

Grading scheme

Each problem is worth 10 points.

Problem 1

1) For proving, that initial inequality is equivalent to the inequality:<u>3 points</u>

$$\frac{a(b-c)}{c(a+b)} + \frac{b(c-a)}{a(b+c)} + \frac{c(a-b)}{b(c+a)} \ge 0$$

In particular :

- for substitution of a, b, c by positive x, y, z that gives xyz = 11point
- for using of this substitution and obtaining the above inequality2points

2) For proving, that inequality from 1) is equivalent to the inequality

$$\frac{b(c+a)}{c(a+b)} + \frac{c(a+b)}{a(b+c)} + \frac{a(b+c)}{b(c+a)} \ge 3 \dots \underline{4points}$$

3) For proving of inequality from 2)<u>3points</u>

Grading scheme

Each problem is worth 10 points.

Problem 2

1) It is mentioned that quadrilateral $ACBH_1$ is cyclic <u>lpoint</u>
 2) For proving that point N = QC₁ ∩ BH₁ is the midpoint of BH₁2points • For the assertion that point N = QC₁ ∩ BH₁ is the midpoint of BH₁1point • For proving that point N = QC₁ ∩ BH₁ is the midpoint of BH₁1point
 3) For proving that <i>PMRN</i> is cyclic
 4) For proving that <i>PMRN</i> is cyclic deltoid
 5) For proving that points N and M₁ coincide

Note.

For non proved assertions totally not more than 2 points.

Grading scheme

Each problem is worth 10 points.

Problem 3

I. The least width of a strip covering the triangle is equal to the length of the shortest altitude 5p. In particular:
Ia) At least one of the perpendicular lines through the vertices to the borders meets the opposite side.1p
Ib) The altitude corresponding to that vertex is of length at most w: <u>3p</u>
Ic)The least width of a strip covering the triangle is equal to the length of the shortest altitude <u>1p</u>
II a) Choosing the points A, B at maximal distance; the altitude from any C is the shortest one:3p
II b) Construction

Grading scheme

Each problem is worth 10 points.

Problem 4

1) A counting formula for $f(n)$ is found	<u>2 points</u>
2) It is proved that the equality $f(n + p) = f(n)$ implies:	<u>5 points</u>
• <i>n</i> : <i>p</i>	2 points
• $\varphi(k) = \frac{2(k+1)}{p-1} - 1$ and $\varphi(k+1) = \frac{2(k+1)}{p-1} + 1$	
3) It is proved that each of the following conditions leads to a contradiction:	
• $\varphi(k) = 4$ and $\varphi(k+1) = 4$	1 point
• $\varphi(k)$ $\stackrel{!}{\cdot}$ 4	
• $\varphi(k+1) \stackrel{!}{\sim} 4$	1 point