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Classification of quadratic systems with a symmetry

center and simple infinite singular points

Mircea Lupan, Nicolae Vulpe∗

Abstract. We classify the family of planar quadratic differential systems with a
center of symmetry and two invariant straight lines according to the topology of their
phase portraits. The case of the existence of simple infinite singular points is only
considered. For each of the obtained distinct topological classes we give necessary and
sufficient conditions in terms of algebraic invariants and comitants. The program was
implemented for computer calculations.

Mathematics subject classification: 34C14, 34C05, 58F14.
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1 Introduction and the statement of main results

Consider generic quadratic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dx

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

(1)

with real homogeneous polynomials pi, qi ∈ R[a, x, y] (i = 0, 1, 2) of degree i in x, y.

In paper [10] the notion of a dicritical (not necessarily singular) point of a
quadratic differential system is introduced. As particular cases, it comprises sym-
metry point of the corresponding integral curves, dicritical nodal singular point and
homogeneity point (i.e., such point that system (1) becomes homogeneous after shift-
ing the point to the origin). The class of quadratic system with homogeneity point
was studied in [2, 7, 11–13, 16, 19, 21–23]. In papers [4, 20] the topological classi-
fication of system (1) having a dicritical nodal singular point is obtained. Some
classes of the quadratic systems (1) possessing a symmetry point were examined in
papers [3, 17,18].

The purpose of our article is the study of quadratic system (1) with a symme-
try point and two parallel invariant straight lines which can be: (a) real distinct;
(b) imaginary; (c) coincided in the finite part of the phase plane; (c) coincided at
infinity. For this class of system (1) all possible topological distinct phase portraits
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will be constructed and the respective necessary and sufficient conditions for their
realization will be established.

We introduce the following polynomials:

Ci = ypi(x, y) − xqi(x, y) (i = 0, 1, 2), Di =
∂pi

∂x
+
∂qi
∂y

(i = 1, 2),

which in fact are GL-comitants [5, 16]. To formulate the statement of the Main
Theorem we shall construct T -comitants and CT -comitants (see [15] for detailed
definitions) which distinguish phase portraits of the class of system (1) possessing
a center of symmetry and two parallel invariant straight lines. All of them will
be constructed only by using polynomials Ci and Di via the differential operator
(f, g)(k) called transvectant of the index k [8,14] which acts on R[a, x, y] as follows:

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

Here f(x, y) and g(x, y) are polynomials in x, y of the degree r and ρ, respectively,
and a ∈ R

12 is 12-tuple of the coefficients of system (1).

First we construct the following comitants of the second degree with respect to
coefficients of initial system (1):

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0,D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1,D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2,D2)
(1) .

By using the initial T-comitants: Ã, B̃, C̃ ≡ C2, D̃, Ẽ, F̃ , G̃ ≡ D2, H̃, K̃
written in tensorial form in paper [5] was constructed a minimal polynomial basis
of T-comitants of system (1) up to degree 12.

We shall use here some of these T-comitants, expressed through Ci and Dj:

Ã(a) =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̃(a, x, y) =
[
2C0(T8 − 8T9 − 2D2

2) + C1(T7 − T6) − (C1, T5)
(1)

+6D1(C1D2 − T5) − 9D2
1C2

]
/36,

Ẽ(a, x, y) =
[
D1(2T9 − T8) − 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̃ (a, x, y) =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0 (D2, T9)

(1) −D2
2T4 + 288D1Ẽ

−24
(
C2, D̃

)(2)
+ 120

(
D2, D̃

)(1) − 36C1 (D2, T7)
(1) + 8D1 (D2, T5)

(1) ]
/144,

K̃(a, x, y) = (T8 + 4T9 + 4D2
2)/72,

H̃(a, x, y) = (−T8 + 8T9 + 2D2
2)/72.

Now the needed T -comitants expressed only through the polynomials Ci (i = 0, 1, 2)
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and Dj (j = 1, 2) via differential operator (∗, ∗)(k) can be constructed:

M(a, x, y) = T8/8 ≡ Hessian(C2)/4,

K(a, x, y) = K̃(a, x, y) ≡
(
p2(x, y), q2(x, y)

)(1)
/4,

N1(a, x, y) = (T8 − 2T9 +D2
2)/36,

N2(a, x, y) =
[
D1(2T9 − T8 − 3D2

2) − 3D2T7 − 3 (C1, T9)
(1) ]

/72,

N5(a, x, y) = (T5 − 3C2D1 + 2C1D2)/6,

V (a, x, y) =
[
4(T2 + C0D2)

2 − 3(T5 − 3C2D1 + 2C1D2)(T1 + C0D1)
]
/36,

W1(a, x, y) = 2
(
C2, D̃

)(2) − 7
(
D2, N1

)(2)
+ 18F̃ ,

W2(a, x, y) = 15C2

[
23

(
(D̃, D̃)(2),D2

)(1)
+7

(
(C2, D̃)(2), D̃

)(2)]−11
[(
C2, D̃

)(2)]2
+

36D̃
[
42

(
C2, F̃

)(2) − 197
(
D̃, K̃

)(2)
+ 184

(
D̃, H̃

)(2)]
+

6D2

[
168

(
D̃, F̃

)(1) − 19
(
(C2, D̃)(2), D̃

)(1)]
+

288F̃
[
2
(
C2, D̃

)(2)
+ 9F̃

]
+ 172

(
C2, D̃

)(3)(
C2, D̃

)(1)
+

12
(
49K̃ − 197H̃

)(
D̃, D̃

)(2) − 194
(
C2, D̃

)(2)(
D2, D̃

)(1)
,

W3(a, x, y) =
((
C2, D̃

)(1)
,
(
C2, D̃

)(1))(2) − 6
(
C2, D̃

)(1)(
C2, D̃

)(3)
,

η(a) = (M,M)(2) /6 ≡ Discrim(C2),

µ(a) = − (K,K)(2) /2 ≡ Discrim(K),

κ(a) = −(N1, N1)
(2) /8 ≡ Discrim(N1)/4,

G1(a) =
(
C1, T8 − 2T9 +D2

2

)(1)
/144,

H1(a) = 9
(((

D̃, D̃
)(2)

,D2

)(1)
,D2

)(1)
+ 270

(
(D̃, D̃)(2), (6K̃ +N1)

)(2)
+

576
(
(D̃, F̃ )(2),D2

)(1)
+ 396

(
(C2, D̃)(2), F̃

)(2) − 86
[(
C2, D̃

)(3)]2
,

H2(a) =
(
H̃, K̃

)(2) − 3
(
H̃, H̃

)(2)
,

H3(a) = −6
(
F̃ , K̃

)(2) − 4
(
(D̃, H̃)(2),D2

)(1) −
(
(D̃, K̃)(2),D2

)(1)
,

F1(a) = 10
[(
C2, D̃

)(3)]2 − 99
(((

D̃, D̃
)(2)

,D2

)(1)
,D2

)(1) − 36
(
(C2, D̃)(2), F̃

)(2)
+

54
(
(D̃, D̃)(2), (7H̃ − K̃)

)(2) − 288
(
(D̃, F̃ )(2),D2

)(1)
,

F2(a) =
(
H̃, K̃

)(2)
+

(
H̃, H̃

)(2)
,

F3(a) =
(
C2, D̃

)(3)
,

E1(a) = 4
(
(D̃, F̃ )(2),D2

)(1)
+ 3

(
(D̃, D̃)(2), (K̃ + 3H̃)

)(2) − 4
(
(C2, D̃)(2), F̃

)(2)
,

E2(a) =
(
(D̃,N1)

(2),D2

)(1)
,

E3(a) =
(
((D̃,D2)

(2),D2)
(1),D2

)(1)
.

In order to formulate the statement of the Main Theorem we note that the
geometrical meaning of the condition κ = 0 is given by Lemma 1.

Main Theorem. For κ = 0 the phase portraits of the non-degenerate quadratic
system (1) with a point of symmetry and such that polynomial C2 = yp2(x, y) −
xq2(x, y) 6= 0 has only simple roots (i.e.,η 6= 0), are determined by the respective
affine invariant conditions given in Table 1. Here by ri (respectively, ci) the real
(respectively, imaginary) singular point of multiplicity i is denoted.
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Table 1

Infinite
Condi-

Finite
Phase

Additional conditions
singular

tions
singular Conditions

portrait
for determining

points points phase portraits

N1 ≥ 0

W2 > 0,
Figure 1

N1<0
W3 < 0

r1r1r1r1
W1 > 0

W3 ≥ 0, E1 > 0

Figure 2 N1 < 0,W3 = 0, E1 < 0

Figure 3 N1 < 0,W3 > 0, E1 < 0

N1 = 0

c1c1c1c1

W2 < 0 or
Figure 4

N1 6=0
W3 6= 0

W2 > 0 &
W3 =0, N1E1>0

r1r1r1 η > 0

W1 < 0
Figure 5 W3 = 0, N1E1 < 0

Figure 6
N1 = 0

r2 r2
W2 = 0 N1 6= 0, E2 = 0

W1 > 0 Figure 7 E2 6= 0, N1 > 0

Figure 8 E2 6= 0, N1 < 0

c2 c2 W2 =0,W1<0 Figure 4 –

r4 µ 6=0,W1 =0 Figure 9 –

Figure 4
W3 6= 0

– µ = 0, V 6= 0 W3 = 0, E3 < 0

Figure 5 W3 = 0, E3 > 0

r1r1r1r1
µ>0,W2>0

Figure 10 –
W1 > 0

Figure 15 H1 6= 0

r1r1c1c1 µ<0,W2 6=0 Figure 16 H1 = 0, H3 > 0

Figure 17 H1 = 0, H3 < 0

W2 < 0 or

r1c1c1 η < 0 c1c1c1c1 µ>0,W2>0 Figure 11 –

& W1 < 0

r2 r2 W2 =0,W1>0
Figure 12 E2 = 0

Figure 13 E2 6= 0

c2 c2 W2 =0,W1<0 Figure 11 –

r4 µ 6=0,W1 =0
Figure 14 µ > 0

Figure 18 µ < 0
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2 Some preliminary results

Proposition 1. [10] System 1 has a single symmetry point if and only if either
N1(a, x, y) 6= 0 and G1(a) = N2(a, x, y) = 0 or N1(a, x, y) = N3(a, x, y) = 0,
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N4(a, x, y) 6= 0; and it has an infinite number of such points if and only if
N1(a, x, y) = N3(a, x, y) = N4(a, x, y) = N5(a, x, y) = 0.

Proposition 2. [16] The number of distinct roots (real and imaginary) of the poly-
nomial C2 = yp2(x, y) − xq2(x, y) 6≡ 0 is determined by the following conditions:

• 3 real for η > 0;

• 1 real and 2 imaginary for η < 0;

• 2 real (one double and one simple) for η = 0, M 6= 0;

• 1 real (triple) for η = M = 0.

Proposition 3. [9] The number and the types of the finite singular points of the
non-homogeneous system (1) with a point of symmetry are determined in Table 1.
The notations ’sdl’, ’nod’, ’sdl-nod’, ’foc’ and ’cnt’ are used to denote saddle, node,
saddle-node, focus, and center, respectively, and by (A1) we denote the following set
of conditions:

F1 = F3 = 0, F2 ≥ 0. (A1)

The geometrical meaning of the condition κ = 0 is given by the next lemma.

Lemma 1. Assume that for the quadratic system (1) with a point of symmetry and
C2 6= 0 the condition κ = 0 holds. Then this system possesses two parallel invariant
straight lines which can be: (a) real distinct; (b) imaginary; (c) coincided in the finite
part of the phase plane; (c) coincided at infinity.

Proof: We shall consider all the cases given by Proposition 2.

Case η > 0. Applying an affine transformation system (1) with a point of
symmetry can be brought [16] to the canonical form

ẋ = a+ gx2 + (h− 1)xy, ẏ = b+ (g − 1)xy + hy2.

For this system we have κ = (1 − g)(h− 1)(g + h)/8. So, the condition κ = 0 yields
(g − 1)(h − 1)(g + h) = 0 and without loss of generality we may assume h = 1.
Indeed, if g = 1 (respectively, g + h = 0) we can apply the linear transformation
x = y1, y = x1 (respectively, x = −y1, y = x1 − y1). Thus, h = 1 and we obtain the
system

ẋ = a+ gx2, ẏ = b+ (g − 1)xy + y2 (2)

which, evidently, possesses two parallel invariant straight lines: gx2 + a = 0 (g2 +
a2 6=0). Clearly we obtain the case (a) (respectively, (b); (c); (d) ) indicated in the
statement of Lemma 1 when ag < 0 (respectively, ag > 0; a = 0; g = 0).

Case η < 0. According to [16] via an affine transformation system (1) can be
brought to the canonical form

ẋ = a+ gx2 + (h+ 1)xy, ẏ = b− x2 + gxy + hy2. (3)
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Table 1

Singular Affine invariant
Characters

Additional conditions for
points conditions determining characters

sdl, sdl, nod, nod H1 ≥ 0
r1r1r1r1 µ>0,W1>0,W2>0 sdl, sdl, foc, foc H1 < 0, ¬(A1)

sdl, sdl, foc, cnt H1 < 0, (A1)

sdl, sdl K < 0
H1 < 0, H3 > 0

nod, nod K>0
H1 =0,H2<0,H3>0
H1 = 0, H2 ≥ 0
H1 > 0, H2 > 0r1r1c1c1 µ < 0, W2 6= 0

K>0,
H1 < 0, H3 < 0

foc, foc
¬(A1)

H1 =0,H2<0,H3<0
H1 > 0, H2 < 0

K>0,
H1 < 0, H3 < 0

cnt, cnt
(A1)

H1 =0,H2<0,H3<0
H1 > 0, H2 < 0

c1c1c1c1
µ > 0 and W2 < 0

— —
or W2 > 0, W1 ≤ 0

r2r2 µ>0,W1>0,W2 =0
sdl-nod, sdl-nod F2 6= 0

cusp, cusp F2 = 0

c2c2 µ>0,W1<0,W2 =0 — —

r4 µ 6=0,W1 =0,W2 =0 — Homogeneous system ([16])

sdl, sdl K < 0

r1r1 µ = 0, W1 > 0
nod, nod K>0 H1 ≥ 0
foc, foc K>0 H1 < 0, ¬(A1)
cnt, cnt K>0 H1 < 0, (A1)

c1c1 µ = 0, W1 < 0 — —

— µ=0,W1 =0, V 6=0 — There are no singular points

— µ=0,W1 =0, V =0 — System is degenerate

For system (3) we have κ = (h+ 1)
[
(h− 1)2 + g2

]
/8, and the condition κ = 0 yields

two subcases: h+ 1 = 0 and h− 1 = g = 0.

Subcase h = −1. The system (3) becomes ẋ = a+ gx2, ẏ = b− x2 + gxy − y2,
which has the parallel lines a+ gx2 = 0.

Subcase h − 1 = g = 0. We obtain the system ẋ = a + 2xy, ẏ = b− x2 + y2,
which possesses the following two couples of imaginary invariant straight lines:

(x− iy)2 = b+ ia, (x+ iy)2 = b− ia.

Case η = 0, M 6= 0. System (1) by means of an affine transformation can be
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brought [16] to the canonical form

ẋ = a+ gx2 + hxy, ẏ = b+ (g − 1)xy + hy2. (4)

For this system we have κ = h2(1 − g)/8 and, hence, the condition κ = 0 implies
either g = 1 or h = 0.

Subcase g = 1. Evidently, in this case system (4) possesses two parallel invariant
straight lines hy2 + b = 0 types of which are governed by parameters h and b.

Subcase h = 0. The system (4) becomes ẋ = a + gx2, ẏ = b+ (g − 1)xy, and
again possesses the invariant straight lines gx2 + a = 0.

Case M = 0, C2 6= 0. Via an affine transformation system (1) with a point of
symmetry can be brought [16] to the canonical form

ẋ = a+ gx2 + hxy, ẏ = b− x2 + gxy + hy2.

For this system we have κ = h3/8 and the condition κ = 0 yields h = 0. This leads
to the system ẋ = a+gx2, ẏ = b−x2 +gxy, which possesses two parallel invariant
straight lines gx2 + a = 0. Lemma 1 is proved.

3 The proof of the Main Theorem

In what follows we assume that the condition κ = 0 is fulfilled.

3.1 Systems with 3 real roots of C2

According to Proposition 2 the condition η > 0 holds. It was shown in the proof
of Lemma 1 that in this case the quadratic system can be brought to the canonical
form

ẋ = a+ gx2, ẏ = b+ (g − 1)xy + y2 (5)

for which we have:

C2 ≡ yp2(x, y) − xq2(x, y) = xy(x− y), µ = g2.

Then we conclude that the intersection point of the line x = 0 (respectively, y = 0;
y = x) with Poincaré’s circumference is a real infinite singular point of system (5),
which we will denote by Ñ1(0, 1, 0) (respectively, Ñ2(1, 0, 0); Ñ3(1, 1, 0)). Since the
conditions η > 0 and µ 6= 0 are fulfilled in accordance with the paper [15] at infinity
there exist one saddle and two nodes on the Poincaré circumference. In what follows
we need to know where exactly the saddle is placed. So, by using the transformation
x = v/z, y = 1/x, dt = zdτ system (5) will be brought to the system

dv

dτ
= −v + v2 + az2 − bvz2,

dz

dτ
= −z + (1 − g)vz − bz3, (6)

whereas applying the transformation x = 1/z, y = u/z, dt = zdτ we obtain the
system

du

dτ
= −u+ u2 + bz2 − auz2,

dz

dτ
= −gz − az3. (7)
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Clearly, the point Ñ1(0, 1, 0) corresponds to the singular point (0, 0) of system (6)
and the point Ñ2(1, 0, 0) (respectively, Ñ3(1, 1, 0)) corresponds to the singular point
(0, 0) (respectively, (1, 0)) of system (7).

Considering the eigenvalues of the corresponding linear matrix for each of these
singular points we obtain, respectively:

Ñ1(0, 1, 0) : λ1λ2 = 1; Ñ2(1, 0, 0) : λ1λ2 = g; Ñ3(0, 1, 0) : λ1λ2 = −g.

Hence, we have the next affirmation:

Remark 1. For system (5) with µ 6= 0 the infinite singular point N1(0, 1, 0) is a
node and the point N2(1, 0, 0) (respectively, N3(1, 1, 0)) is a node (respectively, a
saddle) for g > 0 and a saddle (respectively, a node) for g < 0.

Let us emphasize some useful geometrical proprieties of system (5).

Remark 2. For g2 − 1 = 0 system (5) possesses two couples of parallel invariant
straight lines. Moreover, one couple of parallel lines is directed to the node N1(0, 1, 0)
and the second one is directed to the node N2(1, 0, 0) (respectively, node N3(1, 1, 0))
for g = 1 (respectively, g = −1).

Remark 3. For b = 0 (respectively, b = a) system (5) possesses one invariant
straight line which passes through the infinite singular point N2(1, 0, 0) (respectively,
N3(1, 1, 0)).

For system (5) one can calculate

W1 = −24g
[
a(g − 1)2 + 2bg

]
x2 − 48ag (g − 1) xy − 48 agy2,

W2 = 2733ag2
[
a(g − 1)2 + 4bg

]
[(g − 1)x+ 2 y]2 x2,

H1 = 2534 [a(g − 1)(3g − 1) − 4bg]2 , F2 = −4g2,
Discrim(W1) = −2832ag2

[
a(g − 1)2 + 4bg

]
, µ = g2.

(8)

Case W2 > 0. Then a
[
a(g − 1)2 + 4bg

]
> 0, and we obtain Discrim(W1) < 0.

Hence, the quadratic formW1(x, y) became sign definite. Moreover, by (8) we obtain
sign(W1) = −sign(ag). Since ag 6= 0 by applying the transformation

x = αx1, y = αy1, t = α−1t1, (α =
√

|ag−1|), (9)

system (5) can be brought to the following canonical form (we keep the previous
notations):

ẋ = g
(
x2 + Sign(ag)

)
, ẏ = b+ (g − 1)xy + y2. (10)

Subcase W1 > 0. Then ag < 0 and system (10) becomes

ẋ = g
(
x2 − 1

)
, ẏ = b+ (g − 1)xy + y2. (11)

This system possesses two parallel real invariant straight lines: x = ±1. Since by
(8) we have H1 ≥ 0, according to Proposition 3 for W2 > 0, W1 > 0 and H1 ≥ 0
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system (5) has 4 real singular points placed on the invariant straight lines x = ±1
and namely, two saddles and two nodes: M±

1

(
1, y±1

)
, M±

2

(
−1, y±2

)
, where

y±1 =
1 − g ±

√
∆

2
, y±2 =

g − 1 ±
√

∆

2
, ∆ = (g − 1)2 − 4b.

We note that ∆ > 0 because of W2 > 0. The symmetry of the vector field of system
(11) implies the symmetry of the point M+

1 with M−

2 as well as the symmetry of the
point M−

1 with M+
2 . Thus, it is sufficient to determine only the types of the points

M±

1 . It is not difficult to calculate the corresponding eigenvalues and to find out for
each point:

M+
1 : λ1λ2 = 2g

√
∆; M−

1 : λ1λ2 = −2g
√

∆.

1) g < 0. Then the singular point M+
1 (respectively, M−

1 ) is a saddle (respec-
tively, a node), and y+

1 > y−1 . Taking into account the coordinates of the singular
points we observe that the straight line which connects the saddles M+

1 and M−

2

will be

y = Klx, Kl =
1 − g +

√
∆

2
= y+

1 > 0.

Remark 4. It is known ([24], Lemma 11.4) that if the line passing through two
singular points of quadratic system is not an invariant straight line, then it must be
a line without contact except singular points.

In order to determine the position of the separatrices of the saddle M+
1 with

respect to the line y = y+
1 x, we shall determine the direction of the proper vectors

of the linear matrix corresponding to this singular point. So, besides the evident
direction x = 1 we obtain the direction: y = Ksx, Ks = (1−g)y+

1 /(
√

∆−2g) > 0.
It is not difficult to determine that for g < 0 the following relations hold:

Ks < Kl iff g ≤ −1 or − 1 < g < 0, b < −g ⇔ Figure 1;
Ks = Kl iff −1 < g < 0, b = −g ⇔ Figure 2;
Ks > Kl iff −1 < g < 0, b > −g ⇔ Figure 3.

(12)

We observe that for b = −g we obtain y+
1 = 1 and then the line y = x becomes

invariant straight line of system (11) which connects two saddles M+
1 and M−

2 .
Hence we obtain Figure 2.

Taking into consideration Remark 4 we conclude that inside the domain bounded
by the invariant straight lines x = ±1 the separatrix will connect the saddle M+

1

with the node M+
1 for Ks < Kl (Figure 1) and with the infinite node N1(0, 1, 0) for

Ks > Kl (Figure 3).
2) For g > 0 we obtain that the singular point M+

1 (respectively, M−

1 ) is a node
(respectively, a saddle), and y+

1 > y−1 . In the same manner as above we can examine
the directions of the separatrices for the saddle M−

1 . And it is not too hard to
determine that for (g − 1)2 − 2b > 0 and g > 0 the corresponding phase portraits
for the canonical system (11) will be realized if and only if the following conditions
are fulfilled, respectively:
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Figure 1 iff g ≥ 1 or 0 < g < 1 and b < 0;
Figure 2 iff 0 < g < 1, b = 0;
Figure 3 iff 0 < g < 1, b > 0.

(13)

It remains to find out the corresponding affine invariant conditions. For the
system (11) we have

E1 = 384(2b + g)g2(g2 − 1), N1 = (g2 − 1)x2/4,
W3 = −648b(b+ g)(g2 − 1)2x4.

(14)

Taking into consideration (12), (13) and (14) it is not too difficult to obtain the
following correspondence between Figures 1-3 and respective affine invariant condi-
tions:

Figure 1 iff N1 ≥ 0 or N1 < 0 and either W3 < 0 or W3 ≥ 0 and E1 > 0;
Figure 2 iff N1 < 0, W3 = 0, E1 < 0;
Figure 3 iff N1 < 0, W3 > 0, E1 < 0.

Subcase W1 < 0. Then ag > 0 and system (10) becomes

ẋ = g
(
x2 + 1

)
, ẏ = b+ (g − 1)xy + y2. (15)

This system possesses two parallel imaginary invariant straight lines: x = ±i and it
has no real singular points. For system (15) we have

W3 = 648b(g − b)(g2 − 1)2x4,
E1 = 384(g − 2b)g2(g2 − 1),
N1 = (g2 − 1)x2/4.

(16)

1) We assume that the condition N1 6= 0 holds. By Remark 3 system (15) has
one real invariant line for b(b − g)=0. Moreover, considering Remark 1 we obtain
that this line will be a separatrix of infinite saddle if either g < 0 and b = 0 or g > 0
and b = g. By N1 6= 0 from (16) we obtain Figure 4 if either W3 6= 0 or W3 = 0 and
N1E1 > 0 and we obtain Figure 5 for W3 = 0 and N1E1 < 0.

2) If N1 = 0 then g2 − 1 = 0. Since system (15) has a center of symmetry that a
separatrix connection can be only if this separatrix is an invariant straight line. So,
by Remark 2 we conclude that for N1 = 0 the phase portrait of system (15) is given
by Figure 4.

Case W2 < 0. According to Proposition 3 system (5) has not real singular
points and by (8) the condition a

[
a(g − 1)2 + 4bg

]
< 0 holds. Then system (5) has

2 parallel invariant straight lines a+ gx2 = 0 which connect two infinite nodes. So,
we obtain the phase portrait given by Figure 5 (respectively, Figure 4) if there exists
(respectively, does not exist) a separatrix connection of the infinite saddles. As it
was mentioned above since system (5) has a center of symmetry then a separatrix
connection can be only if this separatrix is an invariant straight line. For this system
we have

W3 = 648b(a − b)(g2 − 1)2x4, N1 = (g2 − 1)x2/4,
E1 = 384ag(a − 2b)(g2 − 1),

(17)
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1) If N1 = 0 then g2 − 1 = 0 and by Remark 2 we obtain that there can not
exist a separatrix connection. Therefore we get Figure 4.

2) We assume that the condition N1 6= 0 holds. According to Remark 1 for
g < 0 (respectively, g > 0) the infinite saddle is located at the point N2(1, 0, 0)
(respectively, N3(1, 1, 0)). Therefore, by Remark 2 we obtain a separatrix connection
if and only if either b = 0 and g < 0 or b = a and g > 0. Taking into account (17)
we conclude that the phase portrait of system (5) is given by Figure 5 for W3 = 0
and N1E1 < 0 and it is given by Figure 5 if either W3 6= 0 or W3 = 0 and N1E1 > 0.

Case W2 = 0. Then a
[
a(g − 1)2 + 4bg

]
= 0, and according to (8) we obtain

Discrim(W1) = 0. Therefore, W1(x, y) became sign definite quadratic form and we
shall consider three subcases: W1 > 0, W1 < 0 and W1 = 0.

Subcase W1 > 0. From (8) we obtain g 6= 0 and then µ > 0 and F2 6= 0. By
Proposition 3 system (5) has 2 double singular points which are saddle-nodes. For
this system we have N1 = (g2 − 1)x2/4, E2 = −8ag(g2 − 1).

1) If N1 = 0 then g2 − 1 = 0 and without loss of generality we can assume
g = 1, otherwise the transformation x1 = −x, y1 = y − x and g → −g which keeps
canonical system (5) can be applied. Then we obtain the system

ẋ = a+ x2, ẏ = b+ y2 (18)

for which W2 = 21133abx2y2, W1 = −48(bx2 + ay2). Therefore, the conditions
W2 = 0 and W1 6= 0 yield ab = 0 and a2 + b2 6= 0. We can assume b = 0 (via
changing x ↔ y) and from W1 > 0 we get a < 0. Thus, system (5) possesses 3
invariant lines x = ±

√
−a and y = 0 as well as 2 saddle-nodes (±

√
−a, 0). So, we

get the phase portrait given by Figure 6.

2) We assume now that the condition N1 6= 0 holds. Then g2 − 1 6= 0 and we
shall consider two subcases: E2 = 0 and E2 6= 0.

a) If E2 = 0 then by W1N1 6= 0 we obtain a = 0 (then W2 = 0) and from (8)
the condition W1 > 0 yields b < 0. Then the saddle-nodes (0,±

√
−b) of system (5)

are placed on the double invariant straight line x = 0. So, we get again Figure 6.

b) For E2 6= 0 we have a 6= 0 and the condition W2 = 0 yields a(g−1)2 +4bg = 0.
Since g − 1 6= 0 we can substitute for b a new parameter u by setting b = u(g − 1)2

and then we have a = −4gu. Thus, we obtain the system

ẋ = −4gu+ gx2, ẏ = u(g − 1)2 + (g − 1)xy + y2 (19)

for which we have: W2 = 0, W1 = 48ug2 [(g − 1)x+ 2y]2 . Hence, the condition
W1 > 0 yields u > 0. System (19) has 2 real invariant straight lines x = ±2

√
u and

two singular points which are saddle-nodes: M1,2(±2
√
u, ±(1 − g)

√
u). We shall

examine more detailed the singular point M1. After the transformation

x1 = x+
4g

(g − 1)2
y +

2(g + 1)
√
u

g − 1
, y1 = x− 2

√
u and t1 = 4g

√
u t (20)
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which removes this point to the origin of coordinates, we obtain the standard [1]
canonical system

ẋ1 =
1

16g2
√
u

[(g − 1)x1 + (g + 1)y1]
2, ẏ = y1 +

1

4
√
u
y2
1. (21)

Following [1] we obtain ψ(x) = ∆̃2 x
2 + . . . =

(g − 1)2

16g2
√
u
x2 + . . . , and, hence, the

semi-axis y1 = 0, x1 < 0 is one of the separatrices of the saddle-node M1(0, 0)
and other two separatrices are tangent to the axis x1 = 0 at this point.

On the other hand the second saddle-node M2(x0, y0) of system (21) with co-
ordinates x0 = 4(g + 1)

√
u(g − 1), y0 = −4

√
u is placed on the invariant line

y1 = −4
√
u and x0 > 0 for g2 − 1 > 0 and x0 < 0 for g2 − 1 < 0. We observe that

the transformation (20) removed infinite singular point as following:

Ñ1(0, 1, 0) → N̂1(1, 0, 0); Ñ2(1, 0, 0) → N̂2(1, 1, 0); Ñ3(1, 1, 0) → N̂3

(
1,

(g − 1)2

(g + 1)2
, 0

)
.

Thus, taking into consideration Remark 1 and the fact that according to Remark 4
M0M1 is a segment without contact, we obtain Figure 7 for N1 > 0 and Figure 8
for N1 < 0.

Subcase W1 < 0. From (8) we obtain g 6= 0 and then µ > 0. Then by Proposition
3 system (5) has 2 double imaginary singular points. Since system (5) has a center of
symmetry then a separatrix connection can be only if this separatrix is an invariant
straight line. We claim that this system can not possesses an invariant straight line
as a separatrix. Indeed, by Remark 3 the condition b(b − a) = 0 must be satisfied.
By (8) the condition W2 = 0 yields a

[
a(g − 1)2 + 4bg

]
= 0. Then a 6= 0, otherwise

for a = 0 the condition b(b− a) = 0 contradicts W1 = −48bg2x2 < 0. Therefore, we
obtain a(g − 1)2 + 4bg = 0.

If b = 0 we obtain g = 1 and by Remark 3 the invariant straight line y = 0 of
system (5) connect two nodes. For b = a we have (g − 1)2 + 4g = (g + 1)2 = 0, i.e.
g = −1 and we again obtain that the invariant line y = x connects two nodes. The
claim is proved. Consequently, we get Figure 4.

Subcase W1 = 0. From (8) we obtain g
[
a(g − 1)2 + 2bg

]
= ag(g − 1) = ag = 0.

1) Assume µ 6= 0. Then by (8) we have g 6= 0 and, hence, a = b = 0. Con-
sequently, system (5) becomes quadratic homogeneous system, which according to
Remark 1 has at infinity two nodes and one saddle. So, we get Figure 9.

1) For µ = 0 from (8) we obtain g = 0 and system (5) becomes

ẋ = a, ẏ = b− xy + y2 (22)

for which we have:
µ = W1 = W2 = 0, V = a2y2(x− y)2 6= 0,
W3 = 648b(a − b)x4, E3 = 24(2b − a).

(23)

Taking into consideration systems (6) and (7) (for g = 0) we conclude that the
singular point N1(0, 1, 0) is a node, and according to [1] the triple singular point
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N2(1, 0, 0) (respectively, N3(1, 1, 0)) is a node (respectively, a saddle) for a > 0 and
a saddle (respectively, a node) for a < 0.

By Remark 3 we conclude that system (22) has an invariant straight line which
connects two infinite saddles if and only if either b = 0 and a < 0 or b = a and
a > 0. So, considering (23) we obtain Figure 5 if W3 = 0, E3 > 0 and Figure 4 if
either W3 6= 0 or W3 = 0 and E3 < 0.

3.2 Systems with 1 real and 2 imaginary roots of C2

According to Proposition 2 the condition η > 0 holds and according to [16] the
system can be brought to the canonical form

ẋ = a+ gx2 + (h+ 1)xy, ẏ = b− x2 + gxy + hy2. (24)

For this system we have

κ = (h+ 1)
[
(h− 1)2 + g2

]
/8, C2 ≡ yp2(x, y) − xq2(x, y) = x(x2 + y2),

N1 = [(g2 − 2h+ 2)x2 + 2g(h + 1)xy + (h2 − 1)y2]/4,
(25)

and, hence, N1(0, 1, 0) is a real infinite singular point of this system. On the other
hand the condition κ = 0 yields two cases: h + 1 = 0 and h − 1 = g = 0 which are
equivalent to N1 6= 0 and N1 = 0, respectively.

Case N1 6= 0. Then h = −1 and we obtain the system

ẋ = a+ gx2, ẏ = b− x2 + gxy − y2, (26)

for which

W1 = −24g
[
a(g2 − 2) − 2bg

]
x2 + 48ag2xy − 48 agy2,

W2 = 2733ag2
[
a(g2 − 4) − 4bg

]
[g x− 2 y]2 x2,

H1 = 2534
[
3ag2 + 4bg + 4a

]2
, F2 = −4g2,

Discrim(W1) = −2832ag2
[
a(g2 − 4) − 4bg

]
, µ = g2.

(27)

If µ 6= 0 then from (27) it follows µ > 0 and since η < 0 the singular point N1(0, 1, 0)
is a node [15].

Subcase W2 > 0. Then a
[
a(g2 − 4) − 4bg

]
> 0 and by (27) we obtain

Discrim(W1) < 0, and, hence, sign(W1) = −sign(ag). Since ag 6= 0 by applying the
transformation (9) we get the system:

ẋ = g
(
x2 + Sign(ag)

)
, ẏ = b− x2 + gxy − y2. (28)

1) If W1 > 0 then ag < 0 and system (28) becomes

ẋ = g
(
x2 − 1

)
, ẏ = b− x2 + gxy − y2. (29)

This system possesses two parallel real invariant straight lines: x = ±1. Since by
(27) we have H1 ≥ 0 according to Proposition 3 for W2 > 0, W1 > 0 and H1 ≥ 0
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system (26) has 4 real singular points located on the invariant straight lines x = ±1
and namely, two saddles and two nodes: M±

1

(
1, y±1

)
, M±

2

(
−1, y±2

)
, where

y±1 = (g ±
√

∆)/2, y±2 = (−g ±
√

∆)/2, ∆ = g2 + 4b− 4 > 0.

For the singular points M±

1 we have λ1λ2 = ∓2g
√

∆. We can assume g > 0 via
the transformation y ↔ −y and t ↔ −t. In this case M+

1 is a saddle and M−

1 is a
node and y+

1 > y−1 . Taking into account the coordinates of the singular points we
observe that the straight line y = y+

1 x connects the saddles M+
1 and M−

2 .
On the other hand the directions of the separatrices of the saddle M+

1 are x = 1

and y = Ksx, whereKs =
gy+

1 − 2

g + 2y+
1

. Therefore,Ks−y+
1 =−

[ (
y+
1

)2
+2

]
/(g+2y+

1 ) < 0

by g > 0. Thus, the located inside the domain −1 < x < 1 separatrix of the sad-
dle M+

1 by Remark 4 must connect this saddle with the node M−

2 . So, we get
Figure 10.

2) Condition W1 < 0 implies ag > 0 and system (28) has no real singular
points. Taking into account the infinite node we obtain Figure 11.

Subcase W2 < 0. According to Proposition 3 system (28) has no real singular
points and we again get Figure 11.

Subcase W2 = 0. Then a
[
a(g2 − 4) − 4bg

]
= 0 and by (27) we obtain

Discrim(W1) = 0. Therefore, W1(x, y) became sign definite quadratic form and
we shall consider three subcases: W1 > 0, W1 < 0 and W1 = 0.

1) If W1 > 0 then from (27) we obtain g 6= 0 and then µ > 0 and F2 6= 0. By
Proposition 3 system (26) has 2 double singular points which are saddle-nodes. For
this system we have E2 = −8ag(g2 + 4).

a) If E2 = 0 then a = 0 and the saddle-nodes are located on the invariant
straight line x = 0 of system (26). So, we obtain Figure 12.

b) For E2 6= 0 we have ag 6= 0 and the condition W1 > 0 by (27) yields ag < 0.
Then we obtain system (29) for which the condition W2 = 0 yields g2 + 4b− 4 = 0.
Therefore, we get the system

ẋ = g
(
x2 − 1

)
, ẏ = 1 − g2/4 − x2 + gxy − y2 (30)

with two real invariant straight lines x = ±1 and two saddle-nodes M1(1, g/2) and
M2(−1,−g/2). We can assume g > 0, otherwise the substitution y ↔ −y, t ↔ −t
and g ↔ −g can by applied. On the line y = gx/2 which connects singular pointsM1

and M2 we have dy/dx = (g2−4)/(4g) and by g > 0 we obtain (g2−4)/(4g)−g/2 =
−(g2 + 4)/(4g) < 0. Consequently, we get Figure 13.

2) For W1 < 0 according to Proposition 3 system (28) has no real singular
points and we obtain Figure 11.

3) Assume W1 = 0. From (27) we obtain g
[
a(g2 − 2) − 2bg

]
= ag = 0.

a) For µ 6= 0 we have g 6= 0 and, hence, a = b = 0. Consequently, system (26)
becomes a quadratic homogeneous system which has a unique real infinite singular
point (a node). So, we get Figure 14.

b) If µ = 0 then from (27) we obtain g = 0 and system (26) becomes

ẋ = a, ẏ = b− x2 − y2
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which has not finite singular points and has one real simple infinite point (a node).
Therefore we obtain Figure 11.

Case N1 = 0. Then by (25) we have h− 1 = g = 0 and we obtain the system

ẋ = a+ 2xy, ẏ = b− x2 + y2, (31)

for which

W1 = −96(bx2 − 2axy + by2), W2 = 21133
(
a2 + b2

) (
x2 + y2

)2
,

µ = −4, K = x2 + y2, F1 = 21334a2 = H1,
F2 = 16 = −H2, H3 = −29b, F3 = −192a.

(32)

Since µ < 0 and η < 0 the singular point N1(0, 1, 0) is a saddle (see,[15]).

Subcase W2 6= 0. Then according to Proposition 3 system (31) has 2 real and 2
imaginary singular points.

1) If H1 6= 0 by (32) we have H1 > 0 and since K > 0 and H2 < 0 according
to Proposition 3 the real points of system (31) are foci. We claim that this system
can not possess limit cycles. Indeed, condition H1 6= 0 yields a 6= 0 and via the
transformation

x1 = sign(a) |a|−1/2x, y1 = |a|−1/2y, t1 = |a|1/2x, b = c2 − 1

4c2

system (31) becomes

ẋ = 1 + 2xy, ẏ = c2 − 1

4c2
− x2 + y2. (33)

This system possesses the following two couples of parallel imaginary invariant
straight lines:

x− iy = ±2c2 + i

2c
, x+ iy = ±2c2 − i

2c
.

Following [6] we construct the first integral of system (33) in the complex form:

(
x−iy− c− i

2c

)i−2c2(
x−iy+ c+

i

2c

)2c2−i(
x+iy− c+

i

2c

)−i−2c2(
x+iy+ c− i

2c

)i+2c2
.

Then the corresponding real first integral of system (33) can be constructed:

exp
[
− 2arctg

( 4cx+ 8c3y

1+4c4−4c2(x2+y2)

)](
1 + 4c4 + 8c3x− 4cy + 4c2(x2 + y2)

1 + 4c4 − 8c3x+ 4cy + 4c2(x2 + y2)

)2c2

.

Since the curve 1+ 4c4 − 4c2(x2 + y2) = 0 is not a particular solution of system (33)
and the identity

1 + 4c2 − 8c3x+ 4cy + 4c2(x2 + y2) = 4c2
(
x− iy − c− i

2c

)(
x+ iy − c+

i

2c

)

holds, we conclude that our claim is proved.



118 MIRCEA LUPAN, NICOLAE VULPE

Taking into account that the line x = 0 is not an invariant straight line of system
(33) we obtain Figure 15.

2) Assume H1 = 0. Then a = 0 and by Proposition 3 system (31) has two
nodes located on the invariant straight line x = 0 for H3 > 0 (Figure 16) and it has
two centers for H3 < 0 (Figure 17).

Subcase W2 = 0. By (32) we have a = b = 0 and system (31) becomes a
homogeneous system with one real invariant straight line which is a separatrix of
the saddle N1(0, 1, 0). Therefore, we obtain Figure 18.

In order to obtain the respective to the case η < 0 conditions from Table 1 the
following Remark has to be taking into account:

Remark 5. For system (26) with κ = 0 from (27) and (32) we obtain:
- condition µ < 0 is equivalent to N1 = 0;
- conditions W2 = 0, W1 6= 0 implies µ > 0;
- condition W1 = 0 implies W2 = 0.

The Main Theorem is proved.
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