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Algebraic equations with invariant coefficients in

qualitative study of the polynomial homogeneous
differential systems∗

Valeriu Baltag

Abstract. For planar polynomial homogeneous real vector field X = (P, Q) with
deg(P ) = deg(Q) = n some algebraic equations of degree n+1 with GL(2, R)-invariant
coefficients are constructed. A recurrent method for the construction of these coeffi-
cients is given. In the generic case each real or imaginary solution si (i = 1, 2, . . . , n+1)
of the main equation is a value of the derivative of the slope function, calculated for
the corresponding invariant line. Other constructed equations have, respectively, the
solutions 1/si, 1− si, si/(si − 1), (si − 1)/si, 1/(1 − si). The equation with the solu-
tions (n + 1)si − 1 is called residual equation. If X has real invariant lines, the values
and signs of solutions of constructed equations determine the behavior of the orbits
in a neighbourhood at infinity. If X has not real invariant lines, it is shown that the
necessary and sufficient conditions for the center existence can be expressed through
the coefficients of residual equation.

Mathematics subject classification: 34C05, 58F14.
Keywords and phrases: algebraic equation, invariant, differential homogeneous
system, qualitative study, center problem.

1 The homogeneous differential system

Let n ≥ 1 be a positive integer, x, y : R → R be some unknown functions of
real variable t such that x = x(t), y = y(t), (∀) t ∈ R, ai,j, bi,j be real numbers
for all positive integers i and j with i + j = n, Ckn =

(n
k

)

be the binomial
coefficients for every positive integer k, 0 ≤ k ≤ n.

Let us consider the polynomial homogeneous differential system

dx

dt
=

n
∑

k=0

Cknan−k,kx
n−kyk = Pn(x, y),

dy

dt
=

n
∑

k=0

Cknbn−k,kx
n−kyk = Qn(x, y). (1)

Let GL(2,R) be the group of non-degenerate linear homogeneous transforma-
tions. It is known that the homogeneous polynomials Pn(x, y) and Qn(x, y) are
relatively prime iff the resultant µn of these polynomials is not equal to zero.
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Remark 1. The resultant µn is a GL-invariant of the degree 2n with respect to the
system (1) coefficients and with the weight equal to n2 − n.

Remark 2. The homogeneous polynomial Fn+1(x, y) = yPn(x, y) − xQn(x, y) is a
GL-comitant of the degree n+1 with respect to variables x and y, of the degree 1 with
respect to the system (1) coefficients and with the weight equal to −1. The nontrivial
solutions of the equation Fn+1(x, y) = 0 determine the system (1) invariant straight
lines (real or imaginary).

We suppose that

µn = Res (Pn, Qn) 6= 0, Fn+1(x, y) = yPn(x, y) − xQn(x, y) 6≡ 0 (2)

and denote the following polynomials and functions:

Gn+1(x, y) = xPn(x, y) + yQn(x, y), Tn−1(x, y) =
∂Pn(x, y)

∂x
+
∂Qn(x, y)

∂y
,

ϕ : C \Eϕ → C, ϕ(1, k) =
Qn(1, k)

Pn(1, k)
, ψ : C \ Eψ → C, ψ(s, 1) =

Pn(s, 1)

Qn(s, 1)
, (3)

where Eϕ = {k | k ∈ C, Pn(1, k) = 0} and Eψ = {s | s ∈ C, Qn(s, 1) = 0}. The
functions ϕ and ψ are called the slope functions for the system (1).

Remark 3. The homogeneous polynomial Tn−1(x, y) is a GL-comitant of the degree
n− 1 with respect to variables x and y, of the degree 1 with respect to the system (1)
coefficients and with the weight equal to 0.

Because the GL-comitant Fn+1(x, y) is not equal to zero identically, then there
exist constants ui ∈ C and vi ∈ C such that Fn+1(x, y) has the factorization

Fn+1(x, y) =
n+1
∏

i=1

(uix+ viy), u2
i + v2

i 6= 0, (∀) i = 1, 2, . . . , n, n+ 1. (4)

For vi 6= 0 (ui 6= 0) we denote by ki = −ui/vi (si = −vi/ui) the roots of the
equation Fn+1(1, k) = 0 (Fn+1(s, 1) = 0).

The discriminant Dn+1 of the homogeneous equation Fn+1(x, y) = 0 has the
form

Dn+1 =
∏

1≤i<j≤n+1

d2
i,j, di,j = uivj − ujvi. (5)

For j 6= k (k = 1, 2, . . . , n, n+ 1) we denote

fk = (−1)n
n+1
∏

j=1

dk,j. (6)

From relations (5) and (6) follows
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Proposition 1. The discriminant Dn+1 has the factorization

n+1
∏

k=1

fk = (−1)
n(n+1)

2 Dn+1. (7)

Remark 4. Each ui and vi have the same degree 1/(n + 1) and the weight equal,
respectively, to −1/(n+ 1) and n/(n+ 1). Each dij has the degree 2/(n+ 1) and the
weight equal to (n − 1)/(n + 1), each fi has the degree 2n/(n + 1) and the weight
equal to n(n− 1)/(n+ 1). The discriminant Dn+1 is a GL-invariant of the degree
2n with respect to the system (1) coefficients and with the weight equal to n2 − n.

Let Xi = uix+ viy be the factor i (i = 1, 2, . . . , n+ 1) in the factorization (4)
and Xi = 0 be the equation of the corresponding invariant line.

Let p = (p1, p2, . . . , pn, pn+1) and q = (q1, q2, . . . , qn, qn+1) be two symbolic
(n+ 1) - tuples of letters. Let us consider the symbolic differential operator

Ω1
pq = p1

∂

∂q1
+ p2

∂

∂q2
+ . . .+ pn

∂

∂qn
+ pn+1

∂

∂qn+1
, (8)

its powers Ωm = Ωm−1(Ω1) for every positive integer m ≥ 2 and (n+ 1)- tuples

u = (u1, u2, . . . , un, un+1), v = (v1, v2, . . . , vn, vn+1),

f = (f1, f2, . . . , fn, fn+1), g = (g1, g2, . . . , gn, gn+1). (9)

By using the differential operator (8) for (n+ 1)- tuples u and v from (9) by condi-
tions (2) and (4) we obtain the following expressions for the system (1) coefficients:

bn,0 = −u1u2 . . . unun+1, a0,n = v1v2 . . . vnvn+1,

Ckn an−k,k = Ck+1
n bn−k−1,k+1 +

1

(k + 1)!
Ωk+1
vu (−bn,0), 0 ≤ k ≤ n− 1. (10)

Takes place

Lemma 1. For every i = 1, 2, . . . , n, n + 1 the relations

Fn+1(vi,−ui) = 0, Qn(vi,−ui) = −uigi, Pn(vi,−ui) = vigi,

∂Fn+1

∂y
(vi,−ui) = vifi,

∂Fn+1

∂x
(vi,−ui) = uifi,

Gn+1(vi,−ui) = (u2
i + v2

i )gi, Tn−1(vi,−ui) = (n+ 1)gi − fi,

µn = g1g2 · . . . · gngn+1, 1 − ϕ′(1, ki) = 1 − ψ′(si, 1) =
fi
gi
,

1

n!
Ωn
fg(g1g2 · . . . · gngn+1) = f1f2 · . . . · fnfn+1 (11)

hold, where

gi =

n
∑

k=1

(−1)k+1Ckn bn−k,kv
n−k
i uk−1

i +
∂(−bn,0)

∂ui
vni . (12)
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Proof. The first two equalities from (11) are evident. From the identity

Fn+1(vi,−ui) = −uiPn(vi,−ui) − viQn(vi,−ui) = 0

we obtain Pn(vi,−ui) = vigi. From the relations

∂Fn+1(x, y)

∂x
=

n+1
∑

i=1

ui
∂Fn+1

∂Xi
,
∂Fn+1(x, y)

∂y
=

n+1
∑

i+1

vi
∂Fn+1

∂Xi

and (6) we obtain the identities

∂Fn+1

∂y
(vi,−ui) = vifi,

∂Fn+1

∂x
(vi,−ui) = uifi.

The relation for polynomial Gn+1(x, y) results from the second and third equalities
from (11). For polynomial Tn−1(x, y) the following representation

(x2 + y2)Tn−1(x, y) = (n+ 1)Gn+1 − x
∂Fn+1

∂y
+ y

∂Fn+1

∂x

holds. From the last identity for x = vi, y = −ui we obtain the required relation
Tn−1(vi,−ui) = (n+ 1)gi − fi.

From Remark 1, the obtained relations (11) and u2
i + v2

i 6= 0 it follows that each
equality gi = 0 implies the relation µn = 0. From Remark 4, conditions (10) and
(12) it results that each addendum from gi has the weight and the degree equal,
respectively, to n(n− 1)/(n+ 1) and 2n/(n+ 1). So, the product g1g2 · . . . · gngn+1

has also the degree 2n with respect to the coefficients of the polynomials Pn and
Qn and the weight equal to n2 − n. Thus, µn = g1g2 · . . . · gngn+1.

Let Dn+1 6= 0. Because deg(Fn+1) = deg(Tn−1) + 2, then for vi 6= 0 or ui 6= 0 we
obtain, respectively, the equalities:

n+1
∑

i=1

Tn−1(1, ki)

(Fn+1)′k(1, ki)
= 0,

n+1
∑

i=1

Tn−1(si, 1)

(Fn+1)′s(si, 1)
= 0.

We have

Tn−1(1, ki)

(Fn+1)
′
k(1, ki)

=
Tn−1(1, ki)

vi(Fn+1)
′
Xi

(1, ki)
=

Tn−1(1,−ui/vi)

vi(Fn+1)
′
Xi

(1,−ui/vi)
=

Tn−1(vi,−ui)

fi
=

(n+ 1)gi − fi
fi

. (13)

Finally we obtain

n+1
∑

i=1

(n+ 1)gi − fi
fi

= 0 ⇔
n+1
∑

i=1

gi
fi

= 1.

The last equality gives us the last relation from (11). If Dn+1 = 0, then for some i
and j (i 6= j) we have fi = fj = 0 and the required equality is trivial.
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From the obtained relations it follows that if µn 6= 0, then

P 2
n(vi,−ui) +Q2

n(vi,−ui) = (u2
i + v2

i )g
2
i 6= 0.

For derivatives of the defined slope functions we obtain:
If vi 6= 0, then Fn+1(1, ki) = 0 and Pn(1, ki) 6= 0. We calculate the derivative

of the function k − ϕ(1, k) and determine the value of this derivative for k = ki :

1 − ϕ′(1, k) =

[

k −
Qn(1, k)

Pn(1, k)

]′

=

[

kPn(1, k) −Qn(1, k)

Pn(1, k)

]′

=

[

Fn+1(1, k)

Pn(1, k)

]′

=
F ′
n+1(1, k)Pn(1, k) − Fn+1(1, k)P

′
n(1, k)

P 2
n(1, k)

,

1 − ϕ′(1, ki) =
F ′
n+1(1, ki)

Pn(1, ki)
=

(

∂Fn+1

∂y
(vi,−ui)/Pn(vi,−ui)

)

=
vifi
vigi

=
fi
gi
.

If ui 6= 0, then Fn+1(si, 1) = 0 and Qn(si, 1) 6= 0. We calculate the derivative of
the function s− ψ(s, 1) and determine the value of this derivative for s = si :

1 − ψ′(s, 1) =

[

s−
Pn(s, 1)

Qn(s, 1)

]′

=

[

sQn(s, 1) − Pn(s, 1)

Qn(s, 1)

]′

=

−

[

Fn+1(s, 1)

Qn(s, 1)

]′

= −
F ′
n+1(s, 1)Qn(s, 1) − Fn+1(s, 1)Q

′
n(s, 1)

Q2
n(s, 1)

,

1 − ψ′(si, 1) = −
F ′
n+1(si, 1)

Qn(si, 1)
= −

(

∂Fn+1

∂x
(vi,−ui)/Qn(vi,−ui)

)

=
uifi
uigi

=
fi
gi
.

So, it follows that the values of derivatives of the functions k−ϕ(1, k) and s−ψ(s, 1)
for the invariant line Xi = 0 are the same. Lemma 1 is proved.

Remark 5. Each fi and gi have the same weight and the degree equal, respectively,
to n(n− 1)/(n + 1) and 2n/(n+ 1).

From Lemma 1 and (10) we obtain the equality

∂Fn+1

∂x
(vi,−ui) = −(n+ 1)bn,0v

n
i +

n
∑

k=1

(−1)k

k!
(n + 1 − k)Ωk

vu(−bn,0)v
n−k
i uk. (14)

2 Construction of algebraic equations with invariant coefficients

Methods of studying the behavior of the integral curves of the system (1) have
been developed by many authors (see [1, 2, 5–9, 11, 14, 21, 23–26, 30, 31, 36]). Using
Forster’s method (in polar coordinates), Shilov’s geometrical method or local charts
method (traditional method) the systems (1) with n = 1, 2, 3 were investigated
(see [10,12,19,22,26,35,40,41,44,45]). A classification of the system (1) with n = 2
by means of non-associative algebras was given in [16]. The algebraic and topological
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classifications of the system (1) with n = 2 by means of quadratic transformations
and invariants were established in [32] and [37]. The Poincaré index method for
topological classification of system (1) was applied (see [17,18]).

The GL-comitants of the system (1) with n = 1, 2, 3 and the polynomial
basis of these comitants have been used for algebraic, topological and geometrical
classifications (see [20,28,29,33,34,38, 39, 43, 46]).

The problem under consideration is an important step in the qualitative inves-
tigation of behavior of integral curves: at infinity for planar polynomial differential
systems with maximal degree equal to n; near critical point (0, 0) for planar poly-
nomial differential systems with minimal degree equal to n. Because of this, much
of the research in this area is dedicated to the investigation of the problem, usually
in local charts. The simplest (but nontrivial) way of investigation is to find the
algebraic classification of binary form Fn+1(x, y) in coefficients terms (or invariant
terms) and to use the results for classification of the system (1) (see [38],[44]).

Our first goal is to show that it is possible to express the conditions which delimit
classes with different distributions of infinite singular points through affine invariants
and comitants without knowing the basis of the affine invariants and comitants of
the system (1). The second goal is to construct such invariants and comitants and
to determine the geometrical significance of these objects.

In this work we develope the method of construction and show that the neces-
sary and sufficient conditions for the center existence can be expressed through the
coefficients of the residual equation. The contribution idea is due to P.Curtz paper’s
(see [42]) and Hilbert’s symbolic operators (see [47]).

We verify our results by using Shilov’s, Forster’s and local charts methods for
the system (1) with n = 1, 2, 3. The constructed invariants determine the values
and the signs of the solutions and solve the problems of algebraical, topological and
geometrical classifications of given systems.

For every i = 1, 2, . . . , n+ 1 we denote

ξi =
fi
gi

= 1 − ϕ′(1, ki) = 1 − ψ′(si, 1) (15)

such that every ξi is a root of the algebraic equation

(g1ξ − f1)(g2ξ − f2) · . . . · (gn+1ξ − fn+1) = 0.

By using the differential operator (8) for (n + 1)-tuples f and g from (9) the last
equation can be written in the form

t0 ξ
n+1 − t1 ξ

n + t2 ξ
n−1 − . . .+ (−1)n tn ξ + (−1)n+1 tn = 0, (16)

where

t0 = µn = g1g2 · . . . · gn+1, ti =
1

i!
Ωi
fg (µn) for (∀) i = 1, 2, . . . , n,

tn = tn+1 = (−1)n(n+1)/2 Dn+1 = f1f2 · . . . · fn+1. (17)

The equation (16) will be called the main equation of the system (1).
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Remark 6. For given solution ξi of the main equation the equations with solutions

1

ξi
, 1 − ξi,

ξi
ξi − 1

,
ξi − 1

ξi
,

1

1 − ξi
(18)

can be constructed.

For example, if we put in (16) ξ = 1−η, then obtain the equation with solutions
ηi = ϕ′(1, ki) = ψ′(si, 1) :

m0 η
n+1 −m1 η

n +m2 η
n−1 − . . .+ (−1)n mn η + (−1)n+1 mn+1 = 0 (19)

such that for every i = 1, 2, . . . , n we have

m0 = t0 = µn, mi =

i
∑

r=0

(−1)r Cn+1−i
n+1−r tr, mn+1 =

n−1
∑

r=0

(−1)r tr. (20)

Let us consider the following differential operator

Θ1 = Ω1
uu + Ω1

vv, (21)

where u and v are from (9). It is very easy to verify that Θ1(Fn+1) = (n+1)Fn+1.
So, the differential operator (21) does not change the invariant straight lines of the
system (1).

From condition (2) and Euler’s formulae we have two representations for the
comitant Fn+1(x, y) :

Fn+1(x, y) = yPn(x, y) − xQn(x, y),

(n+ 1)Fn+1(x, y) = y
∂Fn+1(x, y)

∂y
+ x

∂Fn+1(x, y)

∂x
. (22)

It results from (22) that the differential operator (21) satisfies the relations

Θ1(Pn(x, y)) =
∂Fn+1(x, y)

∂y
, Θ1(Qn(x, y)) = −

∂Fn+1(x, y)

∂x
.

From the last equalities we obtain the following coefficients relations:

Θ1(Cknan−k,k) = (k + 1)(Cknan−k,k − Ck+1
n bn−k−1,k+1),

k = 0, 1, 2, . . . , n− 2, n − 1, Θ1(a0,n) = (n+ 1)a0,n,

Θ1(Cknbn−k,k) = (n+ 1 − k)(Cknbn−k,k − Ck−1
n an+1−k,k−1),

k = 1, 2, . . . , n− 1, n, Θ1(bn,0) = (n+ 1)bn+1.

The equalities (k + 1)Ck+1
n = (n − k)Ckn and (n + 1 − k)Ck−1

n = kCkn imply the
following rules of derivation for system’s (1) coefficients:

Θ1(an−k,k) = (k + 1)an−k,k − (n− k)bn−k−1,k+1,
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k = 0, 1, 2, . . . , n− 2, n − 1, Θ1(a0,n) = (n+ 1)a0,n,

Θ1(bn−k,k) = (n+ 1 − k)bn−k,k − kan+1−k,k−1,

k = 1, 2, . . . , n− 1, n, Θ1(bn,0) = (n+ 1)bn+1.

Finally we obtain the expression of the differential operator (21) in system’s (1)
coefficients:

Θ1 =
n−1
∑

k=0

[(k + 1)an−k,k − (n− k)bn−k−1,k+1]
∂

∂an−k,k
+ (n+ 1)a0,n

∂

∂a0,n
+

(n+ 1)bn,0
∂

∂bn,0
+

n
∑

k=1

[(n+ 1 − k)bn−k,k − kan+1−k,k−1]
∂

∂bn−k,k
. (23)

Takes place

Theorem 1. The coefficients tk (k = 0, 1, 2, . . . , n) of the equation (16) are GL-
invariants of the degree 2n with respect to the system (1) coefficients and with the
weight equal to n2 − n such that

t0 = µn, ktk = Θ1(tk−1) − (n+ 1)(n + k − 2)tk−1. (24)

Proof. From Remark 5 and (17) it follows that each coefficient tk, k =
0, 1, 2, . . . , n, is a homogeneous and isobaric polynomial of variables fi and gi
(which are called irrational invariants). According to the results of invariant theory
(see [3],[4]) every isobaric and homogeneous polynomial of the invariants fi and
gi will be an invariant of the binary form Fn+1(x, y). Because Fn+1(x, y) is a
comitant of the system (1) it results that each coefficient tk is a GL-invariant of the
system (1).

We express the operator (21) in the terms of fi and gi. Because Θ1(ui) = ui
and Θ1(vi) = vi we easily obtain that Θ1(di,j) = 2di,j and Θ1(fi) = 2nfi. Now
we shall prove that Θ1(gi) = (n− 1)gi + fi.

Let ui 6= 0. From conditions (10), (12) and (14) we obtain

Θ(gi) =

n
∑

k=1

(−1)k+1Θ(Ckn bn−k,kv
n−k
i uk−1

i ) + Θ(u1 . . . ui−1ui+1 . . . un+1v
n
i ) =

n
∑

k=1

(−1)k+1[(n + 1 − k)(Cknbn−k,k − Ck−1
n an+1−k,k−1)v

n−k
i uk−1

i +

+(n− 1)

n
∑

k=1

(−1)k+1Ckn bn−k,kv
n−k
i uk−1

i + 2nu1 . . . ui−1ui+1 . . . un+1v
n
i =

(n−1)gi+(n+1)u1 . . . ui−1ui+1 . . . un+1v
n
i +

n
∑

k=1

(−1)k

k!
(n+1−k)Ωk

vu(bn,0)v
n−k
i uk =
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(n− 1)gi +
1

ui
·
∂Fn+1

∂x
(vi,−ui) = (n − 1)gi + fi.

If ui = 0, then vi 6= 0 and from (12) gi = nbn−1,1v
n−1
i + u1 . . . ui−1ui+1 . . . un+1v

n
i .

From (6) it results that di,j = −viuj , fi = u1 . . . ui−1ui+1 . . . un+1v
n
i and

Ω1
vu(u1u2 . . . un+1) = u1 . . . ui−1ui+1 . . . un+1vi. So, for Θ1(gi) we obtain

Θ1(gi) = n(C1
nbn−1,1−an,0)v

n−1
i +(n−1)C1

nbn−1,1v
n−1
i +2nu1 . . . ui−1ui+1 . . . un+1v

n
i =

(n−1)gi−nu1 . . . ui−1ui+1 . . . un+1v
n
i +(n+1)u1 . . . ui−1ui+1 . . . un+1v

n
i = (n−1)gi+fi.

So, the formula for Θ1(gi) is proved. Thus, the operator (21) can be written

Θ1 =

n+1
∑

i=1

{

[(n − 1)gi + fi]
∂

∂gi
+ 2nfi

∂

∂fi

}

. (25)

We show the recurrence (24) by induction. Let t0 = µn = g1g2 · . . . · gngn+1. By
using the operator (25) we have

Θ1(t0) = [(n−1)g1 +f1]g2 · . . . ·gk · . . . ·gn+1 +g1[(n−1)g2 +f2]g3 · . . . ·gk · . . . ·gn+1+

. . . + g1g2 · . . . · gk−1[(n− 1)gk + fk]gk+1 · . . . · gn+1+

g1g2 · . . . · gk · . . . · gn[(n− 1)gn+1 + fn+1] = (n− 1)(n + 1)t0 + t1.

So, t1 = Θ1(t0)−(n−1)(n+1)t0 and the recurrence (24) is true for k = 1. Now we
suppose that the recurrence (24) is true for every positive integer k = 1, 2, . . . ,m.
We shall prove the relation

(m+ 1)tm+1 = Θ1(tm) − (n+ 1)(n +m− 1)tm. (26)

Every term of tm is the product of m different factors from f and n+ 1 −m
different factors from g such that the indexes of all factors of this term form a
permutation of {1, 2, . . . , n+1}, for example P = f1f2 · . . . ·fmgm+1gm+2 · . . . ·gn+1.
The action of the operator Θ1 on the selected term generates 2nm+ (n − 1)(n +
1−m) = (n+ 1)(n+m− 1) terms equal with P and n−m different terms from
tm+1. So, among all the generated terms of tm there exist exactly m+ 1 equal
terms from tm+1. We obtain the equality (26). By the mathematical induction the
recurrence (24) is true for all k = 1, 2, 3, . . . , n. Theorem 1 is proved.

Proposition 2. If Dn+1 6= 0, then the values θi = gi/fi are the roots of the
equation

tnθ
n+1 − tn θ

n + tn−1 θ
n−1 − . . .+ (−1)n t1 θ + (−1)n+1 t0 = 0. (27)

From Viette relations for the equation (27) and Lemma 1 results

Proposition 3. If Dn+1 6= 0, then the roots θi of the equation (27) satisfy the
equality

n+1
∑

k=1

θk = 1. (28)
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Lemma 2. If Dn+1 6= 0, then the system (1) has the first integral of the form

(u1x+ v1y)
θ1(u2x+ v2y)

θ2 · . . . · (unx+ vny)
θn(un+1x+ vn+1y)

θn+1 = c, (29)

where θi (i = 1, 2, . . . , n+ 1) are the roots of the equation (27).

Proof. Let Dn+1 6= 0. After substitution y = xz the corresponding to the
system (1) differential equation has the form

−
dx

x
=
Pn(1, z)dz

Fn+1(1, z)
.

For polynomial Pn(x, y) Lagrange’s interpolation formulae is applicable :

Pn(x, y) = Pn(v1,−u1)
(u2x+ v2y)(u3x+ v3y) . . . (un+1x+ vn+1y)

(−d12)(−d13) . . . (−d1,n+1)

+Pn(v2,−u2)
(u1x+ v1y)(u3x+ v3y) . . . (un+1x+ vn+1y)

(+d12)(−d23) . . . (−d2,n+1)
+

. . .+ Pn(vn,−un)
(u1x+ v1y) . . . (un−1x+ vn−1y)(un+1x+ vn+1y)

(d1,n)(d2,n) . . . (dn−1,n)(−dn,n+1)

+Pn(vn+1,−un+1)
(u1x+ v1y) . . . (un−1x+ vn−1y)(unx+ vny)

(d1,n+1)(d2,n+1) . . . (dn−1,n+1)(dn,n+1)
.

From the last relation the polynomial Pn(1, z) has the following representation

Pn(1, z) =
g1
f1

∂Fn+1

∂X1
+
g2
f2

∂Fn+1

∂X2
+ . . . +

gn
fn

∂Fn+1

∂Xn
+
gn+1

fn+1

∂Fn+1

∂Xn+1
.

Using the equality ∂Xi(1, z)/∂z = vi and the factorization (4) of the polynomial
Fn+1(1, z) we obtain the following differential equation

−
dx

x
=

[g1
f1

v1
u1 + v1z

+
g2
f2

v2
u2 + v2z

+ . . .+
gn
fn

vn
un + vnz

+
gn+1

fn+1

vn+1

un+1 + vn+1z

]

dz.

After integration by using Proposition 3 we obtain the first integral (29). Lemma 2
is proved.

3 The center problem for the system (1)

Let n = 2m+ 1, m ∈ N and suppose that ui ∈ C \R or vi ∈ C \R for every
i = 1, 2, . . . , 2m+ 1, 2m+ 2. From [6] the singular point (0, 0) of the system (1) is
a center if and only if the following condition

∫ 2π

0

G2m+2(cosα, sinα)

F2m+2(cosα, sinα)
dα = 0 ⇐⇒

∫ 2π

0

T2m(cosα, sinα)

F2m+2(cosα, sinα)
dα = 0 (30)
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holds. For each invariant line Xi = 0 determined by the equation F2m+2(x, y) = 0
we denote by ri the residue of the rational function T2m(x, y)/F2m+2(x, y) :

ri = resXi=0
T2m(x, y)

F2m+2(x, y)
.

The following lemma holds:

Lemma 3. If the homogeneous equation F2m+2(x, y) = 0 has no nontrivial real
solutions and the discriminant D2m+2 6= 0, then for every i = 1, 2, . . . , 2m+ 2 the
relation

ri =
(2m+ 2)gi

fi
− 1 = (2m+ 2)θi − 1 (31)

holds.

Proof. We will obtain the value of the residue ri, corresponding to the invariant
line Xi = 0, by using Lemma 1. Let us consider the following 2 cases:

1. Let vi 6= 0. The substitution z = tanα in the last integral from (30) implies
the relation

∫ +∞

−∞

T2m(1, k)

F2m+2(1, k)
dk = 0.

For each root ki = −ui/vi of the equation F2m+2(1, k) = 0 the residue of the
rational function T2m(1, k)/F2m+2(1, k) is equal to

ri =
T2m(1, ki)

(F2m+2)
′
k(1, ki)

=
T2m(1, ki)

vi(F2m+2)
′
Xi

(1, ki)
=

T2m(1,−ui/vi)

vi(F2m+2)
′
Xi

(1,−ui/vi)
=

T2m(vi,−ui)

fi
=

(2m+ 2)gi − fi
fi

= (2m+ 2)θi − 1.

2. Let ui 6= 0. The substitution z = cotα in the last integral from (30) implies
the relation

∫ +∞

−∞

T2m(s, 1)

F2m+2(s, 1)
ds = 0.

For each root si = −vi/ui of the equation F2m+2(s, 1) = 0 the residue of the
rational function T2m(s, 1)/F2m+2(s, 1) is equal to

ri =
T2m(si, 1)

(F2m+2)′s(si, 1)
=

T2m(si, 1)

ui(F2m+2)′Xi
(si, 1)

=
T2m(−vi/ui, 1)

ui(F2m+2)′Xi
(−vi/ui, 1)

=

T2m(vi,−ui)

fi
=

(2m+ 2)gi − fi
fi

= (2m+ 2)θi − 1.

Lemma 3 is proved.

If we put θ = (r + 1)/(n + 1) in equation (27) then we obtain an equation of
degree n+ 1, called the residual equation.
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Proposition 4. If Dn+1 6= 0, then the values ri = (n+ 1)θi − 1 are the roots of
the equation

X(r) = c0 r
n+1 + c2 r

n−1 + . . .+ cn r + cn+1 = 0, (32)

where

ck =
k

∑

m=0

(−1)m (n+ 1)m Ck−mn+1−m tn+1−m, (∀) k = 0, 1, . . . , n, n + 1. (33)

Remark 7. The equalities tn+1 = tn = (−1)n(n+1)/2Dn+1 imply the equality c1 = 0.

The discriminant of the equation (32) has the form

Rn+1 = Res (X(r),X ′(r)) = D2n
n+1∆

2,

where
∆2 =

∏

1≤i<j≤n+1

(rj − ri)
2

is a GL-invariant of the system (1).
Let us consider that the equation (32) has no real solutions and let ri1 , ri2 , . . . , rim+1

be the solutions with positive coefficients of the imaginary part. In this case it is
known that

∫ +∞

−∞

T2m(1, k)

F2m+2(1, k)
dk = 2 π i (ri1 + ri2 + . . .+ rim+1).

We construct the polynomial of minimal degree W (r1, r2, . . . , r2m+2) such that it is
simmetric with respect to variables ri and has the form

W (r1, r2, . . . , r2m+2) =
∏

(ri1 + ri2 + . . .+ rim+1).

According to the theorem of the symmetric polynomials there exists some polynomial
Φ such that the polynomial W can be expressed through the elementary symmetric
polynomials of the variables ri:

W (r1, r2, . . . , r2m+2) = Φ(
c2
c0
,
c3
c0
, . . . ,

cn
c0
,
cn+1

c0
).

So, there exists positive integer l such that V = cl0Φ( c2c0 ,
c3
c0
, . . . , cnc0 ,

cn+1

c0
) is a poly-

nomial of the variables c0, c2, c3, . . . , cn+1.
Takes place

Proposition 5. The system (1) with imaginary invariant straight lines has a center
iff V = 0 and the residual equation (32) has no real solutions.

Example 1. For n = 3 the system (1) with imaginary invariant straight lines has
a center iff at least one of the following two series of conditions is fulfilled:

(i) V = c3 = 0 and the inequalities c0c2 < 0, c22 − 4c0c4 > 0

are not fulfilled simultaneously;

(ii) V = c3 = 0, c22 − 4c0c4 = 0, c0c2 > 0.
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Example 2. For n = 5 the system (1) with imaginary invariant straight lines has
a center iff V = −c0c

2
5 + 4c0c4c6 − c23c4 + c2c3c5 = 0 and the residual equation (32)

has no real solutions.
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