

The 27th Balkan Mathematical Olympiad

Chisinau, Republic of Moldova, May 4 2010

English version

PROBLEMS

Each problem is worth 10 points.

Time allowed is 4 hours 30 min.

Problem 1. Let *a*, *b* and *c* be positive real numbers. Prove that

 $\frac{a^{2}b(b-c)}{a+b} + \frac{b^{2}c(c-a)}{b+c} + \frac{c^{2}a(a-b)}{c+a} \ge 0$

Problem 2. Let *ABC* be an acute triangle with orthocenter *H*, and let *M* be the midpoint of *AC*. The point C_1 on *AB* is such that CC_1 is an altitude of the triangle *ABC*. Let H_1 be the reflection of H in *AB*. The orthogonal projections of C_1 onto the lines *AH*₁, *AC* and *BC* are *P*, *Q* and *R*, respectively. Let M_1 be the point such that the circumcentre of triangle *PQR* is the midpoint of the segment MM_1 .

Prove that M_1 lies on the segment BH_1 .

Problem 3. A *strip* of width w is the set of all points which lie on, or between, two parallel lines distance w apart. Let S be a set of n ($n \ge 3$) points on the plane such that any three different points of S can be covered by a strip of width 1.

Prove that *S* can be covered by a strip of width 2.

Problem 4. For each integer $n \ (n \ge 2)$, let f(n) denote the sum of all positive integers that are at most n and not relatively prime to n.

Prove that $f(n + p) \neq f(n)$ for each such *n* and every prime *p*.