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Quadratic systems with limit cycles of normal size

Leonid A. Cherkas∗, Joan C. Artés and Jaume Llibre†

Abstract. In the class of planar autonomous quadratic polynomial differential sys-
tems we provide 6 different phase portraits having exactly 3 limit cycles surrounding a
focus, 5 of them have a unique focus. We also provide 2 different phase portraits hav-
ing exactly 3 limit cycles surrounding one focus and 1 limit cycle surrounding another
focus. The existence of the exact given number of limit cycles is proved using the Du-
lac function. All limit cycles of the given systems can be detected through numerical
methods; i.e. the limit cycles have “a normal size” using Perko’s terminology.

Mathematics subject classification: 34C07, 34C08.
Keywords and phrases: quadratic systems, limit cycles.

1 Introduction

A planar autonomous quadratic polynomial differential system (or simply a
quadratic system) in what follows is a system of the form

dx

dt
=

2
∑

i+j=0

aijx
iyj ≡ P (x, y),

dy

dt
=

2
∑

i+j=0

bijx
iyj ≡ Q(x, y), (1)

with aij, bij ∈ R. It is known (see, for instance [17]) that a quadratic system can
have only limit cycles enclosing a unique singular point, which is a focus. As system
(1) has no more than two foci [17], only the following distributions of limit cycles
are allowed: n, (n1, n2), where n ∈ N, and n1, n2 ∈ N ∪ {0} with n1 + n2 > 0.
Here n is the number of limit cycles surrounding a focus provided that system (1)
has only one focus, and n1 and n2 are the number of limit cycles surrounding every
one of the two foci provided that the system has exactly two foci. Recently, Zhang
Pingguang [20, 21] has proved that if ni > 0 for i = 1, 2, then either n1 = 1, or
n2 = 1.

The following distributions of limit cycles for quadratic systems (1) are known:

(a) 1 and (1, 0); (b) 2 and (2, 0); (c) 3 and (3, 0);
(d) (1, 1); (e) (2, 1); (f) (3, 1).

With the help of distinct results on uniqueness of a limit cycle (see [15, 17, 22]),
being the most effective result from Zhang Zhifen (see [14]), it has been proved for
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the quadratic systems (1) that the distributions of limit cycles (a) and (d) exist,
see [5, 6, 14, 16, 18, 19]. The small class of systems with distribution (b) is obtained
by bifurcation of limit cycles either from a focus and from a separatrix cycle, or from
a focus, see [17].

The most complicated distributions of limit cycles are the distributions (c), (e)
and (f). They are obtained also with the help of bifurcations, and by perturbing
quadratic systems (1) having a center [2]. However using these methods it is only
possible to obtain infinitesimal limit cycles which, in general, are very difficult to
detect using numerical methods. Thus, Perko in the work [14] can exhibit quadratic
systems with limit cycles “of normal size” using his terminology, i.e. limit cycles
which can be detected easily by numerical methods. The main method used by him,
consists in considering a set of systems with a rotating parameter, and in studying
the bifurcations of limit cycles under the variation of this parameter. For more
details on rotating families see [13,14,17,22], and Section 2.

Perko in [14] provided examples of quadratic systems with the six distributions
of limit cycles (a)–(f), but he did not consider all the possible phase portraits with
these distributions of limit cycles. The purpose of this paper is: first, to systematize
Perko’s method; and second, to study different phase portraits with the distributions
(c) and (f) of limit cycles.

For proving the existence of the exact given number of limit cycles we shall
use Dulac functions, see [17] for more details on these functions. A key point for
studying the distributions (c) and (f) of limit cycles are the works [1] and [12], where
the qualitative phase portraits of all quadratic systems having a weak focus of third
order are classified, and additionally, it is described the partition of the parameter
space into domains associated to the different topological phase portraits.

By means of an affine transformation of the phase variables and a change of the
time scale, a quadratic system (1) generically can be written as

dx

dt
= 1 + xy,

dy

dt
= a00 + a10x + a20x

2 + a01y + a11xy + ay2,
(2)

where a00 = a01 + a11 − a10 − a20 − a.

In Table 1 we summarize the main results of this paper, i.e. the different con-
figurations of singular points compatible with the distributions (c) and (f) of limit
cycles. The results of that table are for quadratic systems in the normal form (2).
A focus, a node or a saddle is denoted by F , N and S, respectively. If they are at
infinity in the Poincaré Compactification, then they have the subindex ∞. For more
details on the Poincaré compactification of a planar polynomial differential system
see [8].
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N0 Coefficients of system
Singular points

Cycle
a a20 a11 a01 a10 distr.

1 3 -12 -1.398 8.4 15.28 1F + 1N + 2S∞ + 1N∞ 3
2 1.5 -15 0.79993 3.2 9.17 2F + 2S∞ + 1N∞ (3, 0)
3 -2 12 10.999 -14 -26.1 1F + 3S + 3N∞ 3
4 -2 -1 9.49965 -12.5 6.955 1F + 1S + 2N∞ + 1S∞ 3
5 -4 -1 13.9987 -21 12.4 1F +1N+2S+2N∞+1S∞ 3
6 5 -50 -5.49995 16.5 76.45 1F +2N+1S+1N∞+2S∞ 3
7 8/11 -12 2.1502 67/220 -26.5 2F + 1S∞ (3,1)
8 1.04 -120 1.51997 1.56 -79.6 2F + 2S∞ + 1A∞ (3,1)

Table 1. Different configurations of singular points compatible with the
distributions 3 and (3, 0) for the limit cycles of the quadratic systems.

The paper is organized as follows. The results of Table 1 are proved in Section 3,
but previously in Section 2, we present the main definitions and basic results which
we shall use in the proofs of the results of Table 1.

2 Main definitions and preliminary results for Lienard systems

The surface of limit cycles for the system

dx

dt
= f(x, α), x ∈ R

2, α ∈ R, f = (f1, f2)
T , (3)

is the subset SLC = {(x, α) ∈ R
2 × R : x ∈ L(α), α ∈ R}, where L(α) is the

subset of the phase plane R
2 formed by limit cycles of system (3) with parameter α.

We remark that if all the limit cycles of system (3) surrounding the singular
point x = 0 (i.e. f(0, α) = 0), intersect the half–axis x2 = 0, x1 > 0 only in one
point, then instead of working with the surface of limit cycles it is more convenient
to consider the curve of limit cycles, denoted by CLC, and formed by the points
(x1, α), where x1 is the abscissa of the point x belonging to a limit cycle and to the
half–axis x2 = 0, x1 > 0 for system (3) with parameter α.

We say that the parameter α rotates the vector field f(x, α) associated to system
(3), or that α is a rotating parameter, if one of the two inequalities

(f1)
′

αf2 − f1(f2)
′

α ≥ 0 (≤ 0), x ∈ R
2, α ∈ R,

holds, and the inequality never becomes an identity equal to zero on any limit cycle
of L(α). Here, (fi)

′

α denotes the derivative of fi(x, α) with respect to α for i = 1, 2.
We remark that for the quadratic systems (2), a11 is a rotating parameter.

The condition that this inequality never becomes an identity equal to zero on any
limit cycle of L(α) can be easily checked, and means that the limit cycles of system
(3) really change their position under the variation of the parameter α. Moreover,
if α is a rotating parameter, then L(α1) ∩ L(α2) = ∅ if α1 6= α2. For more details,
see [22].



34 LEONID A. CHERKAS, JOAN C. ARTÉS, JAUME LLIBRE

We assume that we have a system (3) and that α is a rotating parameter. Then,
the surface of limit cycles SLC is an open subset of R

2 × R. By definition the
Andronov–Hopf function F : ∪α∈RL(α) → R associates to the points of L(α) the
value α. Therefore, the surface of limit cycles is determined by the equation α =
F (x) running α in R.

If the limit cycles surrounding the singular point x = 0 (i.e. f(0, α) = 0),
intersect the half–axis x2 = 0, x1 > 0 only in one point, instead of function F (x)
it is more convenient to consider the function α = ϕ(x1) = F (x)|x2=0, x1>0, which
provides a full information about the limit cycles of system (3) surrounding the point
x = 0, and their bifurcations when the parameter α varies. Note that the function
α = ϕ(x1), running α in R, defines a curve of limit cycles for system (3) surrounding
the point x = 0.

For computing the number of limit cycles of quadratic systems (1) we shall use
the following two theorems, see [4, 9]. See also [7].

Theorem 1. Assume that system (1) is structurally stable in a connected region
Ω ⊂ R

2. Then, there exist a function Ψ(x, y) ∈ C1(Ω) and a constant k < 0, such
that the inequality

Φ = k Ψ div f +
∂Ψ

∂x
P +

∂Ψ

∂y
Q > 0, f = (P,Q), (4)

is satisfied in the region Ω. Moreover, the limit cycles of system (1) do not intersect
the set W = {(x, y) ∈ Ω : Ψ(x, y) = 0}, and in every two–dimensional connected
subregion of Ω where either Ψ(x, y) > 0 or Ψ(x, y) < 0, system (1) has at most one
limit cycle γ, and if exists, is hyperbolic and stable (respectively unstable) if kΨ|γ < 0
(respectively > 0).

If the function Ψ(x, y) satisfies the condition (4), the function B(x, y) =
|Ψ(x, y)|1/k is a Dulac function in each subregion Ψ(x, y) > 0 or Ψ(x, y) < 0, and
we have that div(Bf) = Φ|Ψ|1/k−1(sign Ψ)/k.

Theorem 2. Let Ω be a simple connected region where system (1) is defined and
has a unique singular point, the antisaddle A with divf(A) 6= 0. Assume that there
exist a function Ψ and a number k < 0 satisfying the assumptions of Theorem 1.
Suppose that the equation Ψ(x, y) = 0 determines in the region Ω a nest of m of
ovals surrounding the point A. Then, in each of the m − 1 annulus limited by two
adjacent ovals, system (1) has exactly one limit cycle. Moreover, system (1) has in
the region Ω at most m limit cycles.

By Theorem 2 it follows that the ovals are transversal to the vector field associ-
ated to system (1), and that the annulus limited by two adjacent ovals satisfies the
Bendixson principle, see [17] for more details on the Bendixson principle. An addi-
tional m-th limit cycle can exist between the most external oval and the boundary
of the region Ω.
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For the Lienard system

dx

dt
= y − F (x),

dy

dt
= −g(x), (5)

the determination of the function Ψ(x, y), satisfying the assumptions of Theorem 2,
is easy. Thus, if we look for it in the form

Ψ =

n
∑

i=1

Ψi(x)yn−i, (6)

then the appropriate function Φ of Theorem 1 depends only on x if and only if
∂Φ/∂y ≡ 0. Then, ∂Φ/∂y ≡ 0 implies

Ψ1 = C1, Ψ
′

2 = kfC1, Ψ2 = kFC1 + C2, F ′(x) = f(x)
Ψ′

i = kfΨi−1 + (n − i + 2)gΨi−2 + FΨ′
i−1, Ψi =

∫

Ψ′
i(t)dt + Ci, i = 3, . . . , n.

(7)
where the Ci for i = 1, . . . , n are arbitrary constants of integration. Therefore, the
function Φ has the form

Φ = −kfΨn − gΨn−1 − FΨ′
n. (8)

In general, the function Φ is a linear combination

Φ =
n

∑

j=1

CjΦj(x), (9)

of convenient functions Φi(x), obtained from (7) and (8).

Theorem 3. Suppose that the function g(x) of the Lienard system (5) satisfies that
g(0) = 0, and that its two nearest zeros at 0 are x1 and x2 with x1 < 0 < x2. Assume
that there exist the constants k < 0 and Ci for i = 1, . . . , n, such that the function
Φ given in (9) is positive for x ∈ (x1, x2). Then, system (5) has at most n/2 limit
cycles surrounding the singular point (0, 0).

For the existence of the positive function Φ, given by (9), on an interval [α, β]
with x1 < α < 0 < β < x2, it is sufficient that the inequality

max
|C|≤1

min
x∈[α,β]

Φ(x,C) =
1

R
> 0,

holds. This is equivalent to the existence of a solution for the following problem of
optimization:

Φ(x,C) ≤ 1, |C| ≤ R, |C| = max |Ci|, x1 ≤ x ≤ x2, 0 < R → min . (10)

We can obtain an approximate solution of problem (10) on the net points xi

solving the discretized problem

Φ(xi, C) ≤ 1, |C| ≤ R, xi ∈ [x1, x2] i = 1, . . . , N, 0 < R → min . (11)
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If the number N of net points is sufficiently large and problem (11) has a solution,
we can expect that problem (10) has also a solution. Note that numerically it is easy
to find a minimum of the function Φ(x,C∗) on [x1, x2], where C = C∗ is a solution
of the problem (11).

In the study of the limit cycles of system (5), the idea of using a function V (x, y)
such that its derivative dV/dt on the solutions of system (5) depends only on x, has
been used successfully in [10] and also it was mentioned in [4].

3 Perturbed quadratic systems with a weak focus of order three

Since the straight line x = 0 is transversal for the vector field associated to
system (2), its limit cycles do not intersect x = 0. Therefore, in the half–planes
x < 0 and x > 0 its limit cycles can be studied separately. In the half–plane x > 0
the transformation x = 1/ξ, y = (ỹ − F (ξ))ξ−a − ξ writes system (2) into the
Lienard system

dξ

dt
= ỹ − F (ξ),

dỹ

dt
= −g(ξ), (12)

where

f(ξ) = (a11 + a01ξ − (2a + 1)ξ2)ξa−2,

g(ξ) = (a00 + a10ξ + (a00 − a11)ξ
2 − a01ξ

3 + aξ4)qzxξ2a−3,

F (ξ) =

ξ
∫

1

f(t)dt = P̃2(ξ)ξ
a−1 − P̃2(1).

System (2) has a weak focus or a center at the point A = (1,−1), if the conditions

L = 2a − a01 − a10 − 2a20 > 0, V1 = a11 + a01 − 2a − 1 = 0, (13)

hold. The last condition says that the divergence of system (2) at A is zero.
Clearly, for a = 2, 3, . . . system (12) is a Lienard polynomial differential system.

Moreover, for a = −2,−3, . . . system (12), under the transformation ξ = 1/x, ỹ =
−y, goes over to

dx

dt
= y + P̂2(x)x−a−1 − P̂2(1),

dy

dt
= P̂4(x)x−2a−3, (14)

where P̂2(x), P̂4(x) are polynomials. Thus, also system (2) for a = −2,−3, . . . is
reduced to a Lienard polynomial differential system.

Under conditions (13) the multiplicity of the weak focus A of system (2) can be
determined by its focal values (also called Lyapunov constants), see for instance [11].
For a integer and |a| > 1 these focal values can be calculated using the Lienard
polynomial systems (12) or (14), or using [11] for an arbitrary value of a. Thus, for
system (2) these focal values are

V3 = W0 − a10W,
V5 = (4 − 2a − a11)V/W,
V7 = −(a11 + 2a + 1)UV/W,

(15)
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where

W0 = a2
11(a + 1) + a11(2a

2 + a − 1) − a20(a11(2a − 1) + (2a + 1)(2a − 3)),

W = −1 + 2a2 + a(a11 − 1),

V = −a2
11a(a + 1) + a20(a − 1)(2a + 1)2,

U = (8 − 2a2)(a11 + 2a + 1)2 − 35(2a + 1)(a11 + 2a + 1) + 35(2a + 1)2.

In short, under conditions (13) system (2) has at A

(i) a focus of first order if V3 6= 0, it is stable if V3 < 0, otherwise it is unstable;

(ii) a focus of second order if V3 = 0, V5 6= 0, it is stable if V5 < 0, otherwise it is
unstable;

(iii) a focus of third order if V3 = V5 = 0, and V7 6= 0, it is stable if V7 < 0,
otherwise it is unstable;

(iv) a center if and only if V3 = V5 = V7 = 0.

It is well known that perturbing a weak focus of order i inside the class of
quadratic systems, we can obtain i infinitesimal limit cycles surrounding the per-
turbed focus. Therefore, to look for quadratic systems having three limit cycles
surrounding a focus, it is natural to perturb systems (2) having a weak focus of
order three.

We assume that W 6= 0. Then, the value a10 can be determined from V3 = 0,
that is a10 = W0/W . In particular, we obtain that system (2) has a weak focus of
order three at A if

a11 = ã∗11 = 4 − 2a, a 6= 2, a01 = ã∗01 = 2a + 1 − ã∗11,
a10 = ã∗10 = (6(a2 − a − 2) + a20(6a − 7))/(1 − 3a),
(a − 3 − a20)/(1 − 3a) < 0.

(16)

In short, we note that we have a 2–parameter family of quadratic systems (2) with
a weak focus of order three at A, the two parameters are a and a20.

We fix the parameters a and a20 of a system (2) having a weak focus of third
order at A, and change the parameters a11, a01 and a10 in order to obtain a quadratic
system with one small limit cycle surrounding A, being A a weak focus of second
order. We must change the parameters a11, a01 and a10 in such a way that V1 = 0 and
V5V7 < 0. We note that V5 must be different from zero in order to have at A a weak
focus of second order, and that the signs of V5 and V7 must be different, because the
stability of A and of the limit cycle must be opposite. Thus, we can obtain a limit
cycle passing through a point (x,−1) with x > 1 but near 1 choosing adequately the
functions a11 = ã11(x), a01 = ã01(x) = 2a + 1 − ã11(x) and a10 = ã10(x) = W0/W .
Of course, we have that ã11(1) = ã∗11, ã10(1) = ã∗10. The condition for the birth of
such a limit cycle, if a11 = ã∗11 + ∆a11, a01 = ã∗01 + ∆a01 and a10 = ã∗10 + ∆a10 must
satisfy the inequality

(3a − 1)(a − 2)∆a11 > 0. (17)
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in order to have V5V7 < 0. Therefore, ∆a11 > 0 if a < 1/3 or a > 2, and ∆a11 < 0
if 1/3 < a < 2.

Suppose that for x = x0 > 1 and for the values ã11(x0), ã01(x0), ã10(x0) we have
one limit cycle surrounding A and passing through (x0,−1) and that A is a weak
focus of second order. Now we fix a11 and a01, and change the parameter a10 in
order to obtain a quadratic system having two limit cycles surrounding the focus A,
being A a weak focus of first order. Such a system must satisfy V3 6= 0, V3V5 < 0
and V5V7 < 0. We denote by a10 = a10(x) with a10(1) = a10(x0), a11 = ã11(x0)
and a01 = ã01(x0) the parameters of a quadratic system having two limit cycles
around A such that the new second limit cycle passes through the point (x,−1).
The appropriate Andronov–Hopf function a10 will have one extremum. Now, we
denote by a∗10 the value of a10 for which system (2) has two limit cycles surrounding
A and being A a weak focus of first order.

Finally, we change the parameter a11 starting with value ã11(x0) and remaining
fixed the other parameters, so that from the weak focus of first order A bifurcates a
third limit cycle. Such perturbed quadratic system must satisfy V1 6= 0, V1V3 < 0,
V3V5 < 0 and V5V7 < 0. Then, by changing a11 on some interval system (2) will
have three limit cycle, and the appropriate Andronov–Hopf function a11 = AH(x)
will have two extrema.

We have described the general scheme for obtaining quadratic system (2) with
three limit cycles around the focus A, and moving conveniently the parameters a11,
a01 and a10. The limit cycles (which originally bifurcated from A) are not necessarily
small.

In what follows, we shall consider quadratic systems (2) with different configura-
tion of singular points and we shall look for distributions 3 and (3, 1) of limit cycles.
The functions ã11(x), a10(x) and AH(x) will be found with the help of numerical
computations.

Example 1: A quadratic system with 1 focus and 1 node, and 3 limit cycles sur-
rounding the focus, having at infinity 2 saddles and 1 antisaddle. We take a = 3,
a20 = −12, a11 = −1.398, a10 = 15.28 and a01 = 8.4. Then system (2) has the focus
A. Numerical computations show that the system has at least three limit cycles
which pass through points (xi,−1) with x1 = 1.26, x2 = 1.98 and x3 = 3.95. With
the help of Bendixson annuli it is possible to prove these numerical results analyti-
cally, but here we shall not do it. It is much more interesting to provide the upper
bound on the number of limit cycles. We shall show that this upper bound is 3. For
that we shall work with the Lienard polynomial system (12). Doing the translation
ξ = x + 1, we get again another Lienard polynomial system. For this system we
shall search a function Ψ(x,C) of the form (6) with n = 10 and k = −1 satisfy-
ing conditions (7). For the corresponding function Φ̃(x,C) = Φ(x,C)/(1 + 4G2)

with G =
x
∫

0

g(t)dt, where Φ(x,C) is a function satisfying (8) and (9), we shall solve

the problem of optimization (11) on a uniform net in the interval [−0.8, 0.5] with
N = 320 points. This problem has the solution C∗

i equal to −0.0594107, −0.343784,
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−0.828227, −0.879519, 0.301152, 1, 0.0814624, −0.275238, −0.00639951, 0.00721968
for i = 1, . . . , 10. All the real roots of the polynomial Φ(x,C∗) lie in interval x ≤ −1.
Therefore, this function is positive in (−1,+∞). The equation Ψ(x, y,C∗) = 0 de-
termines in the half–plane x > −1 three annuli surrounding the focus O = (0, 0)
of the last Lienard polynomial system and Theorem 3 can be applied. Then, the
considered quadratic system (2) have no more than three limit cycles enclosing the
focus A and at least two limit cycles. Taking into consideration the numerical com-
putations it is possible to check that the system has exactly 3 limit cycles around
the focus A.

Example 2: A quadratic system with 2 foci, and 3 limit cycles surrounding one
focus and 0 limit cycles around the other focus, having at infinity 2 saddles and 1
antisaddle. That is, this system has a distribution (3, 0) for its limit cycles. We take
a = 1.5, a20 = −15, a11 = 0.79993, a10 = 9.17 and a01 = 3.2. The corresponding
system (2) has the foci A and B = (x0,−1/x0) with x0 = −0.73. In addition,
there are at least 3 limit cycles around the focus A which pass through the points
(xi,−1) for x1 = 1.4, x2 = 1.9 and x3 = 3.1. Now, we show that this system has no
more 3 limit cycles around the focus A. We consider a Lienard system (12) and a

function Ψ(ξ, ỹ, C) as in (6) and (7) with n = 11, k = −1 and Ψi =
ξ
∫

1

Ψ
′

i(t)dt + Ci.

For the function Φ̃(ξ, C) = 103Φ(ξ, C)/(1 + 4G3) with G =
ξ
∫

1

g(t)dt, where Φ(ξ, C)

is a function as in (8) and (9), we solve the problem of optimization (11) on a
uniform net in the interval [0.2, 1.7] with N = 200 points. This problem has the
solution C∗

i equal to 6.77203 · 10−6, 0.000127496, 0.00128263, 0.0189312, 0.0367929,
−0.0316707, −0.41092, −0.0777118, 1, 0.0289165, −0.12485 for i = 1, . . . , 11. The
function Φ(ξ, C∗) is positive for ξ > 0, and the equation Ψ(ξ, ỹ, C∗) = 0 determines
in the region ξ > 0 three annuli surrounding the focus Ã = (1, 0) of system (12).
Then, we get the same conclusion than in Example 1. The absence of limit cycles
around the focus A follows from works [18,19].

Example 3: A quadratic system with 1 focus, 3 saddles and 3 limit cycles surround-
ing the focus. We take a = −2, a20 = 12, a11 = 10.999, a10 = −26.1 and a01 = −14.
In this case system (2) has the focus A and the three saddles Si = (ti,−1/ti) with
t1 = −0.67, t2 = 0.15 and t3 = 1.7. In addition, there are at least 3 limit cycles
around the focus A which pass through the points (xi,−1) with x1 = 0.32, x2 = 0.66
and x3 = 0.8. We show that this system has at most 3 limit cycles. For that purpose
we consider the Lienard polynomial system (14) associated to system (2) with

F (x) = −
1001

3000
− 3x + 7x2 −

10999

3000
x3, g(x) = 2x − 14x2 − 2.1x3 + 26.1x4 − 12x5.

The function Ψ(x, y,C) is as in (7) with n = 10, k = −1 and Ψi =
x
∫

0

Ψ′
i(t)dt + Ci.

For the function Φ̃(x,C) = 100Φ(x,C)/(1 + 8G3) with G =
x
∫

1

g(t)dt, where Φ(x,C)
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is a function satisfying (8) and (9), we solve the problem of optimization (11) on a
uniform net in the interval [0.2, 1.72] with N = 650 points. The problem has the
solution C∗

i equal to −0.00891837, −0.0884008, −0.322146, −0.448227, 0.240997,
1, 0.119569, −0.547241, −0.0178445, 0.0269709 for i = 1, . . . , 10. The function
Φ(x,C∗) is positive in the interval (0, 1.705). The equation Ψ(x, y,C∗) = 0 deter-
mines for x ∈ I three annuli surrounding the focus Ã = (1, 0) of system (14). The
limit cycles of system (14) are located in the strip t2 < x < t3 of the plane (x, y).
The interval I contains the interval (t2, t3). Now, the conclusion follows in a similar
way to the previous examples.

Example 4: A quadratic system with 1 focus, 1 saddle and 3 limit cycles sur-
rounding the focus. We take a = −2, a20 = −1, a11 = 9.49965, a10 = 6.955 and
a01 = −12.5. In this case system (2) has the focus A and the saddle S = (x0,−1/x0)
with x0 = 0.2. In addition, there are at least three limit cycles around the focus A
which pass through the points (xi,−1) with x1 = 0.56, x2 = 0.75 and x3 = 0.87.
We consider the Lienard polynomial system (14) associated to system (2) with

F (x) = −
782

9375
−3x+

25

4
x2−

118747

375
x3, g(x) = 2x−

25

2
x2+

3291

200
x3+

1391

200
x4+x5.

Moreover, the function Ψ(x, y,C) is as in (7) with n = 12, k = −1 and Ψi =
x
∫

0

Ψ′
i(t)dt +Ci. For the function Φ̃(x,C) = 105Φ(x,C)/(1+4G2) with G =

x
∫

1

g(t)dt,

where Φ(x,C) satisfies (8) and (9), we solve the problem of optimization (11) on
a uniform net in the interval [0.3, 1.4] with N = 750 points. The problem has the
solution C∗

i equal to −0.0257346, −0.141113, −0.371849, −0.602612, −0.602612,
−0.281479, 0.102264, 0.157096, 0.0116869, −0.0191466, −0.00362004, 0.000197399
for i = 1, . . . , 12. The function Φ(x,C∗) is positive on the interval I = (0, 1.8), but
not on interval I = (x0,+∞). The equation Φ(x, y,C∗) = 0 determines for x ∈ I
three ovals. For evaluating the number of limit cycles on the strip x > x0 of the
plane (x, y), we shall use the method of reduction to the global uniqueness of a limit
cycle.

We consider the Andronov–Hopf function AH(x) = a11 with AH(1) = 9.5 as-
sociated to our system (2). We recall that a11 is a rotating parameter for system
(2). We fix all the parameters and we move only the parameter a11. The function
AH(x) is considered on the interval I1 = [x0, xmax] where the endpoints satisfy
x0 < 1 and xmax > 1, and xmax corresponds to the bifurcation of a limit cycle from
a loop of the saddle S. If in a subinterval I0 = [x1, x2] of I1 the number of zeros
of the function AH(x) = a0

11 is 2p, then the number of limit cycles of system (2)
in the strip x1 < x < x2 is p. Now, suppose that the equation AH(x) = a1

11 with
a1

11 < a0
11 provides a unique limit cycle which is localized in the strip x3 < x < x4

with [x3, x4] ⊂ I0 ⊂ I1, then the function AH(x) cannot take the value a0
11 outside

the interval I1. Consequently, for the value a0
11 system (2) has exactly p limit cycles.

This is the method of reduction to the global uniqueness of a limit cycle.
Now we go back to our particular system (2). Approximately AH(x) is equal to

8.89863 + 4.39482x − 13.5991x2 + 22.9703x3 − 22.4248x4 + 11.9886x5 − 2.72941x6,
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on I0 = [0.6, 0.9]. Of course I0 ⊂ I1. If we prove, for some a11 and remaining fixed
the other parameters, that system (14) has a unique limit cycle on a strip x ∈ (x̌, x̂)
of the plane (x, y) with (x̌, x̂) ⊂ I1, then the function AH(x) does not take the value
a11 = 9.49965 outside the interval I1, and AH(x) has its complicated behavior only
on I.

Now, we take a11 = 9.4993. Then, system (14) has a limit cycle, which is located
on the strip x0 < x < 1.8. We prove its uniqueness. For that we find functions
Ψ(x, y,C) and Φ(x,C) as before with n = 5 and k = −2/3. The problem (11)
has the solution C∗

i equal to −0.126609, −0.0834262, −1, −0.253441, 0.207481 for
i = 1, . . . , 5. The function Φ(x,C∗) is positive for x > 0. This means that systems
(14), and the corresponding system (2) have for a11 = 9.4993 a unique limit cycle.
Therefore, by applying the method of reduction to the global uniqueness of a limit
cycle, the proof of the distribution of 3 limit cycles around the focus A for the
considered system (2) follows.

Example 5: A quadratic system with 2 saddles, 1 focus, 1 node and 3 limit cycles
surrounding the focus. We take a = −4, a20 = −1, a11 = 13.9987, a10 = 12.4 and
a01 = −21. In this case system (2) has the focus A and the node N = (t0,−1/t0) with
t0 = 9.69, and two saddles Si = (ti,−1/ti) with t1 = 0.29 and t2 = 1.42. In addition,
there are at least three limit cycles which are located on the strip t1 < x < t2 of the
plane (x, y) around the focus A and pass through the points (xi,−1) with x1 = 0.63,
x2 = 0.8 and x3 = 0.88. For computing the number of limit cycles we consider the
Lienard polynomial system (14) associated to system (2) with

F (x) = −
17539

150000
−

7

3
x3 +

21

4
x4 −

139987

50000
x5,

g(x) = x5

(

4 − 21x +
142

5
x2 −

62

5
x3 + x4

)

,

and we find a function Ψ(x, y,C) as in (7) with n = 11, k = −1 and Ψi =
x
∫

1

Ψ′
i(t)dt+

C. Now, for the function Φ̃(x,C) = 106Φ(x,C)/(1 + 4G2) with G =
x
∫

1

g(t)dt,

where Φ(x,C) satisfies (8) and (9), we solve the problem (11) on a uniform net
on the interval [0.5, 1.33] with N = 750 points. The problem has the solution C∗

i

equal to −0.206646, −0.701459, −1, −0.745283, −0.24893, 0.0331453, 0.0341755,
0.000943157, −0.00105898, −5.55364 · 10−6, 2.065241̇0−6 for i = 1, . . . , 11. The
equation Ψ(x, y,C∗) = 0 defines in the strip 0.25 < x < 1.3 only three ovals. The
function Φ(x,C∗) is positive on (0.25, 1.3), but not on I = (t1, t2) where limit cycles
are located. As in the previous example we can use the method of reduction to
the global uniqueness of a limit cycle. We take a11 = 13.998 and fix the remaining
parameters. The corresponding Lienard polynomial system (14) has a limit cycle
which is located on the strip 0.25 < x < 1.3. Then, we find functions Ψ(x, y,C)
and Φ(x,C) as before with n = 7, k = −2/3 and a11 = 13.998. The problem (11)
has a solution C∗

i equal to −0.884833, −0.874942, −1, −0.158469, −1, −0.107391,
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0.0599698 for i = 1, . . . , 7. The function Φ(x,C∗) is positive for x > 0. This
means that systems (14), and the corresponding system (2) have for a11 = 13.998 a
unique limit cycle. Now, following with the method of reduction we can complete the
proof of the distribution of 3 limit cycles surrounding the focus A of the considered
system (2).

Example 6: A quadratic system with 1 saddle, 1 focus, 2 nodes and 3 limit cycles
surrounding the focus. We take a = 5, a20 = −50, a11 = −5.49995, a10 = 76.45
and a01 = 16.5. Then, system (2) has the focus A, the nodes N1 = (t1,−1/t1),
N2 = (t2,−1/t2) with t1 = −0.46, t1 = 0.34, and the saddle S = (t3,−1/t3) with
t3 = 0.65. Also it has at least three limit cycles around the focus A, which pass
through the points (xi,−1) with x1 = 1.05, x2 = 1.16 and x3 = 1.5. For estimating
the number of limit cycles we consider the Lienard polynomial system (12) with

F (ξ) = −
22003

240000
−

1099999

80000
ξ4 +

33

10
ξ5 −

11

6
ξ6,

g(ξ) = ξ7

(

−50 +
1529

20
ξ −

299

20
ξ2 −

33

2
ξ3 + 5ξ4

)

.

As before we find functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and (9)

with n = 10, k = −1 and Ψi =
ξ
∫

1

Ψ′
i(t)dt + Ci for i = 1, ..., n. For the func-

tion Φ̃(ξ, C) = 103Φ(ξ, C)/ξ3) we solve the problem (11) on a uniform net in
the interval [0.6, 1.21] with N = 450 points. For the computations it is bet-
ter to do the change of variable ξ → ξ + 1. The problem (11) has the solu-
tion C∗

i equal to −0.0104019, −0.0613161, −0.329415, −1, 0.0849137, 0.770697,
0.0133268, −0.124194, −0.000345956, 0.00107251 for i = 1, . . . , 10. The equation
Ψ(ξ, ỹ, C∗) = 0 defines in the strip ξ ∈ I = (0.1; 1.5) only three ovals. The function
Φ(ξ, C∗) is positive on the interval I. Therefore, we use the reduction to a global
uniqueness of a limit cycle in the half–plane ξ > 0. We take a11 = −5.4997 and
suppose that remaining parameters are fixed. Then, the corresponding system (12)
has a limit cycle which is located on the strip ξ ∈ I. Furthermore, we find functions
Ψ(ξ, ỹ, C) and Φ(ξ, C) as before with n = 5, k = −2/3 and a11 = −5.4997. The
problem (11) has the solution C∗

i equal to −0.029957, −0.00827985, −1, −0.104843,
0.487508 for i = 1, . . . , 5. The function Φ(ξ, C∗) is positive on (0, 1.8), and the
equation Ψ(ξ, ỹ, C∗) = 0 defines for 0 < ξ < 1.8 only one oval. Hence, it follows the
uniqueness of the limit cycle for the considered system (12). Finally, the original
system (2) has exactly three limit cycles in the half–plane x > 0 around the focus A.

Example 7: A quadratic system with 2 foci, 1 saddle at infinity, and the configura-
tion (3, 1) of limit cycles. We take a = 8/11, a20 = −12, a11 = 2.1502, a10 = −26.5
and a01 = 67/220. The corresponding system (2) has the foci A and B = (x0,−1/x0)
with x0 = −3.2, and a saddle at infinity. In addition, there are at least three limit
cycles around A, which pass through the points (xi,−1) with x1 = 1.28, x2 = 1.15
and x3 = 4.43; and there is at least one limit cycle around B. For studying the limit



QUADRATIC SYSTEMS WITH LIMIT CYCLES OF NORMAL SIZE 43

cycles surrounding the focus A we consider the associated system (12), which after
the change of variable y = 5ỹ has the functions

F (ξ) =
10130461

5700000
−

118261

75000ξ
3
11

+
67

800
ξ

8
11 −

7

95
ξ

19
11 ,

g(ξ) = −
−12

25ξ
17
11

−
53

5ξ
6
11

+
8377

5500
ξ

5
11 −

67

5500
ξ

6
11 +

8

275
ξ

27
11 .

For system (12) we find functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and (9)

with n = 11, k = −1 and Ψi =
ξ
∫

1

Ψ′
i(t)dt + Ci for i = 1, ..., n. Now, for the function

Φ̃(ξ, C) = Φ(ξ, C)ξ4/(1 + ξ9) we solve the problem (11) on a uniform net in the
interval [0.001, 4] with N = 790 points. The problem has the solution C∗

i equal
to −0.000309912, −0.00513088, −0.372386, −0.154282, −0.328544, 0.150592, 1,
0.0871286, −0.586201, −0.0121769, 0.0273162 for i = 1, . . . , 11. The equation
Ψ(ξ, ỹ, C∗) = 0 defines in the strip 0 < ξ < 4 only three ovals. The function
Φ(ξ, C∗) is positive only on (0, 4). Now we use again the method of reduction to
the global uniqueness of a limit cycle for proving that there exist exactly three
limit cycles surrounding the focus A. We take in system (2) a11 = 2.156 and the
remaining parameters are fixed. Therefore, the corresponding system (12) has a
limit cycle which is located on the strip 0 < ξ < 4 of the phase plane (ξ, ỹ). Now
we find functions Ψ(ξ, ỹ, C) and Φ(ξ, C) as before with n = 3, k = −2/3 and a11 =
2.156. The corresponding problem (11) has the solution C∗

i equal to −0.8033395,
−0.299759, 1 for i = 1, 2, 3. The function Φ(ξ, C∗) is positive for ξ > 0. This means
that systems (2) and (12) with a11 = 2.156 have a unique limit cycle, but they for
a11 = 2.1502 have exactly three limit cycles around the focus A. Now, we shall
prove the uniqueness of the limit cycle around the focus B for the original system
(2) in the half–plane x < 0. In fact this uniqueness follows from the results of Zhang
Pingguang [20,21], but here we provide an independent proof. For doing that first,
we translate the point B to the point A by means of the change of variables x = x0x̂,
y = ŷ/x0. System (2) becomes another quadratic system also in the form (2) and its
parameters are ã00 = x2

0a00, ã10 = x3
0a10, ã20 = x4

0a20, ã01 = x0a01, ã11 = x2
0a11 and

ã = a. The uniqueness of the limit cycle is obtained in the half–plane x̃ > 0. We can
prove this with the help of the functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and

(9), and the corresponding system (12) with n = 3, k = −1 and Ψi =
ξ
∫

1

Ψ′
i(t)dt + Ci

for i = 1, 2, 3. The problem (11) for the function Φ̃(ξ, C) = 10−2Φ(ξ, C)ξ20/11 has
the solution C∗

i equal to −8.0101 ·10−5 , 7.10538 ·10−4 , 1 for i = 1, 2, 3. The function
Φ(ξ, C∗) is positive for ξ > 0, and the equation Ψ(ξ, ỹ, C∗) = 0 defines for ξ > 0
only one oval. By Theorem 3, the considered system has exactly one limit cycle in
the half–plane ξ > 0, and the original system (2) has exactly one limit cycle around
focus B. So, we have distribution (3, 1) of limit cycles for our system (2).

Example 8: A quadratic system with 2 foci, and 1 saddle and 1 antisaddle at
infinity, and the configuration (3, 1) of limit cycles. In [1] the domain of parameters
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is found in order that a quadratic system has a weak focus of third order and a limit
cycle around the other focus. Using these systems we can find a quadratic system
(2) with the distribution of limit cycles (3, 1). We take a = 1.04, a20 = −120,
a11 = 1.51997, a10 = −79.6 and a01 = 1.56. Then, system (2) has the foci A and
B = (x0,−1/x0) with x0 = −1.79, one saddle and one node at infinity. In addition
there are at least three limit cycles around A, which pass through the points (xi,−1)
with x1 = 1.29, x2 = 2.22 and x3 = 4.63; and there is at least one limit cycle around
B. For studying the limit cycles surrounding the focus A we consider the associated
system (12), which after the change of variable y = 10ỹ has the functions F (ξ), g(ξ):

F (ξ) = −
7749847

2040000
+

151997

40000
ξ

1
25 +

3

20
ξ

26
25 −

77

510
ξ

51
25 ,

g(ξ) = −
−6

5ξ
23
25

−
119

250
ξ

2
25 +

5003

2500
ξ

27
25 −

39

2500
ξ

52
25 +

13

1250
ξ

77
25 .

As before we find the functions Ψ(ξ, ỹ, C) and Φ(ξ, C) satisfying (7), (8) and (9)

with n = 10, k = −1 and Ψi =
ξ
∫

1

Ψ′
i(t)dt + Ci for i = 1, ..., n. Now, for the function

Φ̃(ξ, C) = 103Φ(ξ, C)/(1 + 4G2) with G =
ξ
∫

1

g(t)dt we solve the problem (11) on

a uniform net in the interval [0.1, 2.2] with N = 400 points. The problem has
the solution C∗

i equal to 9.774 · 10−5, 0.00294242, 0.035928, 0.273929, −0.0477983,
−1, −0.385115, 0.80362, 0.00645912, −0.00449499 for i = 1, . . . , 10. The equation
Ψ(ξ, ỹ, C∗) = 0 defines in the strip 0 < ξ < 5 only three ovals. The function Φ(ξ, C∗)
is positive on the interval I = (0; 5). Again we use the method of reduction to the
global uniqueness of a limit cycle for proving that there exist exactly three limit
cycles surrounding the focus A. We take a11 = 1.5198 and the remaining parameters
are fixed. The corresponding system (12) has a limit cycle which is located in the
strip 0 < ξ < 5 of the phase plane (ξ, ỹ). Now we find functions Ψ(ξ, ỹ, C) and
Φ(ξ, C) as before with n = 7, k = −1 and a11 = 1.5198. The problem (11) has
the solution C∗

i equal to 0.00132064, 0.0450009, 1, −0.00941069, 0.20056, 0.134724,
−1 for i = 1, . . . , 7. The function Φ(ξ, C∗) is positive for ξ > 0, and the equation
Ψ(ξ, ỹ, C∗) = 0 defines for ξ > 0 only one oval. By Theorem 3, the considered
system has exactly one limit cycle in a half–plane ξ > 0, then the original system
(2) has exactly three limit cycles in a half–plane x > 0 around the focus A. The
uniqueness of the limit cycle around B for the original system (2) in the half–plane
x < 0 is proved in the same way as in Example 7 if the function Φ̃(ξ, C∗) is equal
to Φ(ξ, C)ξ24/25/106. The problem (11) has the solution C∗

i equal to 1.24736 · 10−4,
0.00948753, 1 for i = 1, 2, 3. The function Φ(ξ, C∗) is positive for ξ > 0, and the
equation Ψ(ξ, ỹ, C∗) = 0 defines for ξ > 0 only one oval, which allows to show the
uniqueness of the limit cycle of system (2) around the focus B.

Remark 1. Kooij and Zegeling proved in [18,19] that the distribution of limit cycles
(3, 1) is possible only for quadratic system of the type 2A + 1S∞, 2A + 2S∞ + 1S∞

which we have considered.



QUADRATIC SYSTEMS WITH LIMIT CYCLES OF NORMAL SIZE 45

Remark 2. For constructing the examples of quadratic system with the maximum
number of limit cycles it is not necessary to use the function ã11(x). It is enough to
know that the function a10(x) has an extremum, then the function AH(x) will have
two extrema and provides the existence of an interval for the function a11 in which
the system has three limit cycles. Also it is possible instead of using the normal form
given by system (2), to use other canonical families of quadratic systems considered
in [9,17].
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