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A REPUBLICII MOLDOVA. MATEMATICA
Number 1(41), 2003, Pages 78–82
ISSN 1024–7696

Note on multiple zeta–values∗

Henryk Żo ladek

Abstract. We introduce some generating functions g(t; x) for multiple zeta values.
They satisfy linear differential equations Pg + xag = 0 of the Fuch type. We find
WKB-type expansions for g as x → ∞. M41

1 Certain familiar generating function

D. Zagier had presented in [8] an ‘ultra–simple’ Calabi’s proof of the Euler for-
mula ζ(2) = π2/6. That proof uses the integral

∫ 1
0

∫ 1
0 (1−xy)−1 (equal to 3

4ζ(2)) and
the substitution (x, y) =

(
sin u
cos v , sin v

cos u

)
. Below I present a proof which is even more

simple (in my opinion).
The function f2(x) = sinπx

πx has the Taylor expansion

f2 = 1 − π2

3!
x2 +

π4

5!
x4 − π6

7!
x6 + . . . (1)

and the infinite product representation

f2 =

(

1 − x2

12

)(

1 − x2

22

)(

1 − x2

32

)

. . . . (2)

Comparing the coefficients of x2 we see immediately that
∑ 1

n2 = π2

3! .

We recall that the multiple ζ–values are defined as follows:

ζ(a1, . . . , ak) =
∑

0<n1<...<nk

1

na1
1 . . . nak

k

(3)

for integer ai ≥ 1, ak ≥ 2 (see [8]).
Therefore f2 is the generating function for multiple zeta–values,

f2(x) = 1 − ζ(2)x2 + ζ(2, 2)x4 − ζ(2, 2, 2)x6 + . . . . (4)

Since any ζ(2, . . . , 2) (k arguments) is expressed via ζ(2l)’s for l ≤ k, one finds
that

ζ(2k) = π2k × rational number.

For example, ζ(2, 2) = 1
2

∑

m6=n m−2n−2 = 1
2

(
∑

m,n −
∑

m=n

)

m−2n−2, that

gives ζ(4) = ζ(2)2 − 2ζ(2, 2) = π4/36 − 2π4/120 = π4/90; similarly, one finds
ζ(6) = 3ζ(2, 2, 2) + 3

2ζ(2)ζ(4) − 1
2ζ(2)3 = π6/945, etc.

Note also that instead of sin πx
πx one could use cos πx as a generating function for

some quantities easily expressed via the multiple zeta–values.
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2 Irrationality of ζ(2)

This result was firstly proved by A. Legendre [5]. The proof we present below is a
modification of the proof of irrationality of π given in the book of A. Shidlovskĭı [7].

One begins with the identities

∫ π/2

−π/2
ϕ(y) cos y = ϕ(y) sin y |π/2

−π/2 −
∫

ϕ′(y) sin y

= [ϕ(
π

2
) + ϕ(−π

2
)] −

∫

ϕ′′(y) cos y (5)

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=
[

ϕ(
π

2
) + ϕ(−π

2
)
]

−
[

ϕ′′(
π

2
) + ϕ′′(−π

2
)
]

+ . . .

Suppose that ζ(2) is rational, i.e. that π2

4 = a
b , a, b ∈ Z. We take ϕ(y) =

bn

n! (
π2

4 − y2)n = (a−by2)n

n! in (5). The left-most (positive) integral in (5) behaves
like Cn/n! for large n and takes values between 0 and 1. Next, for k < n we have
ϕ(k)(±π/2) = 0 and for k = 2l ≥ n and even, the polynomial ϕ(k)(y) is a sum of

terms 1
n!b

m
(
y2m

)(2l) × integer = (2l)!
n!

(2m
2l

)
bmy2(m−l) × integer . Thus the right-most

combination in (5) should represent an integer number (a contradiction).

Note that this proof relies essentially upon the fact that (cos x)′′ = − cos x, which
follows from the ‘functional equation’ cos(π ± y) = − cos y.

The proof of transcendency of ζ(2) was firstly given by F. Lindemann [6]. It is
more complicated, so we do not present it here.

3 Other generating functions

Analogously to (3) one can define the functions

fa1,...,ak
(x) = 1 − ζ(a1, . . . , ak)x

a + ζ(a1, . . . , ak, a1, . . . , ak)x
2a

−ζ(a1, . . . , ak, a1, . . . , ak, a1, . . . , ak)x
3a + . . . ,

a = a1 + . . . + ak.

It turns out that this function can be represented as g(x; t)|t=1, where the func-
tion g = ga1,...,ak

(t;x) satisfies the following linear differential equation

Pg + xag = 0. (6)

Here P = RQa1−1RQa2−1 . . . RQa1−1 is a differential operator defined via Q =
(1− t)∂, R = t∂ and ∂ = ∂/∂t. Moreover g(x; t) is analytic near t = 0 and g(x, t) =
1 + O(t).

To see this, following [8], introduce the functions

I(ε1, . . . , εm; t) =

∫

· · ·
∫

0<t1<...<tm<t

dt1
Aε1(t1)

. . .
dtm

Aεm(tm)
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(indexed by ε1 = 0, 1, ε2 = 0, 1, . . . , εm = 0, 1) with

A0(t) = t, A1(t) = 1 − t.

Next, define
ζ̃(a1, . . . , ak; t) = I(1, 0, . . . , 0

︸ ︷︷ ︸

a1

, . . . , 1, 0, . . . , 0
︸ ︷︷ ︸

ak

; t);

one finds that ζ(a1, . . . , ak) = ζ̃(a1, . . . , ak; 1) (see [8]).
If 1 denotes the constant function 1(t) ≡ 1, then one has the formula

ζ̃(a1, . . . , ak; ·) =
[
∂−1t−1

]ak−1
∂−1(1 − t)−1 . . .

[
∂−1t−1

]a1−1
∂−1(1 − t)−1

1

= P−1
1.

Therefore the function

g = 1 − ζ̃(a1, . . . , ak; t)x
a + ζ̃(a1, . . . , ak, a1, . . . , ak; t)x

2a − . . . (7)

equals
[(I − xaP−1 + x2aP−2 − . . .)1](t) =

[
(I + xaP−1)−1

1
]
(t).

It implies that g satisfies the equation (I + xaP−1)g ≡ 1 and, in consequence, the
equation (6).

Example 1. In the case k = 1 and a1 = 2 the equation (6) becomes the hyperge-
ometric equation

(1 − t)∂(t∂g) + x2g = 0

(with singular points at t = 0, 1,∞). Its characteristic exponents (i.e. the powers α
in the solutions (t − t0)

α + . . . as t → t0 or tα + . . . as t → ∞) are the following:
λ = λ′ = 0 at t = 0; ρ = 0, ρ′ = 1 at t = 1; τ = x, τ ′ = −x at t = ∞. It follows
(see [1]) that our distinguished solution is the hypergeometric function

g2(x; t) = F (x,−x; 1; t).

In [4] one can find the following interesting identities (proved by Broadhurst):

g1,3(
√

2x; t) ≡ F (x,−x; 1; t)F (ix,−ix; 1; t), f1,3(
√

2x) = f4(x).

Generally, the equation (6) is of the Fuchs type (i.e. with regular growth of
solutions at singular points). Its characteristic equations (for the characteristic ex-
ponents) are the following: αak (α − 1)ak−1 . . . (α − k + 1)a1 at t = 0; α(α − 1)
. . . (α− a+ k) · (α− ak + 1)(α− ak − ak−1 + 2) . . . (α− ak − . . .− a2 + k− 1) at t = 1
and (−1)kαa + xa = 0 at t = ∞.

This implies that the monodromy operators M0 and M1, induced by analytic
prolongation of solutions to (6) along simple loops surrounding t = 0 and t = 1,
are unipotent (with eigenvalues equal to 1). (Maybe this explains the fact that the
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multiple zeta–values generate the ‘ring of periods of the pro-nilpotent completion of
π1(CP 1\{0, 1,∞})’, see [3,8]). The monodromy operator M∞ associated with a loop
around t = ∞ is diagonalizable with different eigenvalues e−2πiα, (−1)kαa + xa = 0.

The series in (7) defines g in the disc |t| < 1, but g(x; ·) can be prolonged to
a multi-valued holomorphic function with ramifications at t = 1 and t = ∞; (the
further branches of g ramify also at t = 0). Near t = 1 one has the representation
g = h0(t − 1) + h1(t − 1) log(t − 1) + . . . + hr(t − 1) logr(t − 1) with analytic hj(z)
near z = 0. Note that ζ(a1, . . . , ak) = h0(0).

We refer the reader to the (very algebraic) paper of A. Goncharov [3] for further
results about multiple zeta–values.

4 Asymptotic as x → ∞

The equation (6) for large parameter x is solved using the WKB method. This
means that one represents a solution as a finite sum of terms of the form

exS(t)[ϕγ(t)xγ + ϕγ−1(t)x
γ−1 + . . .].

The ‘action’ S satisfies the ‘Hamilton–Jacobi equation’

ta−k(1 − t)k
(
S′)a

+ 1 = 0, (8)

the coefficient ϕγ satisfies the ‘transport equation’ of the form

ϕ′
γ + W (t)ϕγ = 0 (9)

(with some rational function W ) and the other coefficients ϕγ−m satisfy some non-
homogeneous equations (whose homogeneous parts are like in (9) and the rests
depend on S′, S′′, . . . , ϕγ , . . . , ϕγ−m+1).

The Hamilton-Jacobi equation (8) has solutions of the form of Schwarz–
Christoffel integral

S(t) = Sj(t) = ξj ·
∫ t

0
τk/a−1(1 − τ)−k/adτ, (10)

where ξj is a root of (−1) of order a. The transport equation (9) is solved as follows:

ϕγ(t) = ϕγ,j(t) = Cj · tµ(1 − t)ν

for some exponents µ, ν depending on the situation. By the initial condition g(x; 0) =
1 the first exponent γ and the constants Cj must be chosen after expanding exSj(t)

at t = 0 and solving some further transport equations (we shall not do it). For the
same reason the initial limit in the integral (10) is equal to 0.

From this the following expansion formula for the generating function fa1,...,ak

= ga1,...,ak
(x; 1) follows:

fa1,...,ak
∼

a∑

j=1

eβξjx
[

ϕδ,j(1)x
δ + ϕδ−1,j(1)x

δ−1 + . . .
]

, (11)
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where β = B(k
a , 1− k

a) = π
sin πk/a and the constants ϕη,j(1), η ≤ δ are (theoretically)

calculable. In general, one cannot expect convergence in (11).
It seems that this method would give some insight into the nature of the coeffi-

cients of the generating functions fa1,...,ak
.

Example 2. Consider the function g3(x; t). One finds that ξ1 = −1, ξ2,3 = 1
2±

√
3

2 i,

β = 2π√
3

and ϕγ,j(t) = Cj · t−1/3(1 − t)2/3. This suggests that the zeta–numbers

ζ(3), ζ(3, 3), ζ(3, 3, 3), ζ(9), ζ(15), . . . have something common with the numbers π, i
and

√
3. Maybe this is the way to show the transcendency of ζ(3). (Recall that the

irrationality of ζ(3) was shown by R. Apéry [2], see also [4]).
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Henryk Żo ladek
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