BULETINUL ACADEMIEI DE STIINTE

A REPUBLICII MOLDOVA. MATEMATICA
Number 2(42), 2003, Pages 37-50

ISSN 1024-7696

The centre-focus problem for analytical systems of
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Abstract. For analytical systems of Lienard form in the case of zero eigenvalues
of its linear part is obtained the algebraic criterion of the centre existence, which is
analogous to the Cherkas’s criterion for systems with imaginary eigenvalues of linear
part. We give the solution of centre-focus problem for one class of cubic systems.
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1 Introduction

For analytical systems of Lienard form in the case of pure imaginary eigenvalues
of linear part L.A.Cherkas gives effective necessary and sufficient conditions of alge-
braic character for the centre existence [1-3]. For example, for the Lienard system

&=y, y=—af(z)+zg(x)y, (1)
where f, g are analytical in the neighborhood of z = 0 functions, f(0) = 1, he
received the following result

Theorem 1. [1] The origin of coordinate system (1) is a centre if and only if the
system of equations

Flz) = P(y), G(x) = G(y),
where F(x fo t f(t)dt, G(x) = fo t g(t)dt, has an analytical in the neighborhood
ofx=0 solutzony— ( ), ©(0) =0, ¢'(0) = —1.

For the systems of type (1), where f(x) = 22" fi(x), f1(0) = 1, the theorem
analogous to Theorem 1 was proved in [4,5].
In the present article we consider the system of differential equations

3
dz/dt =y, dy/dt = Zpi(fv)y’} (2)

where p;(z) are analytical in the neighborhood of z = 0 functions of the form

o
po(z) = =21 + Z apa®, pi(z) = Ax"N 4+ bt
k=n

k=2n
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[e.e]
pi(x) = Z a2, j=2,3. (3)
k=0

If 4n — A? > 0, then the critical point O(0,0) of system (2) is either a centre or
a focus [4,6]. We know [4,7] that there exists a formal transformation

[e.e] [e.e]
r=u+ Z i,y =v+ Z Bi ju'vd, 4)
i+j=2 i+j=2
o)
dt = (1+ Z i ju'v?)dr
i+j=1

which transforms (1) to a formal system

du/dr = v+ Z Agu®, dv/dr = —u®" L, (5)
k=n

where A,, = A/n.

Theorem 2. [7] The critical point O(0,0) of system (2) is a centre if and only if
Agiv1 =0, 1=[n/2],[n/2] +1,..., in (5).

Definition 1. The critical point O(0,0) of system (2), where p; are analytical func-
tions of (3) type with complex coefficients, is called a centre if there is a formal
transformation (4) which transforms (2) to system (5), where Agipzq = 0, i =
n/2],[n/2] +1,...

In the present paper we will show the algebraic criterion of the existence of the
centre of the system (2) and will give the solution of centre-focus problem for the
System

i =y(1 + Dz + P2?), j = —2® + Azy + By? + K2y + Lay® + My3,  (6)

where A, B,C, D, K, L, M are complex constants.

The solution of centre-focus problem for the system (6) where D = P = 0 is
contained in [4,8]. There are many works in which the centre-focus problem is
solved for various classes of cubic systems in the case of imaginary eigenvalues of
linear part (e.g.[9]-[23]).

2 The algebraic criterion for the existence of a centre

Theorem 3. The critical point O(0,0) of system (2) is a centre if and only if the
system of equations

Fi(z) = Fi(y), Fa(z) = F(y) (7)
or the system

Fi(z) = Fi(y), F3(z) = F3(y), (8)
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where Fy = Q3/Q3, F» = Q3/Q1, F3 = Q4/Q3,
Q1 = 2p3 — Ipop1p2 + 27paps + Ip1ph — Ipop),
Q2= Q1R —poQ), Q3 =5Q2R — 3pyQs5,
Q1=TQ3R — 3poQs, R =pi — 3pop2 + 3p),

has a solution y = ¢(x), where p(x) is an analytical in the neighborhood of x = 0
function such that ¢(0) = 0, ¢'(0) = —1 (we do not exclude the case when one or
both equations of systems (7), (8) turn to the identity).

Proof. Necessity. Suppose that the critical point O(0,0) is a centre for system
(2). The change

y = z/lo(x)(1 +2)], (9)
where v(x) is the solution of the differential equation
v = —ps(x) — pa(z)v — p1(x)v? — po(2)v? (10)

with the initial condition v(0) = 1, and the elimination of the time transform the
system (2) to the equation

v(x)z2' = po(z)v3(z) + [p1(x)v? (x) 4 3po(z)v®(x)] 2+

Hp1(2)0? () + 2po(2)0° () — pa(x))2”. (11)
Then, the change z = a(z)w, where a(z) is the solution of the differential equation
o'v(x) = afpi (2)v*(x) + 2po(2)v*(z) — p3(@)], (12)

with o/(0) = 1, transforms (11) into the equation
ww' = f(z) + g(x)w, (13)

where f(z) = po(a)[o(2)/a(@)?, 9(2) = [p1(z) + 3po(x)o(x)]v(z)/a(z). From the
theorem 19.7 from [4] we conclude that O(0,0) of the equation (13) is a centre if
and only if the system of equations

F(z) = F(y), G(z) = G(y),

where F(z) = [ f(t)dt, G(z) = [; g(t)dt, has an analytical in the neighbourhood
of = 0 solution y = ¢(x), ¢(0) =0, ¢'(0) = —1. Thus, in the examined case we
have

F(z) = Flp(r)], G(z) = Glp(2)]. (14)

f@) = fle(@)l¢' (2), g(z) = gle(2)]¢' (2). (15)
From (15) we get that wy(z) = wo[e(x)], where

wo(r) = f(x)/g(x) = po(z)o(z)/la(x)(pr(z) + 3po(x)v(x))].



40 LE VAN LINH, A.P. SADOVSKII

The differentiation of wo(z) taking into account (10), (12) gives
wo(@)/g(x) +2/9 = Qu(2)/[9(p1 () + 3po(x)v(x))?]. (16)
From (16) we have w;(z) = w; [¢(x)], where
wi (@) = Q1(x)/[p1(z) + 3po(a)v(x)]”. (17)
The derivation of (17) gives us
Wi (@)wo(@)/g(x) — wi(z)/3 — wi(x)/3 = —Qa(z)/Ip1(2) + 3po(z)v(x)]°.
Consequently, ws(z) = wy[e(x)], where
wa (@) = Q2(x)/[p1(x) + 3po(a)v(x)]. (18)
Then (18) gives
wh(@)wo(x)/g(x) — dwi(x)wa(x)/9 — dwa(2)/9 = —Qa(x)/[3(p1(x) + 3po(z)v(x)) ).
Thus, ws(x) = ws|e(x)], where
ws(x) = Q3(x)/[p1(x) + 3po(a)v(x)]". (19)
The derivation of (19) gives
Wa(@)wo(x)/g(x) — Twr(z)ws(2)/9 — Twz(2)/9 = —Qa(@)/[3(p1(x) + 3po(x)v(x))”].
Hence, wy(z) = wyle(x)], where
wi(e) = Qu(x)/[p1(z) + 3po(x)v ()], (20)

From (17), (18) we have Fi(z) = Fi[p(x)], from (17), (19) we have Fy(x) = Falp(z)],
and from (17), (20) we have F3(z) = F3[¢(x)]. The necessity is proved. The suffi-
ciency is proved in the same way [2].

For system (2), where p3(x) = 0, we have the following result.

Theorem 4. The critical point O(0,0) of system (2) in the case of ps(x) =0 is a
centre if and only if the system of equations

Wi(z) = Wi(y), Wa(z) = Wa(y), (21)

where W1 = (pop1p2 — p1iph + pop})/pi, Wa = Wipo/p?, has a solution y = p(z),
where p(x) is an analytical in the neighbourhood of x = 0 function, p(0) = 0,
¢'(0) = —1 (we do not exclude the case when one or both equations of system (21)
turn into the identities).
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3 The solution of centre-focus problem for system (6)

Together with system (6) we will examine the equation

v =Y pilx)y, (22)
i=0
where
po(z) = —2®/(1 + Dz + Pz?), p1(z) = (Az + K2%)/(1 + Dz + Px?),

pa(x) = (B + Lz)/(1 + Dz + Pz?), p3(x) = M/(1+ Dx + Px?).

By the method [4,7] we find a formal change for system (6)

oo oo
T =u-+ Z a; ju'v!, y=v+ Z Bi juv? (23)
i+j=2 i+j=2

which transforms (6) to the system

du/dt:v—FZdiui, dv/dt = —u3+Zh,~ui. (24)
=2 1=4

Ifin (23) ag; = Bo; =0, j =2,3,..., then all d;, h; in (24) are defined uniquely.
In this case in (22)

dy = AJ2, d3s=A(B+D)/6+ K/3,
di=A(B+D)2B+D)/24+ K(B+ D)/4+ A(L+2P)/24,
ds = A(B+D)(2B+ D)(3B+ D)/120 + K(B + D)(11B + 7D)/60+
AL(7TB +5D)/120 — M(A2 —18)/30 + AP(3B+2D)/30 + K(L + 2P)/15;
hy=—(B+3D)/2, hs;=—(B+D)(B+5D)/4— P,
he = —(B+ D)(B%* +9BD +6D?)/8 + L(B — 5D)/24 — AM/6 — P(3B + 4D)/2;
d;, i = 6,15, are polynomials of A, B, D, K, L, M, P, which consist accordingly of
27, 47, 75, 117, 172, 251, 350, 485, 651, 869 addends; h;, i = 7, 16, are polynomials,
which consist accordingly of 17, 27, 45, 67, 102, 145, 208, 284, 391, 518 addends.
The change of u; = p(u) = u(1 — Y252, hpuF=3)V4 dr = (1 — 3202, hypub=3)dt
reduces system (24) to the form

duy/dr =v+ de[cp_l(ul)]k =0+ ZAkulf, dv/dr = —u3. (25)
k=2 k=2

The values f; = Agijrq, i = 1,2,..., where Ag;yq is from (25) will be called the
focus values of system (6). Focus values f, k =1,2,..., are the polynomials from
the ring C[K, M, L, P, D, B, Al; f;, i = 1,7, contain accordingly 3, 15, 47, 117, 251,
485, 869 addends.

Let’s generate the ideal [24] I = (f1, fo,..., f,...) C C[K, M, L, P, D, B, A]. Let
us denote by V(I) the variety of ideal I [24], i.e. V(I) ={a = (K,M,L,P,D,B,A) €
C: for anyf € I, f(a)=0}.
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Definition 2. The set W = V(1) is called the variety of the centre of system (6).

It is obvious that O(0,0) of system (6) is a centre if and only if a € W.
The focus values f;, k = 1,7, can be found with the help of computer system
Mathematica 4.1. Instead of focus values f, k = 1,7, we will examine

g1 =15f1 = A(B —2D) + 5K, gi, = fr(mod(g1,...,gk-1)), k =2,7.

The values g can be found with the help of the division algorithm [24]. We have

g2 = A(B —2D)(B? —9BD + 4D?) + 10AL(3B — D) — 25M (2A? — 21)—
5AP(13B — 6D),
g3 = A(B —2D)?(2B + D)(19B% + 389BD — 204D?) — 1250AL?(3B — D)—
125AL(B —2D)(17B%? — 3BD — 2D?) + 5625M (—7B? — 2BD + 12D+
20L — 45P) + 125AP(B — 2D)(53B? + 16BD — 24D*)+
625AP[P(29B — 18D) — L(B — 2D)].
Let us note that gy, k = 4,7, contains accordingly 51, 90, 143, 211 addends. In
so doing I = (f1, ..., fky--) = (G1, -0y Ghs o). We put Iy = (f1,..., fx). Then I =
(g1, -+ i)

Theorem 5. The variety of the centre of system (6) can be represented in the form
W =V(J)UV(L)U...-UV(J14), where

J1 (A, M, K), J,=(B, D, M, K), J3s=(B-2D, L—2P, M, K),
=(3B-D, P-2B% M, AB - K),
((B—-2D)(B+ 3D) +25P, (B—2D)(3B — D)+ 25L, M, A(B —2D) + 5K),
(2B — D,9B? — 25P,3B? + 25L, M,3AB — 5K),
(17B — 4D, 9B% — 2P, 3B? — 2L, M, 3AB — 2K),
(
=

5
6
7
8 7B —4D, B*+2P, B>+ L, M, AB —2K),
A% —6, 3(B —2D)(3B +4D) + 100P, A(17B —4D)(B — 2D)? + 4500M,
B(B —2D) + 5L, A(B—2D) + 5K),
Jio = (A2 —6, 3(B —2D)(3B — D) +25P, (17B —9D)(B — 2D) + 25L,
2A(B —2D)%*(2B — D) + 225M, A(B —2D) + 5K),
Ji1 = (A% — 6, (3B — D)(3B +4D) + 25P, 11B% + BD +4D? + 25L,
2A(7TB — 4D)(2B + D)? + 1125M, A(B —2D) +5K),
Jio=(A%2—6, 3B— D, 3(2B®>+ L) —4P,AB(2B? — P) —9M, AB — K),
Jiz = (A —3,(B—17D)(B —2D) + 25(L — 2P),3(B — 2D) + 5K,
— (B —-2D)*(B+3D) — 25P(B —2D) + 125M),
Juu=(A+3, (B—17D)(B—2D) +25(L — 2P), —3(B —2D) + 5K,
(B —2D)*(B +3D) +25P(B — 2D) + 125M)
and V(J;), i = 1,14, are irreducible.

Proposition 1. I[f24> —-7=0,38B—-D =0, 3B2—P =0, 2B> - L =0, AB> +
14M =0, AB— K =0, B #0, then O(0,0) of system (6) is a focus of 8" order.

Proof. In the examined case the system (6) looks as

= y(1+3Bz+3B%*2?), § = —2*+ Avy+ By*+ By(Ax* +2Bxy— AB?y*/14), (26)
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where A2 = 7/2, B # 0. There exists a change (4) which reduces (26) to the system

d
d—” =uv + A(u?/2—55B5u8 /25088 — 5445 B2 4,14 /314703872 — 55 B1° 117 /161308784
—
d
—28655B18420 /281974669312 — 32678 u?® /374283822640 + ...), d—” = —u.
T

Hence, the focus values f, = 0, k = 1,7, but fg # 0, i.e. O(0,0) is a focus of 8"
order of system (26).

Lemma 1. Consider M = 0. Then the variety of the centre of the system (6) is
shown as Vi = V(J1)JV(J2)U ... UV (Js).

Proof. Let us make the ideal Jy = I7 + (M). We compute the Groebner basis of
Jo with lex-ordering with the order K > M > L > P > D > B > A and get

Jo = (A(TB—4D)(17B—4D)(B — 2D)(2B — D)(3B — D)*[(B — 2D)(B + 3D)+
25P], —A(B —2D)[(B — 2D)(B + 3D)+25P)(4427B*-5798 B3 D + 2805B%D?—
608B D3 +48D* 4-125B%P), A(B —2D)[(B —2D)(B + 3D) + 25P] [2(157B3—
157B%D + 69BD? — 16D3) — 25P(4B — 3D)], A[(B — 2D)(B? —9BD + 4D?)+
10L(3B — D) — 5P(13B — 6D)], A[2(B —2D)(156B* — 1823B3D + 56982 D?—
142BD3 + 96D*) + 6250 BL (2B% — P) — 125 P (239B3 — 101B%D + 56 BD?—
20D3) + 625P%(23B — 6D)], M, A(B —2D) + 5K).

Hence, V(Jp) = V(J1)UV(J2) .- U V(Js). Let us show then that on the set V(Jy)
the equation (22) and so the system (6) have a centre in O(0,0). Indeed, on the sets
V(J1), V(J2) we find the cases of symmetry and therefore the equation (22) has a
centre in O(0,0). To prove the existence of the centre on the sets V(Ji), k = 3,8,
we will use Theorem 4. On the set V(Jy) for equation (22) the functions Wy, Ws
from (21) look like

Wi(z) = 2/A% — Lu(z)/A?, Wa(z) = —2B?Lu’(z) /A" + 2Lu(x)/A*,

where u(z) = 22/(1 + Bz)?. Consequently, the equation (22) in this case has a
centre in 0(0.0). On the sets V(J3), V(J5) the existence of the centre follows from
the fact that Wi = 2/A42. On the set V(Jg)

Wi(x) = 2/A* — 18B%u(z) /A%, Wy(z) = 36 Bu(x)/A* — 972B*u?(x) /A%,

where u(z) = 22(5 + Bz)/(5 + 3Bx)3; O(0,0) of the equation (22) is a centre. On
the set V(J7) the equation (22) has a centre in O(0,0) because

Wi(z) = 2/A% — 9B?u(x) /A%, Wy(x) = 18B%u(x)/A* — 243B%*(x)/A%,
where u(z) = 22(1 + 2Bz)/(2 + 3Bx)3. On the variety V(Jg)
(

Wi(z) = 2/A% — 9B?u(z) /A%, Wa(z) = 18B%u(x)/A* — 243B%>(x) /A%,
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Lemma 2. Consider A> — 6 = 0. Then the variety of the centre of system (6) can
be shown in the following way:

Vo=V(Jo+ (A2 = 6)) UV(Js+ (A2 —6)) UV(Js+ (A2 - 6)) U
V(Js + (A% = 6)) UV(Jo) UV(J10) U V(J11) UV (J12)-

Proof. When we compute the Groebner basis of the ideal S = Iy + (A? — 6) we
have S = (hq, ..., ha7), where
hy =A% —6,...,hy = (B —2D)(3B — D)*[(B — 2D)(B + 3D) + 25P][(3B — D)x
(3B+4D)+25P][3(B—2D)(3B—D) + 25P][3(B — 2D)(3B + 4D)+100P], ...,
h7 =-B%(B—2D)(3B—D)[(B—2D)(3B—D)(1701B% —78732B° D+538335B* D>~
58406083 D — 7860B%D* + 285408 BD® — 69696D%) — 5000BDL(9B — 8D) x
(4B—3D)(3B—D)(9B+2D)+625P(3B—D)(135B°4+4617B*D — 6230B3D?—
2508 B2D3 + 7848 BD* — 2016 D) + 625P?(B — 2D) (6489B* + 22071B%2D—
14852BD? + 8D3) + 390625P3(63B2 — 6BD — 56D? + 108P)], ...,
hoy =—(B—2D)(213B*—804B3D—1663B2D*+2734BD3—792D*) - 125L(21 B3+
79B2D — 168BD? + 52D3) + 6250L%(3B — D) + 125P(29B3 + 173B%2D—
310BD? + 96D3) — 3125LP(21B — 8D) + 2500P%(22B — 9D), .. .,
has = A(B — 2D)(B% —9BD + 4D?) 4+ 10AL(3B — D) + 225M — 5AP(13B—6D),
hor = A(B — 2D) + 5K.

Hence, V(S) = V5. From Lemma 1 it follows that on the set V(J + (A% — 6)),
k =2,5, 0(0,0) of the equation (22) is a centre. On the sets V(J), k = 9,12, the
presence in O(0,0) of the centre of the equation (22) follows from the fact that here
F5 =0, where Fy is from (7).

Remark 1. On the set V(Jy) the system (6) has the integrating factor of Darbouz
form  Ry(z,y) = [1 —3(B —2D)x/10]"3[1 4+ (3B +4D)x/10] " /[z* — Az?y +2y> +
(B —2D)(Az? — 4y)xy/5 + 2A(B — 2D)3xy3 /1125 — (B — 2D)?(Ay — 1222)y?/150],
0 0

since g ly(1+ Dz + Pz?*)R,(z, y)] + o [(—x?’ + Azy + By? + K2%y+

Lay?* + My*)Ry(x,y)] = 0. On the sets V(Jig), V(Ji1), V(Ji2) the integrating
factors of the system (6) are, accordingly, the functions Re(x,y), Rs(z,y), Ra(x,y),
where

Ro(z,y) = [1-3(B—2D)x/5]"/3[1 + (3B—D)x /5]~ /[2* — Az?y + 2y*> + (B—2D)x
(Az? — 4y)xy/5 + 2A(B — 2D)32y3 /1125 — 2(B — 2D)?(Ay — 322)y?/75],
Rs(x,y) = [1—(3B—D)z /5] /3[1+(3B+4D)x /5|73 /[z* — Az?y+2y* + (B — 2D)x
(Az? — 4y)xy/5 + 2(B — 2D)2x%y? /25 — 2A(2B + D)*y?/75 + 2A(7TB — 4D) x
(2B + D)%xy3/1125],

Ry(z,y) = [1 + 3Bz + 3(2B? + L)2? /4]~ /3 /[z* — A2y + 24> — Bay (Az® — 4y)+
A(BL — 4B3z)y3 /18 — B2(Ay — 622%)y?/3).

Remark 2. On the sets V(Ji), k = 9,12, the change (9), where v(x) (v(x) # 0) is,
accordingly, the function of the type
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v(z) = A[l — (B —2D)z/5 — (1 — 3(B — 2D)x/10)%/3]/(322),
v(z) = A[l — (B —2D)z/5 — (1 — 3(B — 2D)xz/5)'/3]/(32?),
v(z) = A[l — (B —2D)z/5 — (1 — (3B — D)x/5)*3(1 + (3B + 4D)x/5)/3]/(3z2),

v(z) = A[l + Bz — (1 + 3z(4B + (2B? + L)z)/4)'/3]/(32?),
transforms the equation (22) to equation (11).

Lemma 3. Consider A2 —9 = 0. Then the variety of the centre of system (6) is
shown as V3 = V(J13) | JV(J14).

Proof. The ideal Sy = I7 + (A — 3) is represented through Groebner basis in the
following way: Sy = (q1, ..., q25), where

q=A-3, q=-B"(7B—4D)(17B — 4D)(2B — D)(3B — D)3[(B — 7D)x
(B —2D) + 25(L — 2P)],...,
q22 = [(B —TD)(B — 2D) + 25(L — 2P)][563B> + 87B?D — 1154BD? + 456 D3 —
650L(3B — D) + 25P(161B — 72D)],
q23 = [(B — TD)(B — 2D) + 25(L — 2P)][2(14661862B° — 23476145B* D+
1260380583 D? —2621310B2 D3 — 155240 BD* 4154016 D) — 1543750 BL(2B2 — P+
125P (160257 B3 — 135683 B2 D+65508 BD? —17240D3) — 625 P2 (89698 — 3948 D)),
q24 = A(B — 2D)(B% — 9BD + 4D?) 4+ 10L(3B — D) + 25M — 5P(13B — 6D),
q25 = 3(B — 2D) + 5K.
In this case V(Sp) = V(Ji3). On the set V(Ji3) the equation (22) has a centre in

0(0,0) because here @1 = 0, and therefore, systems (7), (8) turn into the identities.
The case V(Ji4) is examined in the same way.

Remark 3. On the set V(Ji3) the system (6) has the integrating factor of Darbouz
form Rs(x,y) = f52 5/ £}, where

fi=2> =1 = (B-2D)z/5y, fa=1+(D+g)z/2,

fs=1+(D—-g)x/2, ¢*=D?—4P,

Sy = (2B + D)[(2D — B)(D — g) — Pg(3D — 4B)/(D* — 4P)]/(25DP),

S3 = (2B + D)[(2D — B)(D + g) + Pg(3D — 4B)/(D? — 4P)]/(25DP).
On the set V(J14) the system (6) has the integrating factor Rg(z,y) = f§2f§3/fg,
where fo = 2%+ [1 — (B — 2D)x/5]y.

Lemma 4. If
M(A? —6)(A% —9) #£0, (27)

then O(0,0) of system (6) is a focus.

Proof. Finding Groebner basis of the ideal I7 4 (A) we have I;+(A) = (A, M, K),
i.e. when (27) holds in the case A = 0, O(0,0) of system (6) is a focus. The ideal
I7 + (B) via Groebner basis looks as

I; + (B) = (B, —A(A? — 6)(A? — 9)D''(6D? — 25P),...,5K — 2AD).

After that we have
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I; + (B, D(6D? — 25P)) = (B, D(6D? — 25P), —AD"(A% — 6)(2D? + 25L),
64AD"(2D? 4 25L) — 474609375M3 ..., 2AD + 5K).
Consequently, when B = 0 and (27) holds, system (6) has a focus in O(0,0). We
find the ideal I7 4+ (3B — D) in the form
I;+ (3B —D) = (3B — D, AB"3(A% - 6)(A? — 9)(242 — 7)(P — 2B?),...,AB — K).
Moreover,

I; + (3B — D,B(2B? — P)) = (3B — D, B(2B? — P),M®,... ,AB — K)

and

I; + (3B — D,2A? —7) = (24> = 7,3B — D, B"(2B*> — P)(3B%> — P),AB — K,

—B(2B? — P)(3B? — P)?, —B(2B? — P)(B? — 2L + P), AB(2B? — P) — 14M).
Hence, taking into account Proposition 1, we conclude that when 3B — D = 0 and
(27), 0(0,0) of system (6) is a focus. Since

I; + (B —2D) = (B — 2D, —~AB%(A* — 6)(L — 2P),...,K),
I;+(B—2D, B(L—2P)) = (B—2D, B(L—2P), BSM, M(13B5 —800M?), ..., K),
then when B — 2D = 0 together with the condition (27) the system (6) also has a
focus in O(0,0). For the ideal Iy + (4B — 3D) the Groebner basis gives
I7 + (4B — 3D) = (4B — 3D, A(A? — 6)(A%2 —9)BY (3P — B?),...,AB — 3K).
In this case
I; + (4B — 3D, B(B? — 3P)) = (4B — 3D, B(B* — 3P),
—A(A% - 6)B"(B* — 9L),64AB"(B* — 9L) — 4782969M?, ..., AB — 3K),

i.e. when 4B — 3D = 0 and (27) holds, O(0,0) of system (6) is a focus. While
examining the ideal I7 + (2B + D), we have

I + (2B + D) = (2B + D, AB%(A% — 6)(A%? — 9)(B? — P)?,...,K + AB).
Here

I; + 2B+ D,B(B?> — P)) = (2B + D, B(B?> — P), M3,..., AB + K).

Consequently, when 2B + D = 0, O(0,0) of system (6) is a focus. For the ideal
I; + (2B — D) we find a representation in the form
I;+(2B-D) = (2B-D, AB%(A?—6)(A%-9)(9B%-25P)(21B? - 25P), ..., 3AB — 5K).
In this case I; + (2B — D, B(9B? — 25P)(21B% — 25P)) = (2B — D, B(9B? —
25P)(21B% — 25P), —AB"(A? — 9)(3B% + 10L — 5P), —432AB" (3B + 10L — 5P) —
390625M3, ... ,3AB —5K). So, in the case when relations (27) and 2B — D = 0 are
fulfilled, O(0,0) of system (6) is a focus. So, when (27) holds and
AB(3B — D)(B—2D)(4B —3D)(2B+ D)(2B — D) =0, 0(0,0) is a focus. We will
assume that the condition

AB(3B — D)(B — 2D)(4B — 3D)(2B + D)(2B — D) # 0
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holds. Applying the change z = x1/B, y = y1/B?, dt = Bdr we will transform
system (6) to the form
dr1/dr = y1(1 + Dz1/B + Pxi/B?),

dy, Jdr = —23 + Axyy1 + v} + K23y, /B + Layyi /B> + My} /B3, (28)

System (28) shows that it is enough to study the system (6) when B = 1, and
then to change D, P, K, L, M for D/B, P/B? K/B,L/B% M/B3. Let us show that
when B =1 A(A% —6)(A%? —9)(D —3)(2D — 1)(3D — 4)(D +2)(D —2) # 0, 0(0,0)
of system (6) is a focus.

Suppose the contrary, that O(0,0) of system (6) is a centre. From g; = 0 we
find K = A(2D — 1)/5. Taking into account A(D — 3) # 0 we get from gy = 0
L =[-A(2D —1)(4D* —9D + 1) — 25M (2A% — 21) + 5AP(6D — 13)]/[10A(D — 3)].
Considering L we have g; = a;h;/[A(D — 3)]*=2, i = 3,7, where a; # 0,

hs = 4A2(2D—1)%(3D + 1)(16D3—69D? + 157D —157) + 625 AM[10A%(2D — 1) x
(2D? — 3D — 3) — 3(164D3 — 316D? + 33D — 33)] + 15625M2 (242 — 21)x
(242 — 57) — 250A%2P(2D — 1)(10D3 — 33D? + 63D — 62) — 3125AM P x
(28A42D — 54A? — 348D + 549) + 1250A2P?(2D — 1)(3D — 4),

hi, i = 4,7, are polynomials in A, D, P, M. Taking into account hs = 0, h;, i = 4,7,
we show that h; = Biv;/[(2D — 1)(3D — 4)]'~3, where p; # 0, v;, i = 4,7, are
polynomials in A, D, P, M of the first degree with respect to P. We shall denote by
R, (u,v) the resultant of polynomials u, v with respect to . We have

Rp(vy, hg) = 74A%(A? — 9)(D — 3)%(2D — 1)(3D — 4) M1y,
Rp(va,v;) = v A%2(A%2 = 9)(D — 3)?(2D — 1)(3D — 4)Mr;, i = 5,7,

where 7; # 0, r;, i = 4,7, are polynomials in A, D, M with integer coefficients. As
far as A(A% — 9)(D — 2)(2D — 1)(3D — 4)M # 0, then r; = 0, i = 4,7. In the same
way Rp(hs,v;) = 6;A%2(A%2 — 9)(D — 3)[(D — 3)(2D — 1)(3D — 4)]"3Ms;, i = 5,7,
where 9; # 0,s;, ¢ = 5,7, are polynomials in A, D, M with integer coefficients. Here
is s; = 0,i =5, 7, too. Let us notice that ry, rs are polynomials of 5" degree relative
to M, s5, 77 of 7" degree, rg, sg, s7 are of 6, 9" 11" degree, respectively. While
computing the resultant of polynomials r4, Srs + r¢ relative to M we get

Ryr(ryg, Srs +16) = aA?®(A%—6)3(24%2 -21)4(D—-3)13(D—2)(D + 2)*(2D — 1)9x
(3D — 4)4(4D — 17)(4D — 7) H? [4405854208A° (D — 3)%(2D — 1)3(3D — 4)Tp+
196689920A4% (D — 3)°(2D — 1)*(3D — 4)3|T1 S — 26342400A3 (D —3)3(2D — 1)3 x
(3D — 4)*Tys% + 3528000A% (D — 3)%(2D — 1)?(3D — 4)T3s% — 472500A(D — 3)x
(2D — 1)Tys* — 253125H, Ty5°),

where a # 0, H; = (A? — 6)[284%(2D — 1)(3D — 4) — 6A4%(2596D? — 9316D +
9459) + 9(13298D? — 62623 D + 80687)] — 81(D — 3)(622D — 1481), Hy,T;, i = 0, 5,
are polynomials in A, D with integer coefficients. If 242 — 21 = 0, then from
ry = 0,85 =0, 8¢ = 0 we have

A%2(D - 3)"(D - 2)(D +2)4(2D — 1)¥(3D + 1)2(4D — 17)(4D — 7) = 0.

Hence, (3D +1)(4D — 17)(4D — 7 = 0). Since
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I7+(2A%2—-21, B+3D) = (24221, B+3D, B! P, P(104763912686092943360 A B°—
131554676229558899887953 M P3), 186824475 M (413 P3 +13056 M ?), ..., AB+3K),

I7 + (2A% — 21,17B — 4D) = (2A% — 21,17B — 4D, B"(33B% — 8P)(9B? — 2P),
—T71876935680M3 — 7TAB(33B% — 8P)(9B? — 2P)(102952372707B* —
4732557291282 P + 5362662080P2),...,3AB — 2K),

I7 + (2A2 — 21,7B — 4D) = (2A% — 21,7B — 4D, B"(5B% — 8P)(B? + 2P),
AB(5B% — 8P)(B? + 2P) (56056383 B* — 12450984082 P + 66718400P?)—
98014003200M3, ..., AB — 2K),

then when 242 — 21 = 0 and (27) holds, O(0,0) of system (6) is a focus. If AB #
0, (17B — 4D)(7B — 4D) = 0, then the study of the system of equations g; = 0,
i = 1,7, shows that if (27) is fulfilled, O(0,0) of system (6) can be a centre only in
the case 242 — 21 = 0. So, when (17B — 4D)(7B — 4D) = 0 we have the case of
focus.

Let us examine now the case Hy = 0. To do this we find

Rys(hg,v;) = u; AP (A% —6)3(2D — 1)1 (D — 3)19(D — 2)(D + 2)*(4D — 17) x
(4D —7)[(242 — 21)%(D - 3)*(2D — 1)3]*"B,, i = 5,6,

where u; # 0, Bs = T5Cy, Bg = TpC5, C7 and C5 are polynomials in A, D, which
consist of 1273 and 2088 factors, respectively. Then we find

Ra(Ho, B;) = N\i(D — 3)1(2D — 1)*(3D—4)%(3D+1)%(4D—"7)%(4D? + 36 D—
69)2(14D? — 19D — 24)4(16D? — 21D — 6)%(632D3 — 3408D? + 6159D — 3994) x
(1456 D3 — 11244 D? +28752D — 25247) (88 D* —410D3 +993D? — 1792 D +1256) x
(2184D° — 7700D* — 19135D3 + 102085D% — 98789D — 3402)E;, i = 5,6,

where \; # 0, E;, i = 5,6, are coprime polynomials in D. Since (D—3)(2D—1)(3D—
4)(3D + 1)(4D — 7) # 0 only in the case (242 — 21)(A% — 6) = 0, Ra(Ho, B;) =
0, i = 5,6, we can conclude that also when Hy = 0, O(0,0) of system (6) cannot be
a centre. In the case when H; = 0 the study of system Hy = 0, T; = 0, i = 0, 4,
shows that O(0,0) of system (6) is a focus. So, in the case when B = 1 and (27)
holds, O(0,0) of system (6) can be a centre only when

T, =0, i=0,5. (29)
Let us find the real solutions of system (29), where A2 < 8. We have

R.(Ts,T;) = vi0(D — 3)?Y(D +2)3(2D — 1)?2(3D — 4)*00B; 0, i = 0,4,
where z = A2, 70 # 0, O are polynomials in D of 66" degree whose coefficients
are coprime integer numbers of the order from 1077 to 104, Bio, i = 0,4, are
coprime polynomials in D of degree 690, 668, 657, 635, 613, respectively. Notice
that the polynomial ©g has 20 real roots.

On the other hand,

Rp(T5,T;) = vi1(A? — 9)3(A2% — 6)%(7A? — 30)1203B; 1, i= 0,4,
where ;1 # 0, B;1, i = 0,4, are coprime polynomials in A, © is a polynomial in

A of 44" degree which consists of terms in even degrees and whose coefficients are
coprime integer numbers of the order from 1032 to 1034,
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Let us introduce the vector ¢ = (A, D). The system (29) has 18 real solutions
q = qi, where q; = (AZ7D2)7 1= 17—97 qi+9 = (_AlaDZ)u 1= 1797 and

Ay = 2.48741..., Ay = Az = Ay — 2495479 ... As — Ag — Ay — 2.189944 . . .,
Ag = 2.072126..., Ag = 1.916074 ..., Dy = 2.027444 ..., Dy = 2.9540003. ..,
D3 = 2.990356. .., Dy = 3.008036..., Ds=0.617227..., Dg = 1.954363. ..,
D7 =5.659333..., Dg =4.479633..., Dg = 3.057486....
Replacing ¢;, i = 1,18, by r;, i = 4, 6, which was found from the system of equations
ri=0,i=4,6,find M =M, i =1,18.

Then from v4 = 0 we find p = p;, ¢+ = 1,18. Consider r = (4, D, K, L, M, P).
Taking into account K, L which were found before, when B = 1, we have 18 real
solutions r = ry = (Ag, Dy, Ky, Ly, My, By), k = 1,18, of the system of equations
g, = 0, 1 = m Here Ti+9 = (—Ai,DZ’, —KZ‘,LZ‘, —MZ‘,PZ‘), 1= m Notice that Az
are roots of the polynomial ©, D; are roots of the polynomial 6.

Let us show that g7|,—,, #0, kK =1,18 . We have

Rpr(rg,m7) = ag A (A% — 6)3(242% — 21)°(D — 3)>4(D — 2)(D + 2)*(2D — 1) x
(3D — 4)12(4D — 17)(4D — 7)H2T5,

where ag # 0. Then we find R 42 (T5, T) = v5.6(D—3)3°(D+2)(2D—1)%6(3D—4)2Cy,
where v56 # 0, Cp, is a polynomial in D of 997" degree whose coefficients are
coprime integer numbers of the order from 10%°%? to 103°%0. Since ©y, Cpy are
coprime polynomials in D, then v7|,—,, # 0, k = 1,18. So, when (29) is fulfilled,
0(0,0) cannot be a centre.

Proof of Theorem 5. The proof follows directly from Lemmas 1—4.

Proposition 2. When r =rp, k= 1,18, B = 1, the critical point O(0,0) of system
(6) is a focus of T order.
Proof. The proof follows from Lemma 4.

Theorem 6. For any ¢ > 0, § > 0, k, (k = 1,18) there exists r € Us(ry),
where Us(ry) is a 0-neighbourhood of 7y, such that system (6) with B = 1 has in
e-neighbourhood U.(0) of the point O(0,0) 6 limit cycles.

Proof. The proof is analogous to the proof of Theorem 3 from [25], using Lemma
1 from [25].
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