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Solution of the center problem for cubic systems with a

bundle of three invariant straight lines∗

Alexandru Şubă

Abstract. For cubic differential system with three invariant straight lines which
pass through the same point it is proved that a singular point with purely imaginary
eigenvalues (weak focus) is a center if and only if the focal values g2j+1, j = 1, 5,

vanish.
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1 Introduction

A cubic system with a singular point with pure imaginary eigenvalues (λ1 =
λ2 = i, i2 = −1) by a nondegenerate transformation of variable and time rescaling
can be brought to the form

dx
dt

= y + ax2 + cxy + fy2 + kx3 + mx2y + pxy2 + ry3 ≡ P (x, y),

dy
dt

= −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ −Q(x, y).
(1)

The variables x, y and coefficients a, b, . . . , r, s in (1) are assumed to be real. A
singular point (0, 0) is a center or a focus for (1). The problem arises of distinguishing
between a center and a focus, i.e. of finding the coefficient conditions on (1) under
which (0, 0) is, for example, a center. These conditions are called the conditions for
a center existence or the center conditions and the problem - the problem of the
center.

Note that the singular point (0, 0) of the differential system (1) is called also
weak focus (fine focus).

It is well known that the origin is a center for (1) if and only if all focal values
g2j+1, j = 1, ∞, vanish. The focal values are polynomials in coefficients of system
(1). For example, the first of them looks as follows

g3 = ac − bd + 2ag − 2bf + cf − dg − 3k + 3l − p + q. (2)

If all the g2j+1 are zero up to g2τ+1, i.e. g2j+1 = 0, j = 1, τ − 1, and g2τ+1 6= 0, then
τ is called the order of the weak focus (0, 0).
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It is known also that the system of differential equations (1) has a center at
O(0, 0) if and only if it has in some neighbourhood of the origin an independent of t
holomorphic first integral F (x, y) = C (an holomorphic integrating factor µ(x, y)).

The problem of the center was solved for quadratic system (k = l = m = n =
p = q = r = s = 0) by H.Dulac [10], and for symmetric cubic system (a = b = c =
d = f = g = 0) by K.S. Sibirski [16].

If the cubic system (1) contains both quadratic and cubic nonlinearities, the
problem of the center is solved only in some particular cases (see, for example,
[2, 4, 6–9,11–14]).

The quadratic system and symmetric cubic system with a singular point of center
type are Darboux integrable, i.e. these systems have a first integral (integrating
factor) of the form of product of invariant algebraic curves. Hence, the interest
arose to study the center problem for polynomial differential systems with algebraic
invariant curves. The problem of integrability for polynomial systems with invariant
algebraic curves and, in particular, with invariant straight lines was considered in
works [3, 5–8,17,20].

The straight line C + Ax + By = 0 is said to be invariant for (1) if there exists
a polynomial K(x, y) such that the identity holds

A · P (x, y) − B · Q(x, y) ≡ (C + Ax + By)K(x, y). (3)

K(x, y) is called the cofactor of the invariant straight line.

By [6] the cubic system (1) can not have more than four nonhomogeneous in-
variant straight lines, i.e. straight lines of the form

1 + Ax + By = 0 (|A| + |B| 6= 0). (4)

As homogeneous straight lines Ax + By = 0 this system can have only the lines
x ± iy = 0, i2 = −1. Hence, the cubic system (1) can not have more than six
invariant straight lines. This case is realized. To solve the problem of the center
in the case of system (1) with four nonhomogeneous invariant straight lines, it is
enough to require the vanishing of the first focal value (Liapunov quantity) g3 [6].
The vanishing of the first focal value in the case of system (1) with four invariant
straight lines among which are also homogeneous ones is not enough for the existence
of a center. Also the vanishing of the second focal value g5 is necessary.

Thus, the cubic system (1) with four invariant straight lines (real, complex, real
and complex) has at the origin a singular point of a center type if and only if the
first two focal values vanish [7].

If (1) has three invariant straight lines two of which are homogeneous, then
the presence of a center at (0, 0) is guaranteed by vanishing of the focal values
g2j+1 = 0, j = 1, 7 [19].

In this paper we study the center problem assuming that the cubic system (1)
has three invariant straight lines which pass through the same point.
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2 Conditions for the existence of a bundle of tree invariant straight

lines

From (3) it results that (4) is an invariant straight line of (1) if and only if A
and B are the solutions of the system

F1(A,B) = AB2 − fAB + bB2 + rA − lB = 0,

F2(A,B) = A2B + aA2 − gAB − kA + sB = 0,

F3(A,B) = B3 − 2A2B + fA2 + (c − b)AB − dB2 − pA + nB = 0,

F4(A,B) = A3 − 2AB2 − cA2 + (d − a)AB + gB2 + mA − qB = 0.

(5)

The cofactor of (4) is

K(x, y) = −Bx + Ay + (aA − gB + AB)x2+
(cA − dB + B2 − A2)xy + (fA − bB − AB)y2.

(6)

Further, we shall assume that the cubic system (1) has three invariant straight
lines which pass through the same point (x0, y0). By a rotation and rescaling coor-
dinate axes we can make that x0 = 0, y0 = 1. Consequently, the equation of each
invariant straight line of the bundle has the form

1 + Ax − y = 0. (7)

It is evident that the point (0, 1) of the intersection of these straight lines is a
singular point for (1), i.e. P (0, 1) = Q(0, 1) = 0. These equalities give r = −f − 1,
l = −b. Substituting B = −1, r = −f − 1 and l = −b in (5) we find that

F1 ≡ 0, F2 = (a − 1)A2 + (g − k)A − s = 0,

F3 = (f + 2)A2 + (b − c − p)A − d − n − 1 = 0,

F4 = A3 − cA2 + (a − d + m − 2)A + g + q = 0.

From the above equalities we can see that the system (1) can have three distinct
invariant straight lines of the form (7) iff the following conditions holds:

a = 1, f = −2, k = g, l = −b, n = −d − 1, p = b − c, r = 1, s = 0, (8)

4(g + q)c3 + (d − m + 1)2c2 + 18(d − m + 1)(g + q)c + 4d3

−12(m − 1)d2 + 12(m − 1)2d − 27(g + q)2 − 4(m − 1)3 6= 0.
(9)

In the conditions (8),(9) the straight line (7) is invariant for (1) iff A satisfies the
equation

A3 − cA2 + (m − d − 1)A + g + q = 0. (10)

The left-hand side of the inequality (9) coincides with the discriminant of the
equation (10) and (9) gives that the roots A1, A2, A3 of the (10) are not equal:
Ai 6= Aj ∀i 6= j.
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Using (5),(8) and (9) it is easy to show that along with three invariant straight
lines of the form (4) the system (1) has also one more invariant nonhomogeneous
straight line if and only if at least one of the following two series of conditions holds:

a = r = 1, b = l = s = 0, f = −2, k = g,
n = −d − 1, p = −c, q = g(d + 1),

(11)

(d + 1)(d + 2) 6= 0. The straight line 1 + (d + 1)y = 0;

a = r = 1, f = −2, k = g, l = −b, n = −d − 1, p = b − c, s = 0,
(m − gc + g2)(b + g)2 − (dg − q)(b + g) + bg = 0,
2(b + g)3 − (b + c)(b + g)2 − (d + 2)(b + g) + b = 0,

(12)

bg(b + g) 6= 0. The straight line 1 + gx − g(b + g)−1y = 0.

3 Sufficient center conditions

a) Darboux integrability.
Lemma 1. The conditions (11) are sufficient for the origin to be a center for the
system (1).

Proof. Assume that (d + 1)(d + 2) 6= 0 and that the inequality (9) holds.
Denote by A1, A2, A3 the roots of the equation (10). Then

c = A1 + A2 + A3, m = A1A2 + A1A3 + A2A3 + d + 1, g = −A1A2A3/(d + 2).

The straight lines lj ≡ 1 + Ajx − y = 0, j = 1, 2, 3, of the bundle and the straight
line l4 ≡ 1 + (d + 1)y = 0 have, respectively, the cofactors (see (6)):

K1(x, y) = x + A1y − A1A2A3(d + 2)−1x2+
(1 + d + A1A2 + A1A3)xy − A1y

2,

K2(x, y) = x + A2y − A1A2A3(d + 2)−1x2+
(1 + d + A1A2 + A2A3)xy − A2y

2,

K3(x, y) = x + A3y − A1A2A3(d + 2)−1x2+
(1 + d + A1A3 + A2A3)xy − A3y

2,

K4(x, y) = x(d + 1)(y − 1 + A1A2A3(d + 2)−1x).

(13)

The system (1) has the first integral of the form lα1
1 lα2

2 lα3
3 lα4

4 = const, where αj , j =
1, 4,

∑
|αj | 6= 0 are generally complex numbers if and only if the following identity

holds
4∑

j=1
αjKj(x, y) ≡ 0. (14)

Substituting (13) in (14) we obtain

α1 = (A2 − A3)(A2A3 + d + 2),
α2 = (A3 − A1)(A1A3 + d + 2),
α3 = (A1 − A2)(A1A2 + d + 2),
α4 = (A1 − A2)(A1 − A3)(A2 − A3)/(d + 1).
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Therefore, in conditions (11), (9), (d + 1)(d + 2) 6= 0, the system (1) has in some
neighborhood of the origin a holomorphic first integral of the form F (x, y) = const
and this means that (0, 0) is a center of (1).

Since the center variety is closed in the space of coefficients of the system (1),
then (0, 0) will be a center also in the cases when one or both of the inequalities
(d + 1)(d + 2) 6= 0 and (9) do not hold.

Lemma 2. The conditions

a = r = 1, f = −2, k = g, l = −b, n = −d − 1, p = b − c,
q = g + d(b + g), s = 0, (b + g)4 − (2b + c)(b + g)3

+(b2 + bc + m + 1)(b + g)2 + bd(b + g) − b2 = 0,
2(b + g)3 − (b + c)(b + g)2 − d(b + g) − b − 2g = 0.

(15)

are sufficient for the origin to be a center for system (1).

Proof. In the conditions (8) the equality g3 = 0 (see (2)) looks d(b+g)+g−q = 0,
from where we express q : q = g+d(b+g). Note that the conditions (15) are included
in (12) if in the last we put q = g + d(b + g).

Assume that the inequalities (9) and bg(b+ g)(1+(b+ g)(A2 +A3)−A2A3) 6= 0,
where A2, A3 are the roots of the equations (10), hold. Denote ν = b + g. The last
two equalities from (15) give us

d = 2ν2 − (b + c)ν − 2 + bν−1, m = cν − ν2 − 1 + 2bν−1.

In this case the equation (10) looks

(A − ν)(A2 − (c − ν)A − 2ν2 + (b + c)ν + bν−1 = 0.

We put A1 = ν and let A2, A3 be the roots of the quadratic equation
A2 − (c − ν)A − 2ν2 + (b + c)ν + bν−1 = 0. Then

b = ν(A2 − ν)(A3 − ν)/(ν2 + 1), c = A2 + A3 + ν.

The invariant straight lines

lj = 1 + Ajx − y, j = 1, 3, l4 = 1 + ν2 + (1 + A2ν + A3ν − A2A3)(νx − y)

of the system (1) have, respectively, the cofactors:

K1(x, y) = x + νy +
[
(ν(−A2A3 + A2ν + A3ν + 1))x2

+((A2 + A3)ν
3 + (1 − A2A3)ν

2 − (A2 + A3)ν + A2A3 − 1)xy

+(ν(−νA2 − νA3 + A2A3 − 1))y2
]
/(ν2 + 1),

K2(x, y) = x + A2y +
[
(ν(A2ν + A3ν − A2A3 + 1))x2

+(ν3A2 + ν2 − νA2 − 2νA3 + 2A2A3 − 1)xy

+(ν3 − 2ν2A2 − ν2A3 + νA2A3 − A2)y
2
]
/(ν2 + 1),

K3(x, y) = x + A3y +
[
(ν(A2ν + A3ν − A2A3 + 1))x2
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+(ν3A3 + ν2 − νA3 − 2νA2 + 2A2A3 − 1)xy

+(ν3 − 2ν2A3 − ν2A2 + νA2A3 − A3)y
2
]
/(ν2 + 1),

K4(x, y) = (1 + (A2 + A3)ν − A2A3)(νx − y + 1)(νy + x)/(ν2 + 1).

The system (1) has an integrating factor of the Darboux form µ(x, y) =

lβ1
1 lβ2

2 lβ3
3 lβ4

4 (this means that (0, 0) is a center) if and only if the numbers β1, β2, β3, β4

satisfy the identity
4∑

j=1

βjKj(x, y) ≡
∂Q

∂y
−

∂P

∂x
.

Substituting in this identity the expressions of the cofactors and identifying the
coefficients of x, y, x2, xy and y2, we obtain that

β1 = 1,

β2 = (A2A3ν − A2 + 2A3)/(A2 − A3),

β3 = (A2A3ν + 2A2 − A3)/(A3 − A2),

β4 = (A2A3ν
2 − A2A3 + 2νA2 + 2νA3 + 2)/(A2A3 − νA2 − νA3 − 1).

Lemma 3. The conditions

a = −n = r = 1, d = s = 0, f = −2, k = q = g,

l = −b, p = b − c, m = 3 + (b + g)(3c − 3b − 5g)

are sufficient for the origin to be a center for the system (1).

Proof. In the conditions of lemma 3 the equation (10) looks

A3 − (2b + β)A2 + (8bν + 3νβ − 5ν2 + 2)A − 2b + 2ν = 0, (16)

where ν = b + g, β = c − 2b. Suposse that (16) has three diferent roots A1, A2, A3.
The straight line lj ≡ 1 + Ajx − y = 0 of the bundle has the cofactor Kj(x, y) =
x + Ajy + (ν − b)x2 + (1 − A2

j + 2bAj + βAj)xy + (b − Aj)y
2 (j = 1, 2, 3).

The identity
3∑

j=1

βjKj(x, y) ≡
∂Q

∂y
−

∂P

∂x

holds if

β1 = (−2A2A3 + βA2 + βA3 − 2bβ + 16bν − β2 +

6βν − 10ν2 + 6)/((A1 − A2)(A1 − A3)),

β2 = (2A1A3 − βA1 − βA3 + 2bβ − 16bν + β2 −

6βν + 10ν2 − 6)/((A1 − A2)(A1 − A3)),

β3 = (−2A1A2 + βA1 + βA2 − 2bβ + 16bν − β2 +

6βν − 10ν2 + 6)/((A1 − A2)(A1 − A3)).
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Therefore, µ(x, y) = lβ1
1 lβ2

2 lβ3
3 is an integrating factor of the system (1) and, conse-

quently, (0, 0) is a center.

By the closedness of the center variety in the space of coefficients of (1) the
singular point (0, 0) will be the center type also in the cases when the equation (16)
has multiple roots.

b) Symmetry.

Let

a = r = 1, c = 6b + 5g, f = −2, k = g, l = −b, p = −5(b + g), s = 0,
d = −5(b + g)(4 + (3b + 2g)(4b + 3g))/(13b + 10g),
m = (5(b + g)(3b + 2g)(5b + 4g) − b − 10g)/(13b + 10g),
n = (5(b + g)(3b + 2g)(4b + 3g) + 7b + 10g)/(13b + 10g),
q = −(5(b + g)2(3b + 2g)(4b + 3g) + 20b2 + 27bg + 10g2)/(13b + 10g).

(17)

The system (1) with (17), after the change of coordinates

X =
x

1 − y
, Z =

y

1 − y
,

defines the following equation of nonlinear oscillations:

P4(X)ZZ ′ = −XP0(X) − 3XP1(X)Z − P2(X)Z2 − P3(X)Z3, (18)

where

P0(X) = 1 + gX,

P1(X) = (19b + 10g − 5(4b + 3g)(3b + 2g)(b + g) − (20b2 + bg−
10g2 + 5(4b + 3g)(3b + 2g)(b + g)2)X)/(3(13b + 10g)),

P2(X) = (13b2 + 10bg + (6b − 5(4b + 3g)(3b + 2g)(b + g))X−
(20b2 + 14bg + 5(4b + 3g)(3b + 2g)(b + g)2)X2)/(13b + 10g),

P3(X) = b,

P4(X) = (13b + 10g + (13b + 10g)(6b + 5g)X+
(6b + 5(9b + 7g)(3b + 2g)(b + g))X2+
(20b2 + 14bg + 5(4b + 3g)(3b + 2g)(b + g)2)X3)/(13b + 10g).

The substitution Z = P0(X)Y
1−P1(X)Y [15] reduces the equation (18) to the form

Q4(X)Y Y ′ = −X − Q2(X)Y 2 − Q3(X)Y 3,

where

Q2(X) ≡ P0(X)P2(X) − 3XP 2
1 (X) + P ′

0(X)P4(X),
Q3(X) ≡ 2XP 3

1 (X) − P0(X)P1(X)P2(X) + P 2
0 (X)P3(X)+

P0(X)P ′

1(X)P4(X) − P ′

0(X)P1(X)P4(X),
Q4(X) ≡ P0(X)P4(X).
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By Theorem 9.4 of [1] in the case Q3(X) = X2j+1P̃ (X), P̃ (0) 6= 0 the origin is
a center for the equation (18) if and only if the system of equations

y4R3(x)Q5
3(y) − x4R3(y)Q5

3(x) = 0,
xQ(x)R2(y) − yQ(y)R2(x) = 0,

(19)

where

R(X) ≡ Q4(X)[Q3(X) − XQ′

3(X)] + 3XQ2(X)Q3(X),

Q(X) ≡ Q4(X)[R′(X)Q3(X) − 3R(X)Q′

3(X)] + 4Q2(X)Q3(X)R(X)

has in some neighborhood of X = 0 a holomorphic solution

Y = φ(X), φ(0) = 0, φ′(0) = −1. (20)

Let us consider the following two series of conditions on the coefficients of system
(1):

a = r = 1, c = g = k = −3b/2, d = −5, f = −2,
l = −b, m = −7, n = 4, p = 5b/2, q = b;

(21)

a = r = 1, c = 6b + 5g, f = −2, k = g, p = −5(b + g),
l = −b, d = −5(b + g)(4 + (3b + 2g)(4b + 3g))/(13b + 10g),
m = (5b(b + g)(3b + 2g) − 21b + 30g)/(13b + 10g),
n = (5b(b + g)(3b + 2g) − 8b + 40g)/(13b + 10g),
q = −4g, r = 1, s = 0, (3b + 2g)(b + g)2 + b − 2g = 0.

(22)

Remark. The conditions (21) (respectively, (22)) can be obtained from conditions
(17) if to the last we add the equality g = −3b/2 (respectively, (3b + 2g)(b + g)2 +
b − 2g = 0).
Lemma 4. Each of conditions (21), (22) are sufficient conditions for the system
(1) to have a center at the origin.

Proof. Assume first that the conditions (21) hold. Then the equalities (19) have
a solution in the form of (20):

Y =
3b2X2 − 20bX + 12 + (bX − 2)

√
3(3b2X2 − 20bX + 12)

2b(2 − 3bX)
.

Now, assume that the conditions (22) hold. From (3b + 2g)(b + g)2 + b− 2g = 0
we find that

b = 2ν(1 − ν2)/(ν2 + 3), g = ν(1 + 3ν2)/(ν2 + 3),

where ν is a parameter. The conditions (22) look:

a = r = 1, b = 2ν(1 − ν2)/(ν2 + 3), c = ν(3ν2 + 17)/(ν2 + 3),
d = −5(3ν2 + 1)/(ν2 + 3), f = −2, g = ν(1 + rν2)/(ν2 + 3),
k = ν(1 + rν2)/(ν2 + 3), l = 2ν(ν2 − 1)/(ν2 + 3),
m = (13ν2 − 1)/(ν2 + 3), n = 2(7ν2 + 1)/(ν2 + 3),
p = −5ν, q = −4ν(3ν2 + 1)/(ν2 + 3), s = 0.
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Finally, it is easy to verify that ecuations (19) have a solution in the form of (20):

Y = −
3ν2X2 + 10νX + 3 − (νX + 1)

√
3(3ν2X2 + 10νX + 3)

2(3νX + 1)
.

4 The problem of the center

In this section by ”=⇒” we will understand ”further it is used”.
Theorem. The order of a weak focus for cubic differential systems with a bundle
of three invariant straight lines is at most five.

Proof. Without loss of generality, we shall consider the cubic system (1) with
conditions (8),(9). In the same conditions we shall calculate the first five focal values
using the algorithms described in ([18]). The first one looks: g3 = q − g − d(b + g)
(see (2), (8)). From g3 = 0 we find q:

q = g + d(b + g)

and substitute into the expression for g5. We have g5 = bd(m − (b + g)(3c − 3b −
5g) − 2d − 3). If b = 0 then =⇒ Lemma 1, if d = 0 then =⇒ Lemma 3.

Let
bd 6= 0 (23)

and
m = (b + g)(3c − 3b − 5g) + 2d + 3.

The third focal value being cancelled by non-zero factors is of the form g7 = f1f2,
where

f1 = 2(b + g)3 − (b + c)(b + g)2 − d(b + g) − b − 2g,
f2 = 6b + 5g − c.

If f1 = 0 =⇒ Lemma 2. Further, we shall consider that bdf1 6= 0. Simplify the
focal values g9 and g11 by bdf1.

From f2 = 0 we express c:
c = 6b + 5g

and substitute it in g9, g11. The g9 looks as

g9 = (13b + 10g)d + 5(b + g)(4 + (3b + 2g)(4b + 3g)). (24)

If the coefficient d in g9 is equal to zero, i.e. g = −13b/10, then g9 = −3b(b2 +
100)/50 6= 0 (see (23)). We require that 13b + 10g 6= 0. From g9 = 0 (see (24))
express d :

d = −5(b + g)(4 + (3b + 2g)(4b + 3g))/(13b + 10g) (25)

and substitute it in g11. For g11, after corresponding simplifications, i.e. after elimi-
nation of a denominator and non-zero factors, including numerical one, we have

g11 = (b + g)(3b + 2g)((3b + 2g)(b + g)2 + b − 2g).
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If b+g = 0, then from (25) d = 0. That is in contradiction with assumption (23).
If (3b + 2g)((3b + 2g)(b + g)2 + b− 2g) = 0 =⇒ Lemma 4 (in the case of 3b + 2g = 0
we have the series (21) of conditions on the coefficients of the system (1) and in the
case (3b + 2g)(b + g)2 + b − 2g = 0, respectively, the series (22)).
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[6] Cozma D. and Şubă A., Partial integrals and the first focal value in the problem of centre.
NoDEA Nonlinear Differential Equations Appl. 2 (1995), no. 1, 21–34.
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