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CMC–surfaces, ϕ–geodesics and the Carathéodory

conjecture

Igor Nikolaev

Abstract. A short proof of the Caratheodory conjecture about index of an isolated
umbilic on the convex 2–dimensional sphere is suggested.
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1 Introduction

The constant mean curvature (CMC–) surfaces in E3 are known to admit a
continuous family of local, non–trivial, isometric deformations preserving mean cur-
vature of the surface (H–deformations). In the case when surface is compact Ume-
hara [11] showed that the converse is also true.

The maximal and minimal curvature lines of CMC–surface form an orthogonal
net which is called réseau de Bonnet, cf Cartan [3]. The Bonnet Theorem says that if
the CMC–surface is simply connected and umbilic–free, then under H–deformations
the orthogonal net “rotates” through a constant angle which can be taken as a
parameter of deformation.

If the CMC–surface is not simply connected or umbilic–free, Cartan seems to be
the first to ask about possible scenario of evolution of réseau de Bonnet under the
H–deformations.

In the present note we study 1 evolution of the orthogonal nets in the case when
CMC–surface is simply connected with a single umbilic or, equivalently, doubly
connected and umbilic–free. Namely, if we “pinch” the umbilic, the CMC–surface
becomes an annulus whose points undergo H–deformations according to the Bonnet
Theorem. In general, the rotation angle is no longer constant at all the points
because annulus cannot be covered by a single chart.

However, the Bonnet Theorem implies that every curve of the orthogonal net is
a ϕ–geodesic line whatever H–deformations are applied to a CMC–surface. Metric
ϕ is given by the linear element ds = |ϕ||dz|, where ϕdz2 is a holomorphic quadratic
”differential” associated to the CMC–surface. Of course, ϕ(0) = 0 at the umbilical
point.

This observation is crucial, because the ϕ–geodesics near n–th order zero of a
holomorphic quadratic form are well–understood due to the works of Strebel [10].
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1For the reasons which will be clear later.
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Roughly speaking, the ϕ–geodesics fill–up the annulus either by “hyperbolas” or
“radii”. Therefore, possible configurations of réseau de Bonnet near the umbilic
looks like a singularity with the finite number of hyperbolic and parabolic sectors.

Despite independent interest, the orthogonal nets are auxiliary for us. We postu-
late different fact here: H–deformations of orthogonal nets give an amazingly simple
proof to the Caratheodory’sche Vermutung (Conjecture):

Theorem 1. Let S2 be a C∞ surface which bounds a convex compact body in the
Euclidean space E3. Then S2 has at least two umbilical points. In other words, the
Euler-Poincaré index of isolated umbilical point is at most +1.

(A short overview of this conjecture can be found in [1]; see also [2],[5],[7].)

2 ϕ–geodesics

Until further indications, M is a simple domain of the complex parameter z.
Let us consider the holomorphic functions ϕ(z) vanishing at the unique point of M
which we identify with 0. An order n ≥ 1 is assigned to 0, if there exists a complex
constant a 6= 0 such that ϕ(z) = azn + O(|z|n+1).

Flat metric ϕ with the cone singularity of angle (n + 2)π is given by the formula

|ds| = |ϕ||dz|,

provided ϕ(z)dz2 is a quadratic form on M . By a ϕ–geodesic line in M one under-
stands the line conisting of the shortest arcs relatively metric ϕ. Any two points in
M (including 0) may be joined by the unique ϕ–geodesic line. Strebel classified the
possible types of ϕ–geodesics in the neighborhood of n–th order zero by proving the
following lemma.

Lemma 2. ([10]) Any two points in a neighborhood M of n–th order zero of holo-
morphic 2–form ϕ(z)dz2 can be joined by a unique ϕ–geodesic. Moreover, each
ϕ–geodesic is either an arc defined by the equation Arg ϕ(z)dz2 = Const, or is
composed of the two radii centered in 0 with the minimal angle ≥ 2π/(n + 2).

The foliation F on M\0 is said to be geodesic if every leaf of F is a ϕ–geodesic
line. Before we state the general lemma on the structure of geodesic foliations, let
us consider an example when all F ’s can be obtained by a ”brute force”.

If 0 is a double zero, then the ϕ–metric is given by the linear element ds2 = (u2 +v2)(du2 +dv2) where u+iv
is a natural parameter. The metric |ds| is Liouville’s and the geodesic lines in this metric are completely
integrable. The general integral is known to be of the form

Z

du√
u2 − a

±
Z

dv√
v2 + a

= a′,

where a, a′ are two independent constants. Easy calculations show that no information will be lost if we

suppose a = 0. The integral takes the form ln |u| ± ln |v| = a′. The geodesic foliation is described by two

”families of curves”: v = Cu and v = C/u, where C is an arbitrary constant. Thus, F near a double zero
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is either the ”node” with the geodesics radii tending to 0, or the ”saddle” with four sectors filled–up by the

geodesic ”hyperbolas”.

Let w be a finite ”word” on the alphabet consisting of two symbols h and p. We
introduce the elementary operations on w:

(i) a cyclic permutation of the symbols in w, and

(ii) a contraction of the p–symbol: p2 = p.

Two words are equivalent w1 ∼ w2 if and only if w2 can be obtained from w1 by the
elementary operations. The equivalence class of word w is denoted by [w].

Fix an integer number n ≥ 1. To every symbol h in w we assign a weight
|h| = 2π/(n + 2). To every symbol p we assign the weight |p| = αi, where αi is a
positive real. The weight of w is an additive function equal to the sum of weights of
the symbols entering w. The equivalence class [w] is called normalized if |w| = 2π
for all w ∈ [w]. (Note that the weight of w is one and the same for all w ∈ [w].)

Lemma 3. Let h and p stay for the hyperbolic and the parabolic sectors of the
singularity w, respectively. We encode the singular point w by a sequence of symbols
h and p in the order the h– and the p–sectors occur when turning clockwise around
the singularity. Then:

(i) each ϕ–geodesic foliation F is topologically equivalent to the singularity w of a
normalized equivalence class [w];

(ii) each normalized equivalence class [w] can be realized as a ϕ–geodesic foliation
F with the singularity w ∈ [w] in a neighborhood of n–th order zero of ϕ for some
n ≥ 1.

Proof. Denote by M a neighborhood of the n–th order zero of ϕ. Let us introduce
a partial order for the points x, y ∈ M : x ≤ y if and only if Arg x ≤ Arg y. If
x ∈ M is an arbitrary point, then by Lemma 2 the ϕ–geodesic line through x is
either (i) the hyperbola Arg ϕdz2 = Const or (ii) the radius Ox. Let us consider
the first possibility.

(i) The hyperbola Arg ϕdz2 = Const must tend to the asymptotic rays Oz1, Oz2

with z1 < x < z2, enclosing the angle 2π/(n+2). Clearly, the only possibility to the
geodesic foliation F is to form a hyperbolic sector z1Oz2. Of course, along Oz1 and
Oz2 Arg ϕdz2 is constant.

(ii) Let Ox be the geodesic radius through x, distinct from the boundary radii
of the hyperbolic sector. Then through the nearby points |x − y| < ε one can draw
the geodesic radii Oy’s. Denote by y1Oy2 the maximal connected parabolic sector
filled-up with the geodesic radii. Clearly, y1 < x < y2. The angle enclosed between
two boundary radii, we denote by α. In general, 0 ≤ α ≤ 2π.

If the hyperbolic sector h is followed by another hyperbolic sector h, we write
this as hh. If h is followed by a parabolic sector, we put it as hp. A parabolic sector
p followed by the parabolic sector p, gives a larger parabolic sector p = pp and the
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contraction rule (ii) follows. Of course, the ”weights” of the sectors are equal to the
angles swept by the sectors.

Finally, according to the definition of normalized equivalence class, each singu-
larity consists of sequence of parabolic and hyperbolic sectors; every curve in these
sectors is a geodesic arc.

The part (ii) of Lemma 3 is proved by the similar argument.

3 CMC–surfaces

Every smooth immersion f : M → E3 of an orientable surface M into the
Euclidean space E3 induces a Riemann structure on M ; let z = u + iv be the
corresponding local parameter. With respect to z the first fundamental form can be
written as ds2 = e2λ|dz|2.

If ldu2 + 2mdudv + ndv2 is the second fundamental form, we consider a complex
quadratic form ϕdz2, such that ϕ(z) = 1

2(l − n) − im. The Mainardi–Codazzi
equations imply that ϕ is holomorphic on M if and only if f(M) is a CMC–surface.
Locally, along the lines of minimal and maximal curvature Arg ϕdz2 = 0 and ϕ(0) =
0 at the umbilic points.

A continuous deformation ft of the immersion f = f0 is the isometry of surface
M such that M × [0, 1] → E3 is a continuous mapping. The continuous deformation
ft is called an H–deformation if Ht = H for all t ∈ [0, 1], where H : M → R is the
mean curvature function.

The CMC–surfaces are known to admit a non–trivial H–deformations and in the
case of compact surfaces, they are the only ones with such a property. Of course,
there are known many examples of compact CMC–surfaces of genus g > 0.

What happens with the lines of principal (i.e. minimal or maximal) curvature of
the CMC–surface during an H–deformation? If M is a local CMC–surface without
umbilics, the principal curvature lines of f0(M) and ft(M) form two families of the
parallel lines intersecting each other with the constant angle proportional to the
parameter t (the Bonnet Theorem, see e.g.[4]). Note that if we fix the ϕ–metric
on M corresponding to f0(M), then the principal curvature lines of ft(M) coincide
with the ϕ–geodesic lines of the inclination t. If the umbilical points are allowed,
then a law is given by the following lemma.

Lemma 4. Suppose that M0 = f0(M) is a canonical CMC–surface with the
quadratic function ϕ = zn, n ≥ 1. Let ϕ be a metric on M corresponding to M0. If
Mt = ft(M) is an H–deformation of M0, then one of the two principal curvature
lines of Mt coincide with the ϕ–geodesic lines on M for any t ≥ 0.

Proof. In the polar coordinate system the coefficients of the second fundamental
form of surface Mt are given by the equations:
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l = Heλ + |z|n cos(2t − n Arg z),

m = |z|n sin(2t − n Arg z), (1)

n = Heλ − |z|n cos(2t − n Arg z),

where t is a parameter of the H–deformation, cf [11]. The following two cases are
possible.

(i) An H–deformation, such that t is constant on M . It can be immediately
seen that in new coordinates ũ = cos t u + sin t v, ṽ = − sin t u + cos t v the first
and the second forms of surfaces M0 and Mt are the same. By the fundamental
theorem, surfaces M0 and Mt may differ only by a rigid motion in E3. Thus, the
H–deformation is trivial.

(ii) A non–trivial H–deformation. By item (i), t varies for the points of M . Thus
far, associated to every z ∈ M\0, there is a chart in which the second fundamental
form of surface Mt(z) writes as

l = Heλ + cos 2t, m = sin 2t, n = Heλ − cos 2t,

where t is the deformation parameter, cf [13]. A straightforward calculation shows
that the principal curvature lines of the surface Mt(z) coincide with the ϕ–geodesic
lines of the slope t on M . (This fact follows also from the Bonnet Theorem.) Since
every regular point z ∈ M can be endowed with such a chart, Lemma 4 is proved.

4 Proof of Theorem 1

Take a convex C∞ immersion f0 : S2 → E3 of the 2–sphere into the Euclidean
space E3 which is not totally umbilic (i.e. there are no U ⊆ S2 such that f0(U) is a
part of the round sphere). In other words, umbilics are supposed isolated and their
number is finite. Denote by ds0 a Riemann metric on S2 induced by the immersion
f0 and by H : S2 → R the corresponding mean curvature function.

Definition 1. By a Hopf spheroid in E3 we understand a convex C∞ immersion
f : S2 → E3 such that there exists at least one umbilical point p and a small closed
disc D ∋ p such that H(D) = Const.

Lemma 5. There exist infinitely many Hopf spheroids in E3.

Proof. By the results of Wente and Kapouleas any compact orientable surface
Sg of genus g > 0 admits an immersion into E3 which is a CMC-surface with
H > 0; cf.[6],[12]. Fix g ≥ 2 and consider the lines of principal curvature of any
such immersion. By the index argument, there exists an umbilic p ∈ Sg and a small
closed disc D ∋ p which is a convex local surface in E3. We separate this local
surface from Sg. To obtain a Hopf spheroid, it remains to complete this piece of
CMC-surface to a C∞ immersion S2 → E3. By Urysohn’s lemma this can be done
in an infinite number of ways. �
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Lemma 6. For the Hopf spheroids the Caratheodory conjecture is true.

Proof. Without loss of generality we can assume that the umbilic point p of Hopf
spheroid is unique. (For otherwise, if there are more than one umbilic then we are
done.) Since a Hopf spheroid is locally CMC, we apply Lemma 4 to identify the
curvature lines in the disc D ∋ p with ϕ-geodesic lines in the vicinity of a singularity
w.

Let w ∈ [w] be a word of the minimal length in the normalized equivalence class
[w]. According to Lemma 3, there exists a singularity of order n whose topological
type is encoded by the sequence w of symbols h and p. Let w admit 〈h〉 symbols of
type h and 〈p〉 symbols of type p. By the normalization axiom, 〈h〉 ≤ n + 2.

To estimate the Euler–Poincaré index of singularity w, note that the parabolic
sectors make no contribution to the index value and the number 〈p〉 can be neglected.
To the contrary, if there are no hyperbolic sectors (i.e. w = p) we necessarily have
one parabolic sector. The general formula is true:

Ind w =

{

1 − 〈h〉
2 if w 6= p,

+1 if w = p.

In either case Ind w ≤ 1 and by the index argument the conjecture follows.

Now we are ready to finish the proof of Theorem 1. But first we wish to outline
the main idea. To every convex C∞ immersion f0 : S2 → E3 one can relate a Hopf
spheroid. This spheroid is uniquely defined by f0 and is a ‘modification’ of f0 which
has an interesting ‘mechanical’ interpretation.

Suppose that f0 is a convex steel ball filled-up with a gas under a pressure. Let
p be an isolated umbilic of f0. We drill a small hole in p and glue-up a soap film
D into this hole maintaining a pressure 2 inside the ball. We also ‘deform’ slightly
the ‘edges’ of the cut in order to keep the modified surface f : S2 → E3 in the class
C∞. We claim that f is a Hopf spheroid.

Indeed, f(D) is a local CMC-surface with an umbilic point p ∈ D. Moreover,
the index of umbilic on the Hopf spheroid is equal to the index of p on f0. (This is
because the foliation by principal curvature lines at the ‘steel part’ of ball remains
intact.) In general, if F0 and F are foliations by the principal curvature lines on f0

and f , respectively, then F is obtained from F0 by a homotopy of opening of a leaf;
cf [9].

Let f0 be as above. If p is an isolated umbilic of f0 then we take a closed disc
|D| ≤ r centred at the point p. We are going to define a local CMC-surface f(D).
Let z = u + iv be a local parameter which corresponds to a part of CMC-surface
with an umbilic; see the beginning of this section. By the results of Umehara [11]

2The absolute value of the pressure depends on how ‘flat’ is the surface at the point p. Of course,
by ‘pressure’ we understand difference of pressures inside and outside the steel ball.
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(see also [3],[4]) there exists a family of isometric H-deformations depending on a
real parameter t:

I = e2λ|dz|2, IIt = ldu2 + 2m dudv + ndv2, (2)

with l,m and n given by equations (1). The Mainardi-Codazzi and Gauss equations
for I, IIt:

∂ϕ

∂z
=

∂H

∂z
, |ϕ|2 = e4λ(H2 − K), (3)

where ϕ = eitzn is a complex quadratic form ϕdz2, are satisfied for any real t.
(Indeed, the first equation is true since H = Const and ϕ is holomorphic; the
second equation follows from |ϕeit| = |ϕ| and the fact that H-deformation is an
isometry.) Therefore, the fundamental forms (2) are realized by a concrete local
CMC-surface for each real number t.

Let ft(D) be a family of local CMC-surfaces described above. Denote by A an
annular region which surrounds disc D:

A = {z = u + iv| r ≤ |z| ≤ r + ε}. (4)

To glue-up ft(D) properly, we fix the metric λ so that λ|∂Ar+ε
= λ|∂Ar

, where the
left part denotes a metric on the exterior boundary of A which is induced by metric
of the surface f0. The boundary condition λ|∂Ar

gives a unique solution ft=t∗(D) to
the Gauss equation, so that a representative in the family ft(D) is fixed.

To obtain a C∞ Hopf spheroid it remains to conjugate ft∗(D) with the rest of
the sphere:

f(S2) =

{

ft∗(D), if z ∈ D ⊂ Int Dr+ε,

f0(S
2), if z ∈ S2\Dr+ε.

(5)

By the Urysohn Lemma, function f in formula (5) can be chosen C∞ for an arbitrary
small ε, see formula (4). Moreover, taking r sufficiently small we can fix number n
(see (1)) equal to the order of quadratic form ϕ at point p of the surface f0. (Such
an order is correctly defined for any ϕ, not necessary holomorphic.)

Thus, the surface f given by equation (5) is a Hopf spheroid. By the Lawson-
Tribuzy theorem f is uniquely defined up to a rigid motion in E3; see [8]. To finish
the proof of Caratheodory conjecture, it remains to notice that passage from f0 to
f gives us a homotopy h(F0) = F between foliations induced by curvature lines. In
particular, Ind p0 = Ind p. By Lemma 6, the Caratheodory conjecture follows. �
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