Note on multiple zeta-values*

Henryk Żoładek

Abstract

We introduce some generating functions $g(t ; x)$ for multiple zeta values. They satisfy linear differential equations $P g+x^{a} g=0$ of the Fuch type. We find WKB-type expansions for g as $x \rightarrow \infty$. M41

1 Certain familiar generating function

D. Zagier had presented in [8] an 'ultra-simple' Calabi's proof of the Euler formula $\zeta(2)=\pi^{2} / 6$. That proof uses the integral $\int_{0}^{1} \int_{0}^{1}(1-x y)^{-1}$ (equal to $\left.\frac{3}{4} \zeta(2)\right)$ and the substitution $(x, y)=\left(\frac{\sin u}{\cos v}, \frac{\sin v}{\cos u}\right)$. Below I present a proof which is even more simple (in my opinion).

The function $f_{2}(x)=\frac{\sin \pi x}{\pi x}$ has the Taylor expansion

$$
\begin{equation*}
f_{2}=1-\frac{\pi^{2}}{3!} x^{2}+\frac{\pi^{4}}{5!} x^{4}-\frac{\pi^{6}}{7!} x^{6}+\ldots \tag{1}
\end{equation*}
$$

and the infinite product representation

$$
\begin{equation*}
f_{2}=\left(1-\frac{x^{2}}{1^{2}}\right)\left(1-\frac{x^{2}}{2^{2}}\right)\left(1-\frac{x^{2}}{3^{2}}\right) \ldots \tag{2}
\end{equation*}
$$

Comparing the coefficients of x^{2} we see immediately that $\sum \frac{1}{n^{2}}=\frac{\pi^{2}}{3!}$.
We recall that the multiple ζ-values are defined as follows:

$$
\begin{equation*}
\zeta\left(a_{1}, \ldots, a_{k}\right)=\sum_{0<n_{1}<\ldots<n_{k}} \frac{1}{n_{1}^{a_{1}} \ldots n_{k}^{a_{k}}} \tag{3}
\end{equation*}
$$

for integer $a_{i} \geq 1, a_{k} \geq 2$ (see [8]).
Therefore f_{2} is the generating function for multiple zeta-values,

$$
\begin{equation*}
f_{2}(x)=1-\zeta(2) x^{2}+\zeta(2,2) x^{4}-\zeta(2,2,2) x^{6}+\ldots \tag{4}
\end{equation*}
$$

Since any $\zeta(2, \ldots, 2)$ (k arguments) is expressed via $\zeta(2 l)$'s for $l \leq k$, one finds that

$$
\zeta(2 k)=\pi^{2 k} \times \text { rational number } .
$$

For example, $\zeta(2,2)=\frac{1}{2} \sum_{m \neq n} m^{-2} n^{-2}=\frac{1}{2}\left(\sum_{m, n}-\sum_{m=n}\right) m^{-2} n^{-2}$, that gives $\zeta(4)=\zeta(2)^{2}-2 \zeta(2,2)=\pi^{4} / 36-2 \pi^{4} / 120=\pi^{4} / 90$; similarly, one finds $\zeta(6)=3 \zeta(2,2,2)+\frac{3}{2} \zeta(2) \zeta(4)-\frac{1}{2} \zeta(2)^{3}=\pi^{6} / 945$, etc.

Note also that instead of $\frac{\sin \pi x}{\pi x}$ one could use $\cos \pi x$ as a generating function for some quantities easily expressed via the multiple zeta-values.

[^0]
2 Irrationality of $\zeta(2)$

This result was firstly proved by A. Legendre [5]. The proof we present below is a modification of the proof of irrationality of π given in the book of A. Shidlovskií [7].

One begins with the identities

$$
\begin{align*}
\int_{-\pi / 2}^{\pi / 2} \varphi(y) \cos y & =\left.\varphi(y) \sin y\right|_{-\pi / 2} ^{\pi / 2}-\int \varphi^{\prime}(y) \sin y \\
& =\left[\varphi\left(\frac{\pi}{2}\right)+\varphi\left(-\frac{\pi}{2}\right)\right]-\int \varphi^{\prime \prime}(y) \cos y \tag{5}\\
& =\ldots \ldots \\
& =\left[\varphi\left(\frac{\pi}{2}\right)+\varphi\left(-\frac{\pi}{2}\right)\right]-\left[\varphi^{\prime \prime}\left(\frac{\pi}{2}\right)+\varphi^{\prime \prime}\left(-\frac{\pi}{2}\right)\right]+\ldots
\end{align*}
$$

Suppose that $\zeta(2)$ is rational, i.e. that $\frac{\pi^{2}}{4}=\frac{a}{b}, a, b \in \mathbb{Z}$. We take $\varphi(y)=$ $\frac{b^{n}}{n!}\left(\frac{\pi^{2}}{4}-y^{2}\right)^{n}=\frac{\left(a-b y^{2}\right)^{n}}{n!}$ in (5). The left-most (positive) integral in (5) behaves like C^{n} / n ! for large n and takes values between 0 and 1 . Next, for $k<n$ we have $\varphi^{(k)}(\pm \pi / 2)=0$ and for $k=2 l \geq n$ and even, the polynomial $\varphi^{(k)}(y)$ is a sum of terms $\frac{1}{n!} b^{m}\left(y^{2 m}\right)^{(2 l)} \times$ integer $=\frac{(2 l l)!}{n!}\binom{2 m}{2 l} b^{m} y^{2(m-l)} \times$ integer. Thus the right-most combination in (5) should represent an integer number (a contradiction).

Note that this proof relies essentially upon the fact that $(\cos x)^{\prime \prime}=-\cos x$, which follows from the 'functional equation' $\cos (\pi \pm y)=-\cos y$.

The proof of transcendency of $\zeta(2)$ was firstly given by F. Lindemann [6]. It is more complicated, so we do not present it here.

3 Other generating functions

Analogously to (3) one can define the functions

$$
\begin{aligned}
f_{a_{1}, \ldots, a_{k}}(x)= & 1-\zeta\left(a_{1}, \ldots, a_{k}\right) x^{a}+\zeta\left(a_{1}, \ldots, a_{k}, a_{1}, \ldots, a_{k}\right) x^{2 a} \\
& -\zeta\left(a_{1}, \ldots, a_{k}, a_{1}, \ldots, a_{k}, a_{1}, \ldots, a_{k}\right) x^{3 a}+\ldots,
\end{aligned}
$$

$a=a_{1}+\ldots+a_{k}$.
It turns out that this function can be represented as $\left.g(x ; t)\right|_{t=1}$, where the function $g=g_{a_{1}, \ldots, a_{k}}(t ; x)$ satisfies the following linear differential equation

$$
\begin{equation*}
P g+x^{a} g=0 . \tag{6}
\end{equation*}
$$

Here $P=R Q^{a_{1}-1} R Q^{a_{2}-1} \ldots R Q^{a_{1}-1}$ is a differential operator defined via $Q=$ $(1-t) \partial, R=t \partial$ and $\partial=\partial / \partial t$. Moreover $g(x ; t)$ is analytic near $t=0$ and $g(x, t)=$ $1+O(t)$.

To see this, following [8], introduce the functions

$$
I\left(\varepsilon_{1}, \ldots, \varepsilon_{m} ; t\right)=\int \cdots \int_{0<t_{1}<\ldots<t_{m}<t} \frac{d t_{1}}{A_{\varepsilon_{1}}\left(t_{1}\right)} \cdots \frac{d t_{m}}{A_{\varepsilon_{m}}\left(t_{m}\right)}
$$

(indexed by $\varepsilon_{1}=0,1, \varepsilon_{2}=0,1, \ldots, \varepsilon_{m}=0,1$) with

$$
A_{0}(t)=t, A_{1}(t)=1-t .
$$

Next, define

$$
\tilde{\zeta}\left(a_{1}, \ldots, a_{k} ; t\right)=I(\underbrace{1,0, \ldots, 0}_{a_{1}}, \ldots, \underbrace{1,0, \ldots, 0}_{a_{k}} ; t) ;
$$

one finds that $\zeta\left(a_{1}, \ldots, a_{k}\right)=\tilde{\zeta}\left(a_{1}, \ldots, a_{k} ; 1\right)$ (see [8]).
If $\mathbf{1}$ denotes the constant function $\mathbf{1}(t) \equiv 1$, then one has the formula

$$
\begin{aligned}
\tilde{\zeta}\left(a_{1}, \ldots, a_{k} ; \cdot\right) & =\left[\partial^{-1} t^{-1}\right]^{a_{k}-1} \partial^{-1}(1-t)^{-1} \ldots\left[\partial^{-1} t^{-1}\right]^{a_{1}-1} \partial^{-1}(1-t)^{-1} \mathbf{1} \\
& =P^{-1} \mathbf{1} .
\end{aligned}
$$

Therefore the function

$$
\begin{equation*}
g=1-\tilde{\zeta}\left(a_{1}, \ldots, a_{k} ; t\right) x^{a}+\tilde{\zeta}\left(a_{1}, \ldots, a_{k}, a_{1}, \ldots, a_{k} ; t\right) x^{2 a}-\ldots \tag{7}
\end{equation*}
$$

equals

$$
\left[\left(I-x^{a} P^{-1}+x^{2 a} P^{-2}-\ldots\right) \mathbf{1}\right](t)=\left[\left(I+x^{a} P^{-1}\right)^{-1} \mathbf{1}\right](t) .
$$

It implies that g satisfies the equation $\left(I+x^{a} P^{-1}\right) g \equiv 1$ and, in consequence, the equation (6).

Example 1. In the case $k=1$ and $a_{1}=2$ the equation (6) becomes the hypergeometric equation

$$
(1-t) \partial(t \partial g)+x^{2} g=0
$$

(with singular points at $t=0,1, \infty$). Its characteristic exponents (i.e. the powers α in the solutions $\left(t-t_{0}\right)^{\alpha}+\ldots$ as $t \rightarrow t_{0}$ or $t^{\alpha}+\ldots$ as $\left.t \rightarrow \infty\right)$ are the following: $\lambda=\lambda^{\prime}=0$ at $t=0 ; \rho=0, \rho^{\prime}=1$ at $t=1 ; \tau=x, \tau^{\prime}=-x$ at $t=\infty$. It follows (see [1]) that our distinguished solution is the hypergeometric function

$$
g_{2}(x ; t)=F(x,-x ; 1 ; t) .
$$

In [4] one can find the following interesting identities (proved by Broadhurst):

$$
g_{1,3}(\sqrt{2} x ; t) \equiv F(x,-x ; 1 ; t) F(i x,-i x ; 1 ; t), \quad f_{1,3}(\sqrt{2} x)=f_{4}(x) .
$$

Generally, the equation (6) is of the Fuchs type (i.e. with regular growth of solutions at singular points). Its characteristic equations (for the characteristic exponents) are the following: $\alpha^{a_{k}}(\alpha-1)^{a_{k-1}} \ldots(\alpha-k+1)^{a_{1}}$ at $t=0 ; \alpha(\alpha-1)$ $\ldots(\alpha-a+k) \cdot\left(\alpha-a_{k}+1\right)\left(\alpha-a_{k}-a_{k-1}+2\right) \ldots\left(\alpha-a_{k}-\ldots-a_{2}+k-1\right)$ at $t=1$ and $(-1)^{k} \alpha^{a}+x^{a}=0$ at $t=\infty$.

This implies that the monodromy operators \mathcal{M}_{0} and \mathcal{M}_{1}, induced by analytic prolongation of solutions to (6) along simple loops surrounding $t=0$ and $t=1$, are unipotent (with eigenvalues equal to 1). (Maybe this explains the fact that the
multiple zeta-values generate the 'ring of periods of the pro-nilpotent completion of $\pi_{1}\left(\mathbb{C} P^{1} \backslash\{0,1, \infty\}\right)^{\prime}$, see $\left.[3,8]\right)$. The monodromy operator \mathcal{M}_{∞} associated with a loop around $t=\infty$ is diagonalizable with different eigenvalues $e^{-2 \pi i \alpha},(-1)^{k} \alpha^{a}+x^{a}=0$.

The series in (7) defines g in the disc $|t|<1$, but $g(x ; \cdot)$ can be prolonged to a multi-valued holomorphic function with ramifications at $t=1$ and $t=\infty$; (the further branches of g ramify also at $t=0$). Near $t=1$ one has the representation $g=h_{0}(t-1)+h_{1}(t-1) \log (t-1)+\ldots+h_{r}(t-1) \log ^{r}(t-1)$ with analytic $h_{j}(z)$ near $z=0$. Note that $\zeta\left(a_{1}, \ldots, a_{k}\right)=h_{0}(0)$.

We refer the reader to the (very algebraic) paper of A. Goncharov [3] for further results about multiple zeta-values.

4 Asymptotic as $x \rightarrow \infty$

The equation (6) for large parameter x is solved using the WKB method. This means that one represents a solution as a finite sum of terms of the form

$$
e^{x S(t)}\left[\varphi_{\gamma}(t) x^{\gamma}+\varphi_{\gamma-1}(t) x^{\gamma-1}+\ldots\right] .
$$

The 'action' S satisfies the 'Hamilton-Jacobi equation'

$$
\begin{equation*}
t^{a-k}(1-t)^{k}\left(S^{\prime}\right)^{a}+1=0 \tag{8}
\end{equation*}
$$

the coefficient φ_{γ} satisfies the 'transport equation' of the form

$$
\begin{equation*}
\varphi_{\gamma}^{\prime}+W(t) \varphi_{\gamma}=0 \tag{9}
\end{equation*}
$$

(with some rational function W) and the other coefficients $\varphi_{\gamma-m}$ satisfy some nonhomogeneous equations (whose homogeneous parts are like in (9) and the rests depend on $\left.S^{\prime}, S^{\prime \prime}, \ldots, \varphi_{\gamma}, \ldots, \varphi_{\gamma-m+1}\right)$.

The Hamilton-Jacobi equation (8) has solutions of the form of SchwarzChristoffel integral

$$
\begin{equation*}
S(t)=S_{j}(t)=\xi_{j} \cdot \int_{0}^{t} \tau^{k / a-1}(1-\tau)^{-k / a} d \tau \tag{10}
\end{equation*}
$$

where ξ_{j} is a root of (-1) of order a. The transport equation (9) is solved as follows:

$$
\varphi_{\gamma}(t)=\varphi_{\gamma, j}(t)=C_{j} \cdot t^{\mu}(1-t)^{\nu}
$$

for some exponents μ, ν depending on the situation. By the initial condition $g(x ; 0)=$ 1 the first exponent γ and the constants C_{j} must be chosen after expanding $e^{x S_{j}(t)}$ at $t=0$ and solving some further transport equations (we shall not do it). For the same reason the initial limit in the integral (10) is equal to 0 .

From this the following expansion formula for the generating function $f_{a_{1}, \ldots, a_{k}}$ $=g_{a_{1}, \ldots, a_{k}}(x ; 1)$ follows:

$$
\begin{equation*}
f_{a_{1}, \ldots, a_{k}} \sim \sum_{j=1}^{a} e^{\beta \xi_{j} x}\left[\varphi_{\delta, j}(1) x^{\delta}+\varphi_{\delta-1, j}(1) x^{\delta-1}+\ldots\right], \tag{11}
\end{equation*}
$$

where $\beta=B\left(\frac{k}{a}, 1-\frac{k}{a}\right)=\frac{\pi}{\sin \pi k / a}$ and the constants $\varphi_{\eta, j}(1), \eta \leq \delta$ are (theoretically) calculable. In general, one cannot expect convergence in (11).

It seems that this method would give some insight into the nature of the coefficients of the generating functions $f_{a_{1}, \ldots, a_{k}}$.

Example 2. Consider the function $g_{3}(x ; t)$. One finds that $\xi_{1}=-1, \xi_{2,3}=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$, $\beta=\frac{2 \pi}{\sqrt{3}}$ and $\varphi_{\gamma, j}(t)=C_{j} \cdot t^{-1 / 3}(1-t)^{2 / 3}$. This suggests that the zeta-numbers $\zeta(3), \zeta(3,3), \zeta(3,3,3), \zeta(9), \zeta(15), \ldots$ have something common with the numbers π, i and $\sqrt{3}$. Maybe this is the way to show the transcendency of $\zeta(3)$. (Recall that the irrationality of $\zeta(3)$ was shown by R. Apéry [2], see also [4]).

References

[1] G. Bateman and A. Erdelyi, Higher Transcendental Functions. v. 1, McGraw-Hill Book C., New York, 1953.
[2] R. Apéry, Irrationabilité de $\zeta(2)$ et $\zeta(3)$. Asterisque 61 (1979), 11-13.
[3] A.B. Goncharov, Multiple ζ-values, Galois groups and geometry of modular varietes. In: "European Congress of Mathematics (Barcelona, 2000)", v. I, Progress in Math. 201, Birkhäuser, Basel, 2001, pp. 361-392.
[4] M. Kontsevich and D. Zagier, Periods. In: "Mathematics Unlimited - 2001 and beyond", Springer, Berlin, 2001, pp. 771-808.
[5] A.M. Legendre, Elements de Geométrie. Paris, 1855, Note 4.
[6] F. Lindemann, Über die Zahl π. Math. Ann. 20 (1882), 213-225.
[7] A.B. ShidlovskiĬ, Transcendental Numbers. Nauka, Moscow, 1987 (in Russian); English transl.: de Gruyter Studies in Math. 12, Walter de Gruyter \& Co., Berlin, 1989.
[8] D. Zagier, Values of zeta function and their applications. In: "First European Congress of Mathematicians", v. 2, Progress in Math. 120, Birkhäuser, Basel, 1994, pp. 497-512.

Henryk Żoładek
Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warsaw,Poland e-mail: zoladek@mimuw.edu.pl

[^0]: © 2003 Henryk Z Zoładek
 *Supported by Polish KBN Grant No 2 P03A 01022

