u/(s)|dsdT < CMe  (53)
0 0 0

for 0 < ¢ < 1. Now let us estimate |F(t,¢)|. Using the property (x) of Lemma 2 we
have

7 - /O K (67 f(r)dr| < CMVEe™, £ 0. (54)
As
/t exp {3—T + U.JT})\<\/E)CZT = E/ﬁ exp {3—7— + wT})\(\/?>dT
0 4e 3 0 4
gc/ AYT) < Ce, 20, 0<e< 1,
0
and .
1

/ eWA(— Z)dT <Ce t>0, O<e<l,

0 2V e
then

t
/ T\ Fy(r,2)dr < Celuy| < CeM, >0, 0<e< 1. (55)
0

From (54) and (55) follows the estimate
t
/ CTIF(r e dr < LM/, £>0, 0<e< 1. (56)
0

From (52), using the estimates (53) and (56) we get
IR(t)| < C1Me?' e, t>0, 0<e< 1. (57)
Finally from estimates (51) and (57) we have
lu(t) —v(t)] < |u(t) —w(t)| + |RE#)| < C1Me“?'\e, t>0, 0<e< 1.

The estimate (45) is proved.
t
Let us prove the estimate (47). Denote by z(t) = u/(t) + hexp { - g} If o, uq

and f satisfy the conditions (46) and A satisfies the condition (1), then z(t¢) is a
solution of the problem

{ 2/ () + 2/(1) + A=(t) = /(1) + exp { - é}h £>0,
2(0) = f(0) — Aug, 2'(0) =0.

According to Theorem 1 the function w;(¢) which is defined by

w(t) = /OOO K(t,7)z(r)dr
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is a solution of the problem

wh(t) + Aw (t) = Fi(t,e), t>0,

wy(0) = /OOO exp{ - T}Z(2ET>dT,

where

Fi(t,e) = /OOOK(t,T) [f/(T) —exp{ — E}Ah}dr

Further denote by vy (t) = v'(t), where v(t) is the solution of the problem (P.v).
Then vy (¢) is the solution of the problem

{ vi(t) + Avi(t) = f'(t), t>0,
1)1(0) = f(O) — AUQ.

Let Ry(t) = wi(t) —vi(t). Then R;(t) is the solution of the problem

Ry (t) + AR(t) = Fi(t,e) = f'(), t=0,

R1(0) = /000 exp{ - T} /O%T 2 (0)dOdr.

Using Theorem B we obtain the estimate

IRy (1) ge—wt(\Rl(O)H/o CNFi(re) - foldr). 120, (o)

Using the estimate (3) we get

/()] < €1 (17/(0) + An| + /0 e - éexp{ = E}Ah(df) < My (59)

for t > 0. Then from (59) follows the estimate
|R(0)| < Che, 0<e<x 1. (60)
Due to the property (x) of Lemma 2 we get the estimate

’f/(t) - / K(t7T)dT‘ < CleCQt\/EHf”HL%o(O,OO;H)a t>0, 0<e<l (61)
0
Further using the property (xi) of Lemma 2 we have
t 00 4
(/ / K(7,6) exp{ - —}Ahd@dﬂ" < CeMi, t>0. (62)
0 Jo €

Using the estimates (60), (61) and (62) from (58) follows the estimate

IR (t)| < C1e®?t\/eMy, t>0,0<e< 1. (63)
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From the property (xi) of Lemma 2 and the estimates (59) we get

lwi(t) — 2(1)] < /OOO K(t,7) /: z/(e)de(dT <

< Cie?\EMy, t>0,0<e< 1. (64)
Finally, from the estimates (63) and (64) we obtain
|2(t) — v1(t)] < |2(t) — wi(t)| + |R1(t)] < Cre®?!\/eMy, t>0,0<e< 1,

i. e. the estimate (47).
Let us prove the estimate (49). Denote by y(t) = Au(t), y1(t) = Av(t). Then
under conditions (48) y(t) is the solution of the problem

{ ey’ (t) +y'(t) + Ay(t) = Af(t), t>0,
y(0) = Aug, '(0) = Auy,

and yj(t) is the solution of the problem

{ Yy (t) + Ay (t) = Af(t),
Y1 (0) = Auy.

From (45) follows the estimate
|Au(t) — Av(t)| < C1e?'eMy, t>0,0 <e < 1. (65)
As from (1) it follows that
[Au(t) — Av(t)] = wllu(t) —v(B)]],
then using (65) we obtain the estimate (48). Theorem 2 is proved.

Remark 1. The relation (47) shows that the function u'(t) possesses the boundary
function in the neighborhood of the line t = 0. But, if h =0, then the function u'(t)
like u(t) does not have a boundary function.

Finally let us give one simple example. Consider the following initial boundary
problems

euy (z,t) + ur(z,t) + Lz, Oy )u(z, t) = f(x,t), =€Q,t>0,
u(z,0) = up(z), ug(x,0) = uy(z), x€Q, (66)
u(z,t) =0, (xz,t) on 0N x[0,00),

Ut(:Evt)_‘_L(x)ax)’U(:Evt) :f(l‘,t), r €Q,t>0,
v(r,0) = up(x), =€ ﬁa (67)
u(z,t) =0, (x,t) on 0 x [0,00),
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where 2 C R" is a bounded domain with a smooth boundary 02. The operator

L(z,0;) = — Enz 8% (aij(az)£ ) + a(x)-
=1 """ J

is uniformly elliptic in Q, i.e. a,a;; : Q@ = R, a,a;; € C(Q) , a;j(x) = aj;(x), and
- 2 n re)
> ai@)6g 2wl EeRz e,
ij=1

where w > 0,a(x) > 0 for x € Q. Let us put H = L?(Q),V = H}(Q). In this
conditions the problems (P.) and (P.v) represent the functional analytical statement
of the problems (66) and (67) respectively, where A is the closure of the operator
L in L?(2). Under suitable conditions on the functions ug,u; and f which follow
from conditions (46) and (48) from Theorem 2 for the variational solutions of the
problems (66), (67) we get

u=v+4+0(Ve) in C(0,T;L*Q)), &—0,

utzvt—i-hexp{—g}—kO(\/E) in  L*™(0,T;L*(Q)), €—0,

u=v+O0(Ve) in L>®(0,T;H}(Q)), e—0,
where h(z) = ui(x) + L(x, 0y )uo(x) — f(z,0).

References

[1] V.Barbu. Semigroups of nonlinear contractions in Banach spaces. Bucharest, Ed. Acad. Rom.,
1974 (in Romanian).

[2] Gh.Morosanu. Nonlinear Evolution Equations and Applications, Bucharest, Ed. Acad. Rom.,
1988.

[3] M.M. Lavrenitiev, K.G. Reznitskaia, B.G.Yahno. The inverse one-dimentional problems from

mathematecal physics. ”Nauka”, Novosibirsk, 1982 (in Russian).

Perjan A. Received December 31, 2002
Faculty of Mathematics and Informatics,

Moldova State University, 60, Mateevici str.,

Chginau, 2009, Republic of Moldova

e-mail: perjan@usm.md



