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New constructive methods for analysis of resonant

systems

Grebenikov E.A.

Abstract. The modern theory of perturbations, based on the Krylov–Bogolyubov
method [1], has two essential advantages: the determination of the iterations does
not require the preliminary solution of the generating equation and the choice of
the initial conditions, which for every approximation minimizes the difference ”exact
solution minus asymptotic solution”. The algorithm of constructing the perturbed
solution may be realized with computer algebra methods.
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1 The classical perturbation theory

Consider an n–dimensional differential equation with small parameter

dz

dt
= Z(z, t, µ), z(0) = z0, (1)

where µ is the small parameter, while the vector function Z(z, t, µ) is the known and
has properties which ensure the existence and uniqueness of solutions of the Cauchy
problem (1) in the (n + 1)–dimensional domain Gn+1 = {(z, t) ∈ Gn × R} of the
Euclidean space.

Our purpose is to construct this solution [2]. Along with (1) we consider the
equivalent equation

dz

dt
= Z(z, t, µ) + Z(z, t, µ) − Z(z, t, µ), z(0) = z0, (2)

where Z(z, t, µ) is an arbitrary function. We write the linear equality

z(t, µ) = z(t, µ) + u(t, µ), (3)

where z and u are some new unknown functions. The solution of Cauchy problem
for (1) can be found by solving the following two Cauchy problems:

dz

dt
= Z(z, t, µ), z(0) = z0 ∈ Gn, (4)
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du

dt
= Z(z + u, t, µ) − Z(z, t, µ), u(0) = z0 − z0, (5)

where z0 is some new initial point. Equation (4) defines the choice of the initial
approximation z(t, µ) for the exact solution z(t, µ) of the problem (1), while equation
(5) defines the total perturbation u(t, µ). From the problem (5) one can see that the
perturbation u(t, µ) depends on the choice of the function Z(z, t, µ) and on the initial
point z0, and, moreover, its finding is possible only after the solution of equation
(4). Thus, for the Cauchy problem (1) it is possible to construct a set of variants of
the perturbation theory with the parameters Z and z0. It does not mean at all that
the function Z(z, t, µ) and the initial point z0 may be chosen arbitrarily. It seems to
be reasonable that the function Z(z, t, µ) would be chosen to have a possibly simpler
analytic structure. On the other hand, the solutions of equation (5) must be ”small”
under the norm.

In classical works on nonlinear oscillations and cosmic dynamics there were com-
monly used three schemes:







dz
dt

= A(t)z, z(0) = z0,

du
dt

= Z(z + u, t, µ) −A(t)z, u(0) = 0,
(6)







dz
dt

= Z(z, t, 0), z(0) = z0,

du
dt

= Z(z + u, t, µ) − Z(z, t, 0), u(0) = 0,
(7)







dz
dt

= Z(z, t, µ), z(0) = z0,

du
dt

= Z(z + u, t, µ) − Z(z, t, µ), u(0) = 0.
(8)

Equations (6) represent the linearization method, equations (7) characterize the
small parameter method, while equations (8) feature the averaging method, provided
that the generator Z is constructed on the basis of some averaging operator.

The main idea of the classical perturbation theory (that is, the solution of the
problems (4) and (5)) is that the solution of the generating equation (4) is being
constructed by means of a finite number of analytic procedures or by numerical
methods, after solving of the equation for perturbations (5) by means of any iterative
method, symbolically designated by

duk

dt
= Z(z(t, µ) + uk−1(t, µ), t, µ) − Z(z(t, µ), µ), (9)

with uk(0) = z0 − z0 and k = 1, 2, ... .

2 New variants of the perturbation theory

Now we assume that the perturbation u depends on z, t, and µ, that is instead
of (3) we have the equality

z(t, µ) = z(t, µ) + u(z, t, µ). (10)
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This equality represents the transformation from the phase space {z} to the new
phase {z} ({z} → {z}) and the inverse transformation ({z} → {z}) if the Jacobian
matrix ∂u/∂z is nonsingular.

The following differential equation holds

dz

dt
=
dz

dt
+

(

∂u

∂z
,
dz

dt

)

+
∂u

∂t
, (11)

where (∂u/∂z, dz/dt) is the product between the matrix ∂u/∂z and the vector dz/dt.
Therefore, instead of equations (4) and (5) of the classical perturbation theory, we
shall have the equations [2, 3]

dz

dt
= Z(z, t, µ), z(0) = z0, (4)

∂u

∂t
+

(

∂u

∂z
, Z(z, t, µ)

)

= Z(z + u, t, µ) − Z(z, t, µ), u(0) = z0 − z0. (12)

The perturbation theory based on equations (4) and (12) differs from the classical
perturbation theory in an essential point: the determination of the perturbation
u(z, t, µ) from equation (12) – called by us generalized Krylov–Bogolyubov equation
[3,4] – does not require the preliminary solving of the generating equation (4). This
allows us to determine the perturbation and the initial approximation independently
from each other, and therefore the accuracies of their determination are independent,
too. This is impossible within the framework of the classical theory of perturbations.

The equation (12) constitutes the Cauchy problem for a quasilinear n–dimensional
system of partial differential equations of first order with respect to the n–
dimensional perturbation vector u. Its solution can be found by the methods of
characteristics or by Cauchy’s method. This equation was considered for the first
time in a work of Bogolyubov [1] while tackling a question of applicability of the
averaging method to a special class of ordinary differential equations.

The asymptotic theory of equation (12) for problems belonging to celestial me-
chanics was developed in the textbooks of Grebenikov [4] and Grebenikov and
Mitropolsky [5]. We mean those problems of dynamics which are described by
multifrequential systems of differential equations given on tori, and – in particu-
lar – by Hamiltonian systems with variables of the type action–angle and with the
Hamiltonian periodic on the angular variable.

So, let a problem of celestial mechanics be described by a multifrequential system
of the (m+ n)–th order

dx

dt
= µX(x, y), (13.1)

dy

dt
= ω(x) + µY (x, y), (13.2)
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where x and X are m–dimensional vectors, y, Y , and ω are n–dimensional vectors,
ω(x) is the vector of frequencies, and we assume that X(x, y) and Y (x, y) are 2π–
periodic functions with respect to y. Then they are represented by the n–multiple
Fourier series

X(x, y) =
∑

Fk(x, y), (14.1)

Y (x, y) =
∑

Gk(x, y), (14.2)

where Fk(x, y) = Xk(x)e
i(k,y), Gk(x, y) = Yk(x)e

i(k,y), i =
√
−1, (k, y) =

n
∑

s=1
ksys,

∑

abridges
∑

‖k‖∈I

, ‖k‖ =
n
∑

s=1
| ks |, ks = 0,±1, ..., and I = {0, 1, 2, ...}.

Let us apply to system (13) the above stated idea of constructing a modern per-
turbation theory using asymptotic expansions with respect to the small parameter
µ.

We choose for (13) a generating system of the form

dx

dt
= µX(x, y) +

∑

k≥2

µkAk(x, y), (15.1)

dy

dt
= ω(x) + µY (x, y) +

∑

k≥2

µkBk(x, y), (15.2)

where X,Y ,Ak, Bk are arbitrary functions of their arguments.
Let us look for the replacement of the variables (10) as formal series

x = x+
∑

k≥1

µkuk(x, y), (16.1)

y = y +
∑

k≥2

µkvk(x, y), (16.2)

with unknown functions uk(x, y), vk(x, y). After differentiating (16) and taking into
account (13) and (15), to determine the transformation functions uk and vk, we have
an infinite system of linear partial differential equations of first order

(

∂u1

∂y
, ω(x)

)

= X(x, y) −X(x, y), (17.1)

(

∂v1
∂y

, ω(x)

)

=

(

∂ω

∂x
, u1

)

+ Y (x, y) − Y (x, y), (17.2)

(

∂uk

∂y
, ω(x)

)

= Φk(x, y, u1, v1, ..., vk−1, uk−1A2, B2, ..., Ak), (17.3)

(

∂vk

∂y
, ω(x)

)

= Ψk(x, y, u1, v1, ..., vk−1, ukA2, B2, ..., Ak, Bk), (17.4)
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k = 2, 3, ... .

The system (17) has a remarkable property: it is possible to integrate it ana-
lytically [3, 4] for any vector-index k if for the functions X and Y we choose some
averages of the functions X and Y .

Indeed, let the generators X(x, y), Y (x, y) be the partial sums of series (14)

X(x, y) =
∑

1

Fk(x, y), (18.1)

Y (x, y) =
∑

2

Gk(x, y), (18.2)

where
∑

j

abridges
∑

‖k‖∈Ij

, while I1 and I2 are subsets of integer nonnegative numbers

from the set of all nonnegative integers I. In particular, I1 or I2 may consist of only
one number, zero; that means

X(x, y) = (2π)−n

2π
∫

0

X(x, y)dy1, ..., dyn. (19)

Usually subsets I1 and I2 are ”resonant”: for ‖k‖ ∈ Ij

(k, ω(x)) = 0.

If X and Y are chosen according to (18), then

X(x, y) −X(x, y) =
∑

∗

Fk(x, y), (20.1)

Y (x, y) − Y (x, y) =
∑

∗∗

Gk(x, y), (20.2)

where
∑

∗
abridges

∑

‖k‖∈I−I1

, and
∑

∗∗
abridges

∑

‖k‖∈I−I2

.

Using the method of characteristics, it is possible to find the exact solution of
(17.1)–(17.2):

u1(x, y) =
∑

∗

F ∗
k (x, y) + ϕ1(x), (21.1)

v1(x, y) =
∑

∗∗

G∗
k(x, y) +

(

∂ω(x)

∂x
,
∑

∗

F ∗∗
k (x, y)

)

+

((

∂u1

∂x
, ϕ1(x)

)

, y

)

+ ψ1(x),

(21.2)

where
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F ∗
k (x, y) =

Fk(x, y)

fk(x)
, G∗

k(x, y) =
Gk(x, y)

fk(x)
,

F ∗∗
k (x, y) =

Fk(x, y)

(fk(x))2
, fk(x) = i(k, ω(x)),

while ϕ1, ψ1 are arbitrary differentiable functions of their arguments x1, ..., xm.

The integration of equations (17) for k = 2, 3, ... is not very difficult, therefore the
functions u2, v2, ... are also presented by means of known analytic expressions [3,4].
Rather important is the fact that while determining the functions u2 and v2 (those
are perturbations of second order) we can use the functions A2, B2, ϕ1, ψ1.

By (21) one can see that if ϕ1 6= 0 then v1 will be growing similary to the linear
function t, because y ∼ t. Hence for the perturbations u1, v1, u2, v2, ... to have an
”oscillatory” but not a ”rapidly growing” character it is necessary that

ϕk(x) ≡ 0, ψk(x) ≡ 0, k = 1, 2, ... (22)

In their turn, these equalities show that the ”best” perturbation theory is ob-
tained when the generating equations and the perturbation equations are solved
for other initial conditions in comparison with the initial equations. Indeed, if
ϕ1(x0) = 0, ψ1(x0) = 0, it is easy to see, by (21), that u1(x0, y0) 6= 0, v1(x0, y0) 6= 0
and, with an accurate µ, the new initial conditions (x0, y0) are connected with
(x0, y0) by means of the functional equations

x0 = x0 + µu1(x0, y0), (23.1)

y0 = y0 + µv1(x0, y0). (23.2)

Similar equations for new initial conditions (x0, y0) can be derived for the per-
turbation theory of any order k:

x0 = x0 +

k
∑

s=1

µsus(x0, y0), (24.1)

y0 = y0 +

k
∑

s=1

µsvs(x0, y0). (24.2)

This is a second essential difference of the modern perturbation theory from the
classical one, in which it is difficult to dispose by choice of the initial point z0.

If we construct the perturbation theory of second order, that is, we write a system
(17) for k = 2, we shall have

(

∂u2

∂y
, ω(x)

)

= Φ2(x, y, u1, v1, A2), (25.1)
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(

∂v2
∂y

, ω(x)

)

= Ψ2(x, y, u1, v1, u2, A2, B2). (25.2)

These equations include the arbitrary functions A2, B2, and the best way is to
choose them such that

2π
∫

0

. . .

2π
∫

0

Φ2dy1, . . . , dyn = 0, (26.1)

2π
∫

0

. . .

2π
∫

0

Ψ2dy1, . . . , dyn = 0. (26.2)

These conditions guarantee us a choice of solutions u2 and v2, which would also
be of oscillatory character. This statement holds provided that the functions ϕ2 and
ψ2 (by analogy with ϕ1 and ψ1) are chosen identically equal to zero.

The stated analytic algorithm means that we construct successively the replace-
ment of variables

(x, y) → (x1, y1) → (x2, y2) → . . .→ (xs, ys),

where

xs = x+

s
∑

k=1

µkuk(x, y), (27.1)

ys = y +

s
∑

k=1

µkvk(x, y), (27.2)

From the geometric point of view, the chain written above means the successive
transformation of the initial phase space {x, y} into the new phase space, in which the
problem of perturbation determination of any order becomes analytically solvable.

Naturally, for the final construction of the solution of the initial equations (13),
one has to solve the generating equation of the corresponding order s

dxs

dt
= µX(xs, ys) +

s
∑

k=2

µkAk(xs), (28.1)

dys

dt
= ω(xs) + µY (xs, ys) +

s
∑

k=2

µkBk(xs), (28.2)

with the initial conditions xs(0), ys(0) from equalities (24) and then, by means of
(16), one can find an approximation s to

xs(t, µ) = xs(t, µ) +

s
∑

k=1

µkuk(xs, ys), (29.1)
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ys(t, µ) = ys(t, µ) +

s
∑

k=1

µkvk(xs, ys). (29.2)

In conclusion, we want to note once again that in formulae (29) the functions
uk, vk are found by analytic methods and, if the solution of the generating equation
(28) can also be found through analytic methods, this is the best we can have in
the nonlinear analysis. If this is not possible, then the combination of numerical
methods with analytic ones applied to perturbation equations gives sometimes a
large gain of economies of computer resources.

Finally, we will discuss the problems which can be solved by the contemporary
methods of computer algebra.

1) The constructing of the averaging functions X(x, y), Y (x, y).
First we calculate the initial frequencies ω1(x0), ω2(x0), . . . , ωn(x0) and then we

calculate the subsets of the integer numbers I1×I2, marking the proper k inequality
vector

|(k, ω(x0))| < ε1, |(k, ω(x0))| < ε2.

If ε1 = ε2, I1 = I2. The ε1 and ε2 values are given apriori.
2) Afterwards, we calculate the perturbations of the first order u1(x, y) and

v1(x, y) from equalities (21.1), (21.2).
3) The most arduous work is done while constructing Ψ2 and Φ2 functions, thanks

to which we can calculate the functions of the second approximation u2 and v2 from
equations (25.1), (25.2). It consists in multiplying Fourier series and assigning the
resonant parts from the resulting products. Those resonant parts define the unknown
functions A2 and B2.

4) If scientific researcher limits himself to the asymptotic theory of the second
order, which is solving system (1) in the form

x(t, µ) = x(t, µ) + µu1(x(t, µ), y(t, µ)) + µ2u2(x(t, µ), y(t, µ)),

y(t, µ) = y(t, µ) + µv1(x(t, µ), y(t, µ)) + µ2v2(x(t, µ), y(t, µ)), (30)

the initial conditions x(0, µ) and y(0, µ) for the solution of the generator system

dx

dt
= µX(x, y) + µ2A2(x),

dy

dt
= ω(x) + µY (x, y) + µ2B2(x), (31)

have to be calculated from nonlinear functional equations

x(0, µ) = x(0, µ) − µu1(x(0, µ), y(0, µ)) − µ2u2(x(0, µ), y(0, µ)),

y(0, µ) = y(0, µ) − µv1(x(0, µ), y(0, µ)) − µ2v2(x(0, µ), y(0, µ)). (32)

The solutions of the system of equations (32) are to be found by means of iterative
methods.

Finally, we will emphasize two extraordinary moments of the asymptotic theory
based on averaging methods.
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1. According to the super N.N. Bogolyubov’s idea, the transformed equation
(17.3), (17.4) is not given apriori at the beginning, but is constructed at every
step of calculations. This is meant to minimalize the deviation of the asymptotic
solution from the exact solution of the system (1). Such approach is not present in
the classical perturbation theory.

2. The choice of the optimum initial conditions at every step of the constructing
process improves the theory and the application practice of the resonant systems of
differential equations.
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