
BULETINUL ACADEMIEI DE ŞTIINŢE
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On Strong Stability of Linear Poisson Actions

V.Glavan, Z.Rzeszótko

Abstract. Linear Poisson actions of the group R
m are considered. Conditions on the

joint spectrum of the generators and on the centralizers assuring stability and strong
stability of the action are given. We give also some examples of Poisson actions using
CAS ”Mathematica”.
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1 Introduction

The problem of stability and strong stability of the Hamiltonian systems is an
old one and begins with the Poincare’s and Lyapunov’s classical results. Even the
linear autonomous case represents an interesting problem and a series of papers has
been devoted to these systems [1–7]. Some generalizations for dynamical systems
with manydimensional time have been given in [8–10].

In the last decade some bihamiltonian systems as models of phisical problems
appeared. In [11] a Poincare type classification of the fixed points of a bihamiltonian
system in the dimension four has been purposed. In this connection the problem
of stability and strong stability of fixed points, and more generally, of periodical
orbits of these systems, arises. This problem is the main subject of the paper. More
precisely, the linear parts of the Hamiltonian vector fields near fixed points give us
a tuple of pairwise commuting linear Hamiltonian matrices, or, in other words, a
linear Poisson action of the abelian group Rm in the vector space with a symplectic
structure. We define stability and strong stability for such actions.

It is known that the linear differential equation

ẋ = Ax, (1)

where x ∈ R2n and A ∈ sp(2n,R), i.e. A = JH, HT = H, J2 = −I, is stable if and
only if all the eigenvalues are purely imaginary and A is diagonalizable. Moreover,
if the spectrum of A is simple and purely imaginary, then (1) is strongly stable [6,7].
M.G.Krein [5] has shown that strong stability holds even in the case when multiple
eigenvalues occur, provided these eigenvalues are ”positive definite”.

Other criteria of strong stability has been stated (and proved using normal forms)
by R.Cushman and R.Kelly ([2]). A geometrical proof of this result has been given
by M.Levi ([3]).
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Theorem 1. [2, 3] An infinitesimally stable symplectic matrix A is strongly stable
if and only if its centralizer C(A) (in sp(2n,R)) consists of stable matrices.

Another criterion in the language of first integrals has been stated by M.Wójtkow-
ski ([4]). More precisely, remark that hk(x) = 1/2(JAkx, x) is a quadratic first in-
tegral (if k is even, then h = 0); here h(x) = 1/2(JAx, x) denotes the Hamiltonian
of the system (1) ((·, ·) is the standard scalar product in R2n).

Theorem 2. [4] A linear Hamiltonian system is strongly stable if and only if some
linear combination of the quadratic first integrals hk, k = 1, . . . , n, is a nondegenerate
definite quadratic form.

In what follows we generalize the above mentioned criteria to linear Poisson
actions of the abelian group Rm. New problems arise in this context. Firstly, we
have no kind of normal form of commuting m-tuples of linear operators, similar to the
Jordan normal form of a matrix, or a normal form of Hamiltonian first integrals as
those of Williamson [6]. We make use of results of L. Lerman and Ya. Umanskiy [11],
who give normal forms of bihamiltonian systems in dimension four.

Another problem, an algebraic geometric one, is the question about the structure
of the variety of commuting m-tuples of matrices in the direct product of Lie algebras
gl(n,C) or sl(2n,R). For some related results see [12].

2 Basic notions

Let V be a real 2n-dimensional vector space and let ω be a nondegenerate skew
symmetric bilinear form on V . We call the pair (V, ω) a real symplectic vector space.
The standard example of the symplectic inner product ω is ω(x, y) = [x, y] = xT Jy,
where the matrix J has the form:

J2n =

(

0 In

−In 0

)

,

with In for the identity matrix. A symplectic basis for V is a basis v1, . . . , v2n such
that ω(vi, vj) = Jij , the i, jth entry of J .

A linear map T : V → V is called symplectic if [Tx, Ty] = [x, y] for all x, y ∈ V .
The group of all real symplectic operators on (V, ω) is denoted by Sp(2n,R).

A linear operator L : V → V is called Hamiltonian if the condition

[Lx, y] + [x,Ly] = 0

holds for all x, y ∈ V . A matrix A is called Hamiltonian or infinitesimally sym-
plectic if AT J + JA = 0. The Lie algebra of all Hamiltonian matrices is denoted
by sp(2n,R).

Let T = {T1, . . . , Tm} be an m-tuple of bounded linear operators in a Hilbert
space H. One says [13] that a point Λ = {λ1, . . . , λm} ∈ Cm∗

belongs to the left
joint spectrum σl(T ) (respectively, to the right joint spectrum σr(T )) if an m-tuple
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R = {R1, . . . , Rm} of linear bounded operators in H such that
m
∑

k=1

Rk(Tk −λkI) = I

(respectively, such that
m
∑

k=1

(Tk − λkI)Rk = I) does not exist. The joint spectrum of

a polyoperator T is defined as a sum of its left and right joint spectra. It is denoted
by σ(T ).

In the case of n = 1 the above mentioned definition is equivalent to the common
definition of the operator’s spectrum. (In the case of finite dimension, the notions
of the left and the right joint spectra coincide.)

Another way to define the joint spectrum in the finite-dimensional case is based
on the known fact from linear algebra that any family of commuting complex
linear operators possesses a joint eigenvector, i.e. for any A = {A1, . . . , Am},
Ai ◦ Aj = Aj ◦ Ai, there exists a vector h 6= 0 such that Ajh = λjh for any
j = 1, . . . ,m and some {λ1, . . . , λm} ∈ Cm∗

. Then Λ = {λ1, . . . , λm} is called the
eigenfunctional corresponding to the joint eigenvector h. The set of all eigenfunc-
tionals creates the joint spectrum σ(A). Some details concerning the properties of
joint spectra can be found in [8, 13].

We mention that for m-tuples of commuting hamiltonian matrices the joint spec-
trum has symmetry properties similar to those of a single hamiltonian matrix.

Let Φ : Rm × V → V be a continuous action of the group Rm on V such that
for any fixed t ∈ Rm the transformation Φt = Φ(t, ·) is a linear symplectic trans-
formation of the space V . An action of this type is called [11] a linear Poisson action.

Consider a Hamiltonian polyoperator A = {A1, . . . , Am}. Remark that for the
linear completely integrable system

∂x

∂tj
= Ajx (x ∈ R2n, tj ∈ R, j = 1, . . . ,m) (2)

the fundamental matrix is exp(A, t) := exp(A1t1 + · · · + Amtm). The system (2) is
called stable if ∃M > 0 such that ‖exp(A, t)‖ < M for all t ∈ Rm. It is called strongly
stable if there exists ε > 0 such that for any polyoperator B = {B1, . . . , Bm} ∈
(sp(2n,R))m, Bi ◦ Bj = Bj ◦ Bi, ‖Bi − Ai‖ < ε (i, j = 1, . . . ,m), the inequality
‖exp(B, t)‖ < M holds for some M > 0 and all t ∈ Rm.

3 Results. Stability and strong stability of linear Poisson actions

Let A = {A1, . . . , Am} be a Hamiltonian polyoperator, i.e. the matrices Aj are
Hamiltonian and pairwise commuting.

Theorem 3. A linear constant completely integrable Hamiltonian system

∂x

∂tj
= Ajx (x ∈ R2n, tj ∈ R ∀j ∈ {1, . . . ,m}) (3)
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is stable if and only if for any j = 1, 2, . . . ,m the Hamiltonian system

dx

ds
= Ajx (x ∈ R2n, s ∈ R) (4)

is stable.

Proof. Assume that the systems (4) are stable for j = 1, . . . ,m. Hence, for each
fixed j there exists Mj > 0 such that ‖exp(Ajtj)‖ < Mj (tj ∈ R). Then, there is
M = M1 · · · · · Mm > 0 such that for all (t1, . . . , tm) ∈ Rm:

‖exp(A1t1 + · · · + Amtm)‖ = ‖exp(A1t1) · · · · · exp(Amtm)‖ ≤ M.

Let (3) be stable. So, there exists M > 0, for which ‖exp(A1t1 + · · · + Amtm)‖ < M
((t1, . . . , tm) ∈ Rm). In particular, the inequality holds for all (t1, 0, . . . , 0),
(0, t2, 0, . . . , 0) and so on. So, one has ‖exp(Ajtj)‖ < M for j = 1, . . . ,m. Hence all
systems (4) are stable.

The following result shows that this is not the case for strong stability.

Theorem 4. Let (2) be stable and assume that there exists a strongly stable element
exp(A, t0) for some t0 ∈ Rm. Then the system (2) is strongly stable.

Proof. Choose ε > 0 such that for each B ∈ sp(2n,R) satisfying ‖B − (A, t0)‖ <
ε, one has ‖exp Bτ‖ < ∞ (τ ∈ R). Let B = {B1, B2, . . . , Bm} be a Hamiltonian
polyoperator ε - close to A, i.e. ‖Bi − Ai‖ < ε and Bi ◦ Bj = Bj ◦ Bi (i, j =
1, 2, . . . ,m). Then ‖(B, t0) − (A, t0)‖ = ‖(B −A, t0)‖ ≤ ‖B −A‖ · ‖t0‖ < ε and
(B, t0) is strongly stable if ‖B‖ = ε

‖t0‖
. On the other hand, Bj ∈ C((B, t0)), so, by

Theorem 1 ẋ = Bjx are stable (for every j = 1, 2, . . . ), which implies that B is also
stable.

Remark 1. It is worth noting that at least formally, strong stability of the poly-
operator is weaker than the condition of existence of a strongly stable element: a
neighbourhood of a point in sl(2n,R) is larger than a neighbourhood of a polyope-
rator in the subvariety of commuting m-tuples from sl(2n,R)m. It is a problem
whether this subvariety is irreducible or not.

The following result reduces the problem of strong stability of a polyoperator on
the whole phase space to the problem of such stability on the invariant symplectic
subspaces. The main idea of the proof uses the fact that the centralizer of a block-
diagonal matrix with spectrally separated blocks coincides with the direct sum of
centralizers of the blocks.

Theorem 5. Let A = {A1, . . . , Am} be a Hamiltonian polyoperator with multiple
eigenfunctionals

Λ = {iλ
, . . . , iλ


m},−Λ, . . . , Λk = {iλk

 , . . . , iλ
k
m},−Λk,

m1, . . . ,mk denoting corresponding multiplicities and Vr - the subspace of (R2n)m

corresponding to the eigenfunctionals Λr and −Λr with multiplicity mr. Besides, let
A/Vr stand for the polyoperator A restricted to this subspace. Then, A is strongly
stable if and only if A/Vr is strongly stable for all r.



ON STRONG STABILITY OF LINEAR POISSON ACTIONS 9

Proof. Assume that A is strongly stable, i.e. there is ε > 0 such that for any
polyoperator B = {B1, . . . , Bm} such that ‖Bj − Aj‖ < ε the inequality:

‖exp(B1t1 + · · · + Bmtm)‖ < M

holds for some M > 0 and for all (t1, . . . , tm) ∈ Rm. We shall show that A/Vr are
strongly stable for r = 1, . . . , k.

Recall that a subspace U of a symplectic space (V, ω) is called [1] symplectic if ω
restricted to this subspace is nondegenerate. (Obviously, such U is of even dimension,
hence (U,ω) is a symplectic space.) Choose a polyoperator Br = {Br

1 , . . . , B
r
m} on

the symplectic subspace Vr such that ‖A/Vr −Br‖ ≤ ε and consider a polyoperator
B = ⊕s 6=rA/Vs ⊕ Br on R2n (here ⊕ stands for the direct sum of operators). Then
‖B − A‖ = ‖Br −A/Vr‖ ≤ ε, since B/Vs = A/Vs for s 6= r.
Hence one has: exp(B, t) = ⊕s 6=r exp(A/Vs, t) ⊕ exp(Br, t) and

M ≥ ‖exp(B, t)‖ =
∏

s 6=r

‖exp(A/Vs, t)‖ ‖exp(Br, t)‖ . (5)

Using the Banach-Steinhaus Theorem one can easily prove that

p = inf
t∈Rm

∏

s 6=r

‖exp(A/Vs, t)‖ > 0.

From (5) we obtain

‖exp(Br, t)‖ ≤ M

p
.

So, A/Vr is strongly stable.
Assume now that A/Vs are strongly stable for s = 1, . . . , k and suppose that A

is not strongly stable. That means that there exists a sequence {Bk}∞k=1 → B of
nonstable polyoperators. Due to the upper semicontinuity of the joint spectrum,

{Bk} have a spectral decomposition close to Vr and
∥

∥

∥Br/U
(k)
r −A/Vr

∥

∥

∥ → 0 as

k → ∞. The latest implies that there is r such that A/Vr is not strongly stable.
This contradiction proves the theorem.

Following [5, 7], we call an eigenfunctional Λ ∈ Cm∗ definite if there exists an
element t0 ∈ Rm such that exp(Λ, t0) is a positive definite eigenvalue for the sym-
plectic operator exp(A, t0).

Remark 2. Mention that a simple purely imaginary eigenfunctional is definite and
that, in this case, the system (2) is strongly stable.

Theorem 6. If the joint spectrum of the polyoperator A is purely imaginary and
definite, then the differential system (2) is strongly stable.

Proof. Due to Theorem 5, it is enough to consider the case when the polyoperator
A has a single-point joint spectrum

Λ = {iω1, iω2, . . . , iωn,−iω1,−iω2, . . . ,−iωn}
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of some multiplicity s.
Let Λ be definite and let t0 ∈ Rm be such that exp(Λ, t0) is definite. Then the

element (A, t0) ∈ sp(2n,R) is strongly stable because it has a positive definite first
integral. From Theorem 4 it follows that the system (2) is strongly stable.

In what follows we give some generalizations of the strong stability criteria of
Cushman-Kelly [2], M. Levi [3] and M. Wójtkowski [4].

Recall that for a given A ∈ sp(2n,R), C(A) denotes the center of A in sp(2n,R),
i.e. C(A) = {X ∈ sp(2n,R) : AX = XA}.

Theorem 7. If
⋃m

j=1 C(Aj) consists of stable linear Hamiltonian operators, then
(2) is strongly stable.

Proof. Let C(A) contain only stable operators and let {B1, . . . , Bm} be close
enough to A = {A1, . . . , Am}. By [3], each Bj can be written under the form
Bj = exp(−Tj)◦(Aj +Dj)◦exp(Tj) for some Dj ∈ C(Aj) and Tj ∈ sp(2n,R). Since
Aj are stable and Dj ∈ C(Aj), then Dj are stable, as well as Aj + Dj, and hence
∃M > 0 such that ‖exp(Bτ)‖ ≤ M for all τ ∈ R.

If, in addition, Bi ◦Bj = Bj ◦Bi, then ‖exp(B1t1 + B2t2 + · · · + Bmtm)‖ < Mm

for all (t1, t2, . . . , tm) ∈ Rm.

Theorem 8. If the system (2) is strongly stable, then
⋂m

j=1 C(Aj) consists of stable
operators.

Proof. Let A = {A1, A2, . . . , Am} be strongly stable and let B1 ∈ ⋂m
j=1 C(Aj).

For B := {B1, 0, . . . , 0} ∈ sp(2n,R)m take ε > 0 small enough to assure stabil-
ity of A + εB. So we have: ‖exp(A + εB, t)‖ < M , ‖exp(−A, t)‖ < M for some
M > 0 and for all t ∈ Rm. Since B1 ∈ ⋂m

j=1 C(Aj), one has: ‖exp(εB1t1)‖ =

‖exp(−A, t) exp(A + εB, t)‖ ≤ M2 (t ∈ Rm).

Remark 3. So, if
⋃m

j=1 C(Aj) consists of stable linear Hamiltonian operators, then
⋂m

j=1 C(Aj) consists also of stable operators. A natural question if the inverse im-
plication is true arises. In what follows we give a counterexample to this hypothesis.

Proposition 1. There exist polyoperators A such that
⋂m

j=1 C(Aj) consists of stable
operators, but

⋃m
j=1 C(Aj) cointains unstable operators.

Proof. The authors of [11] give (see Appendix A) the list of normal forms of all
possible quadratic Hamilton functions in the case of two degrees of freedom and also
of the quadratic functions that are additional integrals of the corresponding linear
Hamiltonian system. There are 15 different possible cases. We use this classification
to give the counterexample we need.

Consider the case 3 which is given through the following conditions:
the eigenvalues are (±iω1,±iω2), ω1 6= ω2, ω1, ω2 ∈ R, ω1, ω2 6= 0,

H =
ω1

2
(p2

1 + q2
1) +

ω2

2
(p2

2 + q2
2),

K =
ν1

2
(p2

1 + q2
1) +

ν2

2
(p2

2 + q2
2).
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The condition for the algebra to be two-dimensional is ω1ν2 −ω2ν1 6= 0. In this case
for fixed ν1 and ν2 the centralizer C coincides with the algebra generated by the
pair H, K. Put ω1 = 2, ω2 = 2, ν1 = 2, ν2 = 0. Then we obtain the particular case
where H = p2

1 + p2
2 + q2

1 + q2
2, K = p2

1 + q2
1 and the condition ω1ν2 − ω2ν1 6= 0

is satisfied. It is obvious that for α1 = 1 and α2 = 1 the linear combination
α1H + α2K = 2p2

1 + p2
2 + 2q2

1 + q2
2 is a positively definite quadratic form. So,

the polyoperator {A1, A2} is strongly stable (see [14]). In this case the matrices
corresponding to the integrals H and K have the form:

A1 =









0 0 −2 0
0 0 0 −2
2 0 0 0
0 2 0 0









, A2 =









0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0









.

The following computations have been done with the help of CAS ”Mathematica”.
The centralizers of the matrices A1 and A2 are:

C(A1) = {C1 =









0 −k3 −n1 −n2

k3 0 −n2 −n3

n1 n2 0 −k3

n2 n3 k3 0









: k3, n1, n2, n3 ∈ R},

C(A2) = {C2 =









0 0 −t1 0
0 r4 0 s3

t1 0 0 0
0 t3 0 −r4









: r4, s3, t1, t3 ∈ R}.

So,

C(A1) ∩ C(A2) = {C3 =









0 0 −t1 0
0 0 0 s3

t1 0 0 0
0 −s3 0 0









: r4, s3, t1, t3 ∈ R},

JordanForm(C3) =









−is3 0 0 0
0 is3 0 0
0 0 −it1 0
0 0 0 it1









.

Hence, C(A1) ∩ C(A2) consists of stable operators. Remark that some matrices in
C(A2) possess real eigenvalues. Let, for example, t1 = 3, r4 = 2

√
2, s3 = 4 and

t3 = 2. Then we get C2 ∈ C(A2) with the eigenvalues ±4, ±3i. So, C(A1) ∪ C(A2)
cointains at least one unstable operator.

Remark 4. The main results have been announced in [15].
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[15] Glavan, V., Rzeszótko, Z., On strongly stable linear Poisson actions. Третьи научные чтения

по обыкновенным дифференциальным уравнениям, Минск, Беларүсь, 2001.

V.Glavan
Faculty of Mathematics and Informatics,
State University of Moldova,
MD–2009 Chişinău, Moldova
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