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On rational bases of GL(2,R)-comitants of planar
polynomial systems of differential equations®
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Abstract. The linear transformations of autonomous planar polynomial systems of
differential equations which reduce these systems to the canonical forms with coeffi-
cients expressed as rational functions of GL(2,R)-comitants and GL(2, R)-invariants
are established. Such canonical forms for general quadratic and cubic systems are
constructed in concrete forms. Using constructed canonical forms for polynomial sys-
tems some rational bases of GL(2,R)-comitants depending on the coordinates of one
vector are obtained.
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1 Preliminary information and notations

Let us consider the system of differential equations
d J
x ZPJ (a',2%) (j=1,2), (1)

where PJ, are homogeneous polynomials in 2! and z? with real coefficients. System
(1) can be written in the following form:

dxj Z Z< > a Zl($1)m—i($2)i (G =1,2). (2)

m=0 =0

Let GL(2,R) be the group of linear homogeneous non-degenerate (centroaffine
[2]) transformations

y" =gz, Ag=det(q)#0 (rl=1, (3)

of the phase plane R? of system (1), where y =

@ @

q = < ! %).Letusdenotep:q_l,p:<
a9

formation (3) system (1) well be brought to the system

w ZZ( )i =12 @)

m=0 i=0

z) is a new vector and
P
% > Applying the trans-
5
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Let p1, p2, a1 and as be, respectively, the vectors

by — <p%> by — (p%> o — <p%y1> g — <p%y2>
pi)’ p3)’ piyt)’ p3y?

and denote by A the (n + 1)(n + 2)-dimensional coefficient space of system (1).

Definition 1. [1] A polynomial K (a,u,v) in coefficients of system (1) and coordi-
nates of vectors u,v € R? is called a comitant of system (1) with respect to a group
Q if there exists a function A : Q — R such that

K(rq(a),q-u,q-v) = XMg)K(a,u,v)
for every q € Q, a € A and u,v € R2.

If @ is the group GL(2,R), then the comitant is called GL(2,R)-comitant or
centroaffine comitant. In what follows only G L-comitants are considered.

The function \(q) is called a multiplicator. It is known [2] that the function \(q)
has the form A\(q) = A;?, where g is an integer, which is called the weight of the
comitant K (a,u,v). If g = 0, then the comitant is called absolute, otherwise it is
relative.

If a comitant does not depend on the coordinates of the vectors v and v, then it
is called invariant.

We say that a comitant K (a,u,v) has the character (ri, ro; g; d) if it has the
weight g, the degree d with respect to the coefficients of system (1) and the degree r;
(respectively, 72) with respect to the coordinates of the vector u € R? (respectively,
v € R?). In the case when a comitant depends on the coordinates of one vector we
will denote its character by the triple (r; g; d).

Definition 2. The set S of comitants is called a rational on M C A basis of comi-
tants for system (1) with respect to a group Q if any comitant of system (1) with
respect to the group @Q can be expressed as a rational function of elements of the
set S.

Definition 3. A rational basis on M C A of comitants for system (1) with respect
to a group @ is called minimal if by the removal from it of any comitant it ceases to
be a rational basis.

Let f and ¢ be polynomials in the coordinates of the vector u = (u!,u?) € R?
of the degrees r and p, respectively.

Definition 4. The polynomial

=R (p—k) & k ok f ok
(10)® = rlp! g(_l)h <h> A(ul)k=ha(u?)P d(ul)hd(u?)k—h

is called the transvectant of index k of polynomials f and .
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Property 1. [3] If polynomials f and ¢ are GL-comitants of system (1) with the
characters (r; gr; dy) and (p; gy dy), respectively, then the transvectant of the
index k < min(r, p) is a GL-comitant of the system (1) with the character (r + p —
2k; gr + 9, + k; df + d@).

Let K(a,u,v) be a GL-comitant of system (1) of the character (r1, r2; ¢; d).
We denote by D% | the polarizing operator [4,5]:

—k)!
Dk) K(a’ u’ U) — (7417') (U
’ T1:

) 2 \"*
1@ 2@) K(a,u,v)

_ (r =) K\ 0FK(a,u,v) )
R <h> Sty )" k<),

+ v

The following properties will be useful in what follows.

Property 2. If K(a,u,v) is a GL-comitant of system (1) of the character (ri, ro;
g; d), then DﬁmK(a,u,v) is also a GL-comitant of system (1) with the character
(ri—k, 2+ k; g; d).

Property 3. If P(x!,2?%) is a homogeneous polynomial of the degree m with respect
to the coordinates of the vector x € R? and o = a1 + an, o, a1, o € R, then

m
D™ P(z!',2?) = D™ P(z',2%) =) <m> DDt P(xt, 2?).
’ (3

T, -+ x,01 7T T,
=0

We shall consider the following polynomials:

, 1 /orP oP? :
Ri=Pla? — P¥xl, i=0,..,n; Si = B <8$Zl + 8x22> , i=1,..,n, (5)

which in fact are G L-comitants of the first degree with respect to the coefficients of
system (1). By using the comitants (5) system (1) can be written in the form

dz* = 1 OR (24, 2?) 1 1 9
E—Zm_i_l( 922 + mzx Sm(x,m)>,
de? Zn: 1 <_ ORp(x!, 2?)

dat m+1 Ox!

m=0

m=0

(6)

+ mx25m(x1,a:2)> .

The following G L-comitants of the general cubic system of differential equations
(i.e., system (1) for n = 3) constructed by using comitants (5) and the notion of
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transvectant are considered:

72
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Here besides the expression for each constructed GL-comitant its corresponding

character is indicated.
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2 The transformations by using two GL(2,R)-comitants

Theorem 1. Let U(a,w) and V(a,w) be GL-comitants of the system (1) with the
characters (r,;q,;d,) and (r,;g,;d,), respectively, and assume that the relation
(V,U)D £ 0 holds. Applying the transformation

1 1 oV (a,w) oy 1 oV (a,w) 2
Y VD) T dul (VLD gw?
U (a, w) oU (a, w)
2 _ 1 2
YT ot T + dw? " Q

system (1) can be brought to the system (4) with the coefficients
j _ Ty i

(a,w)
by—ii = i—j+2
t (rer (VU)W

(]:1,2,771:0,,7172:0,7777/)7 (8)

where Tgl_i’i(a,w) is a GL-comitant of system (1) with the character
((m—i+j—=10, =)+ (@—j+2)(r —1);
—1+m—-i+j—1)(g +1)+GE—7+2)(g +1); 9)
14 (m—i+j—1)d, +G—j+2)d,).
Moreover,

T (a,w) = (—=1)377 (p3_; D P (ph, p3) —

1 —i p2 /1 2
3Dy o P (P2, 93)) o= (law _oUGw
- ow? owl
. oV (a,w) OV (a,w)
P2 = |~ > Jwl

Firstly, we shall prove two lemmas.

Lemma 1. Applying the transformation (3) to system (1), we obtain system (4)
with the coefficients

bj . Lin_i7i(a7p17p2)

m—ii (j:1,2;m:O,~-,n;z':(),---,m), (10)
9 Ap

where

L}, i(a.pr,p2) = (=17 (p3_; Dy Po(p3,p3) — p3—; Dy P (93, 93))
= (=1)*7 (p3_,; D}, ,, P (p1.97) — p3_; D . P2 (p1,p}))

(11)

is a GL-comitant of system (1) with the character (m —i+j—1, i—j+2; —1; 1).
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Proof. Performing transformation (3) for system (1) and taking into considera-
tion the property 3, we have

vt =piy! + pyy?
v® = ply' + p3y?

_ J E E : 2
=q D:Bal—l—ag mx l‘ +Q2 Dmal—l—ag m$ :E)

-4l i( )D;”afD;aQPm 22 mZZ( )D;”afD;mPT%,,(x 2?)

m=0 i=0

n n
WS P 3 P )
m=0 m=0

33 () D DL A ) )
i=0
& Z( >D?p1’Dip2P%(fc ) ()" (y?)!
=0
S m m—1 1yt m—1i 1yt m—1i %
- Z <Z> ( ]D:vm Dmpzpr}@(x a?) + q%Dxpl Dxpgpfi(x xz)) (yH™ i (P

So, system (4) has the coefficients:

v =g DDl PL(xt 2?) + DT P2 (2t 2?)

m—i,i z,p1 Papat'm z,p1 Papatm
JD;z,piPr}q(pz,m) + q]DZZ,pﬁP%(pz,pz) (12)
1 201 .2
= 01D}, p, Pr(p1, 1) + B0}, 1, P (P, 1Y)

Taking into account that ¢ = p~! we have

1 3 —p%>
1 , 13

where A, =det (p]) (r,l =1,2). By (12) and (13), we have

. s 1
b = (—1)3 ]A_ (Pg,—ng; pﬁPr}L(P%apg) —pé—ng; pipfi(péyp%))
35 1 , 1,1 .2 2,1 .2 (14)
= (_1) ]A_p ( D]Zn,pgpm(pl’pl) D;n,pgpm(plvpl)) :

Thus, the form (10), (11) of the coeffitients is established.
Next we shall prove that the polynomials L’ . (a,p1,ps) (see (10)) are GL-

mzz

comitants of the indicated characters. From (14) and (6) for bl ;i and b2, ii We
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obtain, respectively,

1
i = 3 Db (437

m (D1
I 1 (1 ) 1.2
| -
A, P1,p2 < +1 2< B % —|—mp15 (p1,p71)

1 OR(pt, p?
%( MerplS (pip?)>>

) p2P2 (phpl))

m+1 0 % 15
1. 1 IR, (pt,p?) ORy(pi, p?) (15)
_ * pi m\P1,P1 p2+ m\P1,P1 pl +
Ap P1,P2 m-+1 3])% 2 3])% 2
m
s - 4 Sl
L
=2, D (Dpl,p2Rm(pi7p?)+ +1A Sm (pip?))
and
2 m—1 2
bm [N A Dp2p1 ( ( )+p1P (p27p2))
1 m—i 1 (2 ) 1 .2
:A_prz,pl <_ +1 < 8% ‘anzs (P2, p3) | +
p » D
P ( 22 +mp25 (pé,pg)»
e (16)
1 (P2=p2)p2 _ 3Rm(p2,p2)p1 4
P2,p1 m+1 6p2 1 8]9% 1
m

p—— (pip3 — pip}) Sm(p§7p§)>

= A—D;E pZ1 <_Dp27p1Rm(p%=p%) +
Note that in (15) the polynomials R,, and S,, are G L-comitants of system (1) with
the characters (m+1, 0; —1; 1) and (m—1, 0; 0; 1), respectively, whereas in (16) the
polynomials R, and S,, are G L-comitants with the characters (0, m+1; —1; 1) and
(0, m —1; 0; 1), respectively. Therefore, taking into consideration Property 2 and
the fact that A, is a GL(2,R)-comitant with the character (1, 1; —1; 0) it follows
that the numerators in the last expressions from (15) and (16) are G L-comitants
with the characters (m — i, i +1; —1; 1) and (m —i+ 1, 4; —1; 1), respectively.
Evidently, by using index j (7 =1,2) these characters can be written as one formula
and this leads to the character, indicated in the statement of Lemma 1.
Lemma 1 is proved.

Sk )

Lemma 2. Let K(a,u,v) be a GL-comitant of the system (1) with the character
(r1, r2; gy; dy) and U(a,w) and V(a,w) be GL-comitants of the system (1) with
the characters (r,; g,; d,) and (r,; g,; d,), respectively. If in the expression of the
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: 1,2 .1 2 . U U _ aVv
comitant K (a,u,v) we replace u',u”,v* and v* by the expressions 50T~ Fal — Bu?

and %, respectively, then we obtain the GL-comitant of system (1)

* B oU(a,w) 9OU(a,w) 9IV(a,w) 9V (a,w)
K(a,w)-K(a, ow? 0 w7 ow? T dw!

with the character (r1(r,—1)+ro(r,—1); get+ri(g,+1)+re(g+1); de+rid,+72d,).

Proof. Let the transformation (3) transfer the vectors u,v and w in to @,v and w,
respectively. In particular, for the vector w we have

w = p%wl +p%u72, w? = p%u?l —i—p%wQ. (17)

So, since K (a,u,v), U(a,w) and V(a,w) are GL-comitants of system (1), then the
relations

K(b,4,0) = A K (a,u,v) =
= A" K(a,q" 07" 0) = A K(a,p-u,p - 0); (18)
Ub,w) =AY U(a,w);  V(bw)=A;YV(a,w)

hold. Taking into consideration (17) and (18) we have

oU (b, w) A% <8U(a,w) ow'  oU(a,w) 8w2>

Ow! owt  ow! ow?  ow!
- U (a, U ((a,
= Aqu (alw) % (a2w) P% ;
ow ow (19)
oU (b, w) —g, (OU(a,w) dw' OU(a,w) Ow?
7 T A Y +
Ow? I owl  Ow? ow?  Ow?
- oU (a,w) oU (a,w)
AW : 1 W) 2.
- Aq < Ow! y2) + w2 P2 )
OV (b, w) N oV (a,w) dw' OV (a,w) Ow?
owt 71 ow!  ow! ow?  Ow!
- oV (a,w oV (a,w
:Aqgv ( 1 ) % ( B )p% ;
ow ow (20)
OV (b, w) N oV (a,w) owr OV (a,w) Ow?
owz 1 ow!  ow? ow?  Ow?
- IV (a,w) IV (a,w)
A% : 1 , 2
- Aq < 8’11)1 p2 + 8’11)2 p2 .
If we set u! = 8%52’2“7), w? = —8%52’1@, ol = —% and 72 = %, then from




ON RATIONAL BASES OF GL-COMITANTS OF POLYNOMIAL SYSTEMS 77

the first equality (18), considering (19) and (20), we obtain
ou(b,w)  oU(b,w) 9V (b,w) 8V(b,w)>

ow? ow! ow?  ow!

—g ou,w) , oUb,w) , OUb,w) , OUDbw) ,
=A " K <a7 o2 P17 T ont D2, 002 | D2,
_Z?V(b,w) . ov(b,w) ; IV(b,w) , + oV (b, w) 2>

Kb, ) = K <b,

agz Pl owl ¥ ow? 1 ot P2

- —g, OU (a,w) oU (a,w)
_ g 97 ) Y7 )
=8k ( B gt “owl

—g, OV (a,w)  _ —g, OV (a,w) , _

9 1 9 1
AY P2 AVRRAW Pl A

A TS —r1(g; +1) A —r2(g, +1) 8U(CL, 'lU) 8U(CL, w)
- Aq KA[I Aq K ((1, 811)2 I Gwl )

9V (a,w) 8V(a,w)> _ A;(QK+T1(9U+1)+7‘2(9V+1));{(

-1 - -1
A7, =4y AL,

ow? 7 ow! a, w).

So, the polynomial K (a,w) is a GL(2, R)-comitant of system (1) which weight is
(g +71 (g, +1)+1r2(g, +1)). Its character can easily be obtained taking into ac-
count the characters of the comitants K, U and V.

Lemma 2 is proved.

Proof of Theorem 1. The matrix of the transformation inverse to the transfor-
mation (7) has the form

1 1 U (a,w) . 1 AV (a,w)
b1 Do _ ow? ryry(V,U)D  dw? (21)
p2 p2 - __9U(a,w) 1 oV (a,w) :

1 2 owl TVTU(VvU)(l) owl

We observe that for the matrix (21) it occurs A, = 1. Then, taking into considera-
tion the relations (10), (11) and Lemma 1, we obtain

bin—i,i = Lin—i,i(a7p17p2) _ [ 0U(a,w) 8U(a,w)>
p1 = w2 ow!
—(_ 1 OV (a,w) 1 AV (a,w)
P2 =" @ o 0w (VO dul
1 .
= [} (a,p1,p2)
i—j+2 Tm—ig\ D OU(a,w)  9U(a,w)
(TVTU(V7U)(1)) w2 owl
__OV(a,w) 0OV (a,w)
- w2 ow!
(1) 2 ym—ipl 1 2
= —73 (13- Dy, P (P2, p2) —
(TVTU(V, U)(l))l j+2( ] p2;p1Tm )
1 _Dm—iPZ( 1 2))
P3—j&py,p1 L'm\P2: P2 _ [ 9U(a,w) U (a,w)
1= ow? T ow!

oV (a,w) 0OV (a,w)
P2 =\ =72 > Jwl
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By Lemma 2 the numerator of the obtained expression is a G L-comitant of system (1)
with the character (9) which depends on the coordinates of the vector w.
Theorem 1 is proved.

Example 1. Assume that the GL-comitant Kog(a,w) = 3(Ky, K5)M) # 0. Applying
the transformation
J = 1 0K 4(a,w) . 1 0K 4(a,w) 22
Kog(a,w) ow'! Kog(a,w) ow? ’
)2 = 0K5(a,w) o4 0K5(a,w) 2

22
ow! Ow? (22)
the quadratic system (i.e., system (1) for n =2) can be brought to the system:
d_yl _ Koy $K3Kos — 3K5K1s + £ Kao it 3K K18 — K2K17y2_ K5 K3 ()2t
dt Kog Kog K228 Kog
3K4Kss + 6Ky Kyy — 2K2K17 + s K5K36 4 B K4K36( 2y2
K228 vy K%g ),
dy? TK3Kys + 2K5 K15 — Ko
A o Kygy' + 2 2 6 —y? — Kna(y')® +
dt Kog
KsKszs | o  —5K4Ksg+6K Ky — 2K2K17 — ¢K5K36, 5.,
—— Yy + 5 (v7)*
Kog K

We note that the transformation (22) is a particular case of the transformation
(7), namely, U = K5 and V = Kjy.

In the particular case when U and V are both comitants of the first degree with
respect to the coordinates of the vector w = (w!,w?) € R? we obtain that the GL-
comitants Tﬂ;b_m(a,w) and (V,U)M) are GL-invariants of system (1). Such kind of
transformations are used in papers [6-8]. In paper [9] analogical transformations are
applied for system (1). We shall include here two example of this type which we use
below (one for quadratic and the other for cubic systems).

Example 2. Consider the GL-invariant Ksy(a) = (Ku, K5)) # 0. By using the
transformation

1 0Ku(a,w) 1 0Ku(a,w)

1_ 44 1 44 2

VT Re@  owl T T En@ o
0K5(a,w) 0K5(a,w)

2 _ Ofs 1 5 2

A v TR

quadratic system can be brought to the system:

d_yl _ Ks %K3K52 + %K53y1 n %K52K39 - %K43K48y2 +
dt K59 Kso K§2

2 2

£ K50 + 5 Kug Ksg

3 3 1.2 2,2

352 TS 12 592y 23
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dy? 1K3Ks59 — 2 K53
& —Kos — Kygy' + 2 . 2

y 2Kso — 3 Kus
dt Kso

2)\2

— Kso(y')? +

Example 3. We consider the GL-invariant Ko5 = —(Ks5, K1) # 0. Applying the
transformation
1 1 O0Ks(a,w) 1 O0Ks(a,w) ,
y' = at — a?
Kos(a)  Ow! Kos(a)  Ow?
0K (a,w) 0K (a,w)
2 1\&, 1 1\&, 2
L P w? "
cubic system (i.e., system (1) for n = 3) can be brought to the system:

dy? B

%K3K25 + %K42y1 . Kyz 5 §K225 + %KE’O

14 1,2 n
dt Kos K2253/ Kos (y) —K225 vy

Ksz, 55 | 1Ko5Kus + 1K55 115 5K25Kas + 5Ks6 . 15

+ + +

K2 (y°) e (y) K2, (y')y

3 3

S Kos Ky7 + 5 K57 Kss

1 1 17,242 23

Yy () + =),
K3 K

dy’ 1, 3 KKy — 3K e 3KF+3Ks0 o
— =-K — K _ 8770 37 OF _
i 1y + Ko Y 10(y7) Ko vy

K51, 99 13, 185 Kus — 3Ks5 105

— Ks4 + +

K2 (y°) (y) o ')y

3 3 1

5Ko5 K46 — 5 K56 3 Kos Ky7 — 7 K57

2 : 2 1(y2)2 + 4 = 4 (y2)3‘ (24)

K35 K

3 Transformation by using only one GL(2,R)-comitant

Theorem 2. Let V(a,w) # 0 be a GL-comitant of system (1) with the character
(r,;9,:d,). By using the transformation

1 1 IV (a,w) o 1 IV (a,w) 2
v r,V(a,w) Ow' r,V(a,w)  Ow? ’
y? = —w?a! +wle? (25)

system (1) can be brought to the system (4) with the coefficients

T

m—1u,i

T V(e w) T

(@, w)

(j:1,2;sz,---,n;izO,---,m), (26)

where Tj (a w) — (_1)3—]' ( 2 pm—i Pl( 1 2) _
m—gi P3—j & p2p1 f'm\P2, P2
pé—ngylPr%L(p%ap%)) P = (wl7 w2)
p = (-2l OViau)

ow? owl
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is a GL-comitant of system (1) with the character
(m—itj—1+(i—j+2)(r, —1); —1+(i—j+2)(g, +1); 1+(i—j+2)d, ). (27)

Lemma 3. Let K(a,u,v) be a GL-comitant of the system (1) with the character
(r1, r2; gy; dy) and let V(a,w) be a GL-comitant of the system (1) with the charac-
ter (r,; g,; d,). If in the expression of the comitant K (a,u,v) we replace ul, u?, vt
and v? by the expressions w', w?, —% and %, respectively, then we obtain the

G L-comitant

* oV (a,w) 9V (a,w)
_ T2 —
K(a,w) =K <a, w, w, I

of system (1) with the character

(T1+T2(TV_1); gK+T2(gV+]‘); dK+T2dv)'

Proof. Let the transformation (3) transfer the vectors u,v and w in to @,v and
w, respectively. In particular, for the vector w the relations (17) hold. Since the
polynomials K(a,u,v) and V(a,w) are GL-comitants of system (1) the relations
(18) are fulfilled. Then the relations (17) and (18) yield (20).

By setting @' = o', @® = w?, o' = —8‘(/9(12’2@ and 7% = 8‘(/9(12’1@, taking into
account (20) from the first equality (18) we obtain

. L, oV(w) OV(b,w)
1 2 ) )
R
= A K (a, ' pt +@? p3, w' p? + @0 pi,
V(@) 4 Vb)) L VD), OV(ba) 2>

ow? ! owt 7Y ow? ! oot P2
- —g, OV(a,w) , _ —g, OV(a,w) . _
AY 1 9 % ) 1 % ) 1
=A; K (a, wr, we, —Ay “w? Aq s Ay “owl Aq

_ -9 _7“2(9\/""1) 1 2 8V(avw) 8V(avw)
_Aq KAq K <a7 w, w, — 8'[1)2 ) 8’(1)1

A;(QK"""?(QV"':[));{(

a,w).

Thus the polynomial K(a,w) is a GL-comitant of system (1) with the weight
g +12(g, +1). Its character can be easily determined by the characters of the
comitants K and V. Lemma 3 is proved.

Taking into consideration Lemma 3 the proof of Theorem 2 is analogous to the
proof of Theorem 1.

Example 4. Assume that the GL-comitant K4(a,w) # 0. Then the transformation

1 1 0Ky(a,w) 4 1 OKy(a,w)
- 3K4(a,w)  Ow! v 3Ky(a,w)  Ow? .

Y
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y? = —wlz! +wle

2
will bring generic quadratic system to the system.:

d_yl _ Ko7 %K?)Kﬁl + %Klg 1 4 3KyKig — KoK7 9
it~ 3K, 3Ky U 9K?

1 2K9s + 2K17 Ksg
CKe(y)2 22 et 1,2 196 292
dy? L SK3Ky — Ky Lo
—~ =_K, - K - K
dt 12yt 3K, y aly)”+
1 2K — K17
il 7V PP A e B L O AV 28
S Iy Ty + oK, (v") (28)

Example 5. Suppose that the GL-comitant K5(a,w) # 0. Applying the transfor-
mation

1 1 0Ks5(a,w) 1 0Ks5(a,w)
y - T z,
Ks(a,w)  Ow! Ks(a,w)  Ow?

2 = —wlz! + w'a?

quadratic system of differential equations will be transformed in to the system:

g M Ko
dd—?f = —Ki — Kyy' + %Kg’K;(:: %K%yQ — Ku(y')* +
3K3 ;;5%[(28 yly? — I;{_?(y%?. (29)

Since for K4(a,w) = 0 = K5(a,w) the quadratic homogeneous parts of quadratic
system vanish, we conclude that any quadratic system can be transformed in to the
canonical system either (28) or (29).

Example 6. Let the condition Kg(a,w) # 0 hold. By means of the transformation

)= 1 0K (a,w) . 1 0Kg(a,w) 22
4Kg(a,w)  Ow! 4Kg(a,w)  Ow? ’
2 = —wlz! + w'a?

the cubic system can be transformed in to the system:

d_yl _ Kog 2K3Kg + K4 1 n 4KeK13 — KoK 9 n
dt 4K, 1K 7 1682 Y
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SKs5Ke + K12 ()2 + 3 8KeKso — 2K, K14 + L KsK1y J? t
4Kg 16K2
-K
167, (y' )y + 61K y(y)" +
64KZKs — 3K92( 2y3
956K3
dy? 1, 2K3Ke — K14 o 1o SKsKg—2Kip |
W Ky Koyt 4 S8R0 T M 2 e
7 1 2y + 1K, a(y)” + 1K, yy +
8 8
s KeK30 + K4K14 — 3KeK11 3
3 3 212 22
— K, K
16K2 ) G(y)+4 7(y')?y* +
6K16 — 3K 48 K¢ K15 — 3K7Kg + 2K33
TKﬁyl(yz)z 64K3 (y ) . (30)

Example 7. Assume that the GL-comitant Ky(a,w)) # 0. Applying the transfor-
mation

= 1 0K7(a,w) o4 1 0K7(a,w) 22,
2K7(a,w)  Ow! 2K7(a,w)  Ow?
y2 = —w?z! + wla?

the generic cubic system can be brought to the following system:

dy! K K3K; — K AK7 Koy — 4K K.
ay” 31+37 23y1+ 74422 2124 9

it K, 2K, 1K?2 vt
3K K7 — %Km( 24 SK7Ks3y — 8K4 Koy + §K7 Ko e
2K, 4 K2 vy
8Ko1Kos — §K7K37( 292 | SK2 - §K16( 3
SK3 Y oK, VY
8K3
K6K224 + 16K72K34 — 32K7K15K24 (y2)3
16K2 ’
dy? 1 K3K7+ Koz 4 Lo 3KsKr+ 3K 4 o
W K - Koyl 4 23T TAB 2 g
7 1 2y + e Y a(y )"+ K- Yy +
SK7Ks3 + 4K4 Koy — 5 K7 Ko SK2 4+ 3Ke
Ve (y*)? — Ko(y')® +%(y1)2y2+
12K¢ Koy — 12K7 K15 6K2K24 + 8K7 K35 — 2K16K94
e v () + — e (v*)%. (31)
7
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Since for Kg(a,w) =0 = K;(a,w) the cubic homogeneous parts of generic cubic
system vanish, we conclude that any cubic system can be transformed in to the
canonical system either (30) or (31).

4 Rational bases of GL(2,R)-comitants

Let K(a) be a GL-invariant of system (1) with the character (0; g; d) and let
K (b) be the same invariant calculated for transformed system (1) via the transfor-
mation (7) with two GL-comitants U and V of the first degree with respect to the
coordinates of the vector w. Observe that for the matrix ¢ of the transformation
(7) we have A, = 1. Since K (a) is a GL-invariant of system (1) with the character
(0; g; d), by Definition 1 the following relation holds: K(b) = A;9K(a) = K (a).
Hence, by Theorem 1 it follows that any G L-invariant of system (1) will be a poly-
nomial of the expressions

Yoo — Tg@—m(a)
m—i,i ((V, U)(l))i—j+2

As result we obtain a rational function nominator of which is a polynomial of the
invariants

{7

m

(]:172a m:07 » 15 ZZO) 7m)

—i,i(a)‘j:Lz;m:Oa'”?n;izoy"'am}a (32)

whereas its denominator is a nonnegative integer power of the GL-invariant
(V.0)D(a).

Thus, we obtain the next result.

Theorem 3. If the GL-comitants U(a,w) and V (a,w) from transformation (7) have
the first degree with respect to the coordinates of the vector w € R? and (V, U)(l) #0,

then the set of invariants (32) is a rational basis of the G L-invariants of system (1)
onM={acA| (V,U)D £0}.

By Example 2 and Theorem 3 we obtain the following theorem.
Theorem 4. The set of GL-invariants
{Ks2, K3, Ko, Kzg, Kuaz, Ks1, Kus, K3, Kso} (33)
is a rational basis of G L-invariants of quadratic system on M = {a € A | Kso # 0}.

Analogously, from Example 3 and Theorem 3 we obtain for cubic system the
next result.

Theorem 5. The set of GL-invariants

{Kas, K3, Ku1, Kao, Ku3, Kus, Kue, Ka7, Ko,

(34)
Kso, K51, Kso, Ksa, Kss, Kse, Ks7, Ksg}

is a rational basis of G L-invariants of cubic system on M = {a € A | Ko5 # 0}.
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In what follows we shall use the following lemma.

Lemma 4. Let K(a,u) be a GL—-comitant of system (1) with the character (r, g, d),
q be the matriz of transformation (25) and v = q-u. Assume that K (b (w', w?),v)
is the comitant K calculated for system (4) which is obtained from system (1) via
transformation (25). Then the following identity holds:

1 'K (b (w w2) v)
’f" a(vl)r wl — ul

w? = u?

K(a,u) =

(35)

Proof. Observe that for the matrix ¢ of the transformation (25) we have A, = 1 and

ul = wly! 1 oV (a,w) 3
(V,0) D du?
w? = wo! + 1 8V(a,w)f02.

UAGIOT

Since K (a,u) is a GL-comitant of system (1) with the character (r, g, d) by Defi-
nition 1 the following equalities are valid:

190"K (b (w',w?) ,1)) A _g0"K (a,u)
7l d ()" 7! d (vh)"

‘QZ< Dot (32) (3
- 3803 () G () @)

= Aq IDp K (a,u) = AIK (a,w) = K(a,w).

Consequently, the identity (35) holds.

Lemma 4 is proved.

According to Lemma 4 and Theorem 2 it follows that any G L-comitant K (a,u)
of system (1) is a polynomial of the expressions:

j Trjﬂ—i,i(a7w) : .
bm—i,i:W (=12, m=0,---,n; i=0,---,m).

Consequently, K (a,u) is a rational function nominator of which is a polynomial of
the G L-comiatants

{V(a,w); TI (a,w) j:1,2;m:O,---,n;izO,---,m}, (36)

m—i,i

whereas its denominator is a nonnegative integer power of the G L-comitant V(a, w).
Thus, the following theorem is proved.
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Theorem 6. Consider a GL-comitant V (a,w) Z 0 of system (1). Then the set (36)
of the comitants obtained via the transformation (25) of system (1) is a rational basis
of the GL-comitants of system (1) on M ={a € A | V(a,w) #0}.

By Examples 4 and 5 and Theorem 6 for quadratic system the following result
is valid.

Theorem 7. 1) The set of GL-comitants
{K4, K1, Ko, K3, K5, K17, Kis, K19, Ko7, Kos, Ks6} (37)
is a rational basis of the GL-comitants of quadratic system on
M={a€ A| Ky(a,w) #£0}.
2) The set of GL-comitants
{KGs, Ki, Ko, K3, Ky, Kos, Kog, Kos, Kuz, Kaa, Kso} (38)
is a rational basis of the G L-comitants of quadratic system on
M={a€cA| Ks(a,w) #0}.
From Examples 6 and 7 by Theorem 6 for cubic system we obtain the next result.
Theorem 8. 1) The set of GL-comitants
{Ks, K1, Ko, K3, K4, K5, K7, Kg, Ky, Ko, (39)
K, Kz, Kz, Ku, Ki5, Kis, Koo, Kso, K33}

is a rational basis of the GL-comitants of cubic system on M = {a € A | K¢ #Z0}.
2) The set of GL-comitants

{K77 K17 K27 K37 K47 K57 K67 K157 K167 K207

(40)
K1, Ko, Koz, Koy, K31, K32, K34, K35, K37}

is a rational basis of the GL-comitants of cubic system on M ={a € A | K7 #0}.

Remark 1. 1) The rational bases (33) and (34) of GL-invariants of quadratic
and cubic systems, respectively, are minimal, i.e. their elements are polynomially
independent.

2) The rational bases (37) and (38) of GL-comitants of the quadratic system are
minimal.

3) The rational bases (39) and (40) of GL-comitants of the cubic system are
minimal.

The statement of Theorem 8 was published in [10]. Using Theorem 8 the in-
dependent syzygies of G L-comitants for homogeneous cubic system of differential
equations are established in paper [11].

Acknowledgement. I would like to thank Professor N.Vulpe for thorough reading
of the first version of this paper and helpful remarks.
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