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On initial value problem in theory of the second order

differential equations

Valerii Dryuma∗, Maxim Pavlov

Abstract. We consider the properties of the second order nonlinear differential
equations b′′ = g(a, b, b′) with the function g(a, b, b′ = c) satisfying the following
nonlinear partial differential equation

gaacc + 2cgabcc + 2ggaccc + c2gbbcc + 2cggbccc + g2gcccc + (ga + cgb)gccc−

4gabc − 4cgbbc − cgcgbcc − 3ggbcc − gcgacc + 4gcgbc − 3gbgcc + 6gbb = 0 .

Any equation b′′ = g(a, b, b′) with this condition on the function g(a, b, b′) has the
General Integral F (a, b, x, y) = 0 shared with General Integral of the second order

ODE’s y′′ = f(x, y, y′) with the condition ∂4f

∂y′4
= 0 on the function f(x, y, y′) or

y′′+a1(x, y)y′3+3a2(x, y)y′2+3a3(x, y)y′+a4(x, y) = 0 with some coefficients ai(x, y).

Mathematics subject classification: 34C14, 35K35.
Keywords and phrases: dual equation, space of linear elements, projective connec-
tion.

1 Introduction

The relation between the equations in the form

y′′ + a1(x, y)y
2 + 3a3(x, y)y

′ + a4(x, y) = 0 (1)

and
b′′ = g(a, b, b′) (2)

with the function g(a, b, b′) satisfying the p.d.e

gaacc + 2cgabcc + 2ggaccc + c2gbbcc + 2cggbccc + g2gcccc + (ga + cgb)gccc−

4gabc − 4cgbbc − cgcgbcc − 3ggbcc − gcgacc + 4gcgbc − 3gbgcc + 6gbb = 0.
(3)

from geometrical point of view was studied by E. Cartan [1].
In fact, according to the expressions for curvature of the space of linear elements

(x, y, y′) connected with equation (1)

Ω1
2 = a[ω2 ∧ ω2

1] , Ω0
1 = b[ω1 ∧ ω2] , Ω0

2 = h[ω1 ∧ ω2] + k[ω2 ∧ ω2
1] ,
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where

a = −
1

6

∂4f

∂y′4
, h =

∂b

∂y′
, k = −

∂µ

∂y′
−

1

6

∂2f

∂2y′
∂3f

∂3y′
,

and

6b = fxxy′y′ + 2y′fxyy′y′ + 2ffxy′y′y′ + y′2fyyy′y′ + 2y′ffyy′y′y′

+ f2fy′y′y′y′ + (fx + y′fy)fy′y′y′ − 4fxyy′ − 4y′fyyy′ − y′fy′fyy′y′

− 3ffyy′y′ − fy′fxy′y′ + 4fy′fyy′ − 3fyfy′y′ + 6fyy

two types of equations by a natural way are evolved: the first type from the condition
a = 0 and the second type from the condition b = 0.

The first condition a = 0 determines the equation in form (1) and the second
condition leads to the equation (2) where the function g(a, b, b′) satisfies the above
p.d.e. (3).

From the elementary point of view the relation between both equations (1) and
(2) is a result of special properties of their General Integral F (x, y, a, b) = 0. So we
have the following fundamental diagram:

F (x, y, a, b) = 0
ւր ցտ

y′′ = f(x, y, y′) b′′ = g(a, b, b′)

m m

M3(x, y, y′) ⇐⇒ N3(a, b, b′)

which presents the General Integral F (x, y, a, b) = 0 (as some 3-dim orbifold) in the
form of the twice nontrivial fibre bundles on circles over corresponding surfaces:

M3(x, y, y′) = U2(x, y) × S1 and N3(a, b, b′) = V 2(a, b) × S1 .

2 Examples of solutions of dual equation

Let us consider the solutions of equation (3).

It has many types of reductions and the simplest of them are

g = cαω[acα−1], g = cαω[bcα−2], g = cαω[acα−1, bcα−2],

g = a−αω[caα−1], g = b1−2αω[cbα−1], g = a−1ω(c− b/a),

g = a−3ω[b/a, b− ac], g = aβ/α−2ω[bα/aβ, cα/aβ−α].

For any type of reduction we can write the corresponding equation (2) and then
integrate it.

For example, for the function g = a−γA(caγ−1) we get the equation

[A+(γ−1)ξ]2AIV +3(γ−2)[A+(γ−1)ξ]AIII +(2−γ)AIAII +(γ2−5γ+6)AII = 0.
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One solution of this equation is

A = (2 − γ)[ξ(1 + ξ2) + (1 + ξ2)3/2] + (1 − γ)ξ.

This solution corresponds to the equation

b′′ =
1

a
[b′(1 + b′2) + (1 + b′2)3/2]

with the General Integral

F (x, y, a, b) = (y + b)2 + a2 − 2ax = 0.

The dual equation has the form

y′′ = −
1

2x
(y′3 + y′).

Remark that the first examples of solutions of equation (3) were obtained in
[3-6].

Proposition 1. The equation (3) can be represented in the form

gac + ggcc − g2
c/2 + cgbc − 2gb = h(a, b, c), (4)

hac + ghcc − gchc + chbc − 3hb = 0.

From this it follows that there exists the class of equations (2) with the function
g(a, b, c) satisfying the condition

gac + ggcc − g2
c/2 + cgbc − 2gb = 0 (5)

which is easier solved than equation (3).
Here we present some solutions of the equation (5) as functions depending on

two variables g = g(a, c)
In the case when g = g(a, c) and h = 0 we have the equation

gac + ggcc −
1

2
g2
c = 0 .

To integrate this equation we can transform it into a more convenient form using
the variable gc = f(a, c). Then one obtains:

2fcfac + (f2 − 2fa)fcc = 0 .

After the Legendre transformation we obtain the equation:

[(ξωξ + ηωη − ω)2 − 2ξ]ωξξ − 2ηωξη = 0 .

Using the new variable ξωξ + ηωη − ω = R we have the new equation for R:
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Rξ −
1

2
R2ωξξ = 0

and the following relations:

ωη =
ω

η
+
R

η
+

2ξ

ηR
−
ξA(η)

η
, ωξ = −

2

R
+A(η)

with an arbitrary function A(η). From the conditions of compatibility it follows:

2ηRη +Rξ(2ξ −R2) + ηAηR
2 = 0 .

Integrating this equation we can obtain general integral.
In the particular case A = 1

η we have:

R2

R− 2η
= −

ξ

η
+ Φ

(1

η
−

2

R

)

.

By the condition A = 0 we obtain the equation 2ηRη + (2ξ −R2)Rξ = 0 , which
has the solution:

R2 = 2ξ + 2ηΦ(R) ,

were Φ(R) is an arbitrary function.
After choosing the function Φ(R) we can find the function ω and then using

the inverse Legendre transformation, the function g which determines dual equation
b′′ = g(a, c).

Remark 1. The solutions of the equations of type

uxy = uuxx + εu2
x (6)

were constructed in [7]. In the article [8] it was showed that they can be presented
in the form

u = B′(y) +

∫

[A(z) − εy](1−ε)/εdz,

x = −B(y) +

∫

[A(z) − εy]1/εdz.

To integrate the above equations we can apply the parametric representation

u = A(a) + U(a, τ), y = B(a) + V (a, τ). (7)

Using the formulas

uy =
uτ

yτ
, ux = ux + uττx

we get after the substitution in (6) the conditions

A(x) =
dB

dx
and Uxτ −

(

VxUτ

Vτ

)

τ

+ U

(

Uτ

Vτ

)

τ

−
1

2

U2
τ

Vτ
= 0.
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So we get one equation for two functions U(x, τ) and V (x, τ). Any solution of
this equation determines the solution of equation (6).

Let us consider some examples.

A = B = 0, U = 2τ −
xτ2

2
, V = xτ − 2 ln(τ).

Using the representation U = τωτ −ω, V = ωτ it is possible to obtain other
solutions of this equation.

The equation gac = ggcc − g2
c/2 can be integrated in explicit form and the

solutions are

g = −H ′(a) +

∫

dz

[A(z) + 1
2a]

3
, c = H(a) +

∫

dz

[A(z) + 1
2a]

2
,

with arbitrary functions H(a) and A(z).
In fact, for A(z) = z we have

g = −H ′(a) +

∫

dz

[z + 1
2a]

3
= −H ′(a) −

1

2

1

[z + 1
2a]

2

and

c = H(a) +

∫

dz

[z + 1
2a]

2
= H(a) −

1

[z + 1
2a]

3
.

As result we get the solution.

Remark 2. In general case the equation gacc + ggccc = 0 is equivalent to the
equation

gac + ggcc −
1

2
gc

2 = B(a) .

It can be integrated with the help of Legendre transformation as in the previous case.
Really, we get

[(ξωξ + ηωη − ω)2 − 2ξ + 2B(ωξ)]ωξξ − 2ηωξη = 0

and the relation
2Rξ = [R2 + 2B(ωξ)ωξξ.

It can be written in the form

2
dR

dΩ
= R2 + 2B(Ω)

using the notation ωξ = Ω.

Proposition 2. In the case h 6= 0 and g = g(a, c) the system (3) is equivalent to
the equation

Θa

(Θa

Θc

)

ccc
− Θc

(Θa

Θc

)

acc
= 1 (8)

where

g = −
Θa

Θc
, hc =

1

Θc
.
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To integrate this equation we use the presentation c = Ω(Θ, a). From the
relations

1 = ΩΘΘc, 0 = ΩΘΘa + Ωc

we get

Θc =
1

ΩΘ
, Θa = −

Ωa

ΩΘ
and

Ωa

ΩΘ
(Ωa)ccc +

1

ΩΘ
(Ωa)cca = 1.

Now we get

Ωac =
ΩaΘ

ΩΘ
= (ln ΩΘ)a = K, Ωacc =

KΘ

ΩΘ
,

Ωaccc = (
KΘ

ΩΘ
)Θ

1

ΩΘ
, (Ωacc)a = (

KΘ

ΩΘ
)a −

Ωa

ΩΘ
(
KΘ

ΩΘ
)Θ.

As a result the equation (8) takes the form

[

(ln ΩΘ)aΘ

ΩΘ

]

a

= ΩΘ (9)

and can be integrated by the substitution Ω(Θ, a) = Λa. So, we get the equation

ΛΘΘ =
1

6
Λ3

Θ + α(Θ)Λ2
Θ + β(Θ)Λ(Θ) + γ(Θ) (10)

with arbitrary coefficients α, β, γ.
Let us consider the following examples.
1. α = β = γ = 0
The solution of equation (10) is

Λ = A(a) − 6

√

B(a) −
1

3
Θ

and we get

c = A′ −
3B′

√

B − 1
3Θ

or Θ = 3B − 27
B′2

(c −A′)2
.

This solution corresponds to the equation

b′′ = −
Θa

Θc
= −

1

18B′
b′

3
+

A′

6B′
b′

2
+

(

B′′

B′
−
A′2

6B′

)

b′ +A′′ +
A′3

18B′
−
A′B′′

B′

cubical in the first derivative b′ with arbitrary coefficients A(a), B(a). This equation
is equivalent to the equation b′′ = 0 under a point transformation.

In fact, from the formulas

L1 =
∂

∂y
(a4y + 3a2a4) −

∂

∂x
(2a3y − a2x + a1a4) − 3a3(2a3y − a2x) − a4a1x,
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L2 =
∂

∂x
(a1x − 3a1a3) +

∂

∂x
(a3y − 2a2x + a1a4) − 3a2(a3y − 2a2x) + a1a4y

which determine the components of projective curvature of the space of linear ele-
ments for the equation in the form

y′′ + a1(x, y)y′
3 + 3a2(x, y)y

′2 + 3a3(x, y)y
′ + a4(x, y) = 0

we have

a1(x, y) =
1

18B′
, a2(x, y) = −

A′

18B′
, a3(x, y) =

A′2

18B′
−
B′′

3B′
,

a4(x, y) =
A′B′′

B′
−

A′3

18B′
−A′′

and conditions L1 = 0, L2 = 0 hold.

This means that our equation determines a projective flat structure in the space
of elements (x, y, y′).

Remark 3. The conditions L1 = 0, L2 = 0 correspond to the solutions of the
equation (3) in the form

g(a, b, b′) = A(a, b)b′
3
+ 3B(a, b)b′

2
+ 3C(a, b)b′ +D(a, b).

In general case the equation (2) with condition (3) determines the 3-dimensional
Einstein-Weyl geometry in the space of linear elements (a, b, b′).

For more general classes of the form-invariant equations the notion of dual equa-
tion is introduced by analogous way.

For example, for the form-invariant equation of the type

Pn(b′)b′′ − Pn+3(b
′) = 0,

where Pn(b′) are the polynomials of degree n in b′ with coefficients depending on the
variables a, b, the dual equation b′′ = g(a, b, b′) has the right-hand side g(a, b, b′)
in the form [9]

∣

∣

∣

∣

∣

∣

∣

∣

ψn+4 ψn+3 ... ψ4

ψn+5 ψn+4 ... ψ5

. . ... .
ψ2n+4 ψ2n+3 ... ψn+4

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

where the functions ψi are determined with the help of the relations

4!ψ4 = −
d2

da2
gcc + 4

d

da
gbc − gc(4gbc −

d

da
gcc) + 3gbgcc − 6gbb,

iψi =
d

da
ψi−1 − (i− 3)gcψi−1 + (i− 5)gbψi−2, i > 4.
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For example, for the equation 2yy′′ − y′4 − y′2 = 0 with the solution

x = a(t+ sin t) + b, y = a(1 − cos t)

we have the dual equation b′′ = − tan(b′/2)/a.
According to the above formulas for n = 1 we get

4!ψ4 =
3

2a3
tan

c

2
(1 + tan2 c

2
)3, 5!ψ5 = −

15

4a4
tan

c

2
(1 + tan2 c

2
)4,

6!ψ6 =
90

8a5
tan

c

2
(1 + tan2 c

2
)5,

and the relation
ψ2

5 − ψ4ψ6 = 0

is satisfied.
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